The θ_5 -graph is a spanner

Prosenjit Bose, Pat Morin, André van Renssen and Sander Verdonschot

Carleton University

June 20, 2013

θ -graphs

- Partition plane into k cones
- Add edge to 'closest' vertex in each cone

Geometric Spanners

- Graphs with short detours between vertices
- For every u and w, there is a path with length $\leq t \cdot |uw|$

Previous Work

Clarkson	1987	heta-graphs with $k>8$ are $(1+arepsilon)$ -spanners
Keil	1988	

Ruppert & Seidel 1991 θ -graphs with k > 6 have spanning ratio

$$\frac{1}{1-2\sin(\theta/2)}$$

Previous Work

Clarkson	1987	heta-graphs with $k>8$ are $(1+arepsilon)$ -spanners
Keil	1988	

Ruppert & Seidel 1991 θ -graphs with k > 6 have spanning ratio

$$\frac{1}{1-2\sin(\theta/2)}$$

El Molla 2009 θ_2 and θ_3 are not spanners

Bonichon et al. 2010 θ_6 is a planar 2-spanner

Previous Work

Clarkson	1987	heta-graphs with $k>8$ are $(1+arepsilon)$ -spanners
Keil	1988	

Ruppert & Seidel 1991 θ -graphs with k > 6 have spanning ratio

$$\frac{1}{1-2\sin(\theta/2)}$$

El Molla 2009 θ_2 and θ_3 are not spanners

Bonichon et al. 2010 θ_6 is a planar 2-spanner

What about θ_4 and θ_5 ?

θ_5 Challenges

- Asymmetric
- Steps can get further away

θ_5 Challenges

- Asymmetric
- Steps can get further away

• Induction on size of canonical triangle

• Base case: smallest canonical triangle

- Base case: smallest canonical triangle
- IH: There exists a path between every two vertices with a smaller canonical triangle
- Case1: w lies near the bisector

- Base case: smallest canonical triangle
- IH: There exists a path between every two vertices with a smaller canonical triangle
- Case2: w lies far from the bisector

- Base case: smallest canonical triangle
- IH: There exists a path between every two vertices with a smaller canonical triangle
- Case2: w lies far from the bisector

- Base case: smallest canonical triangle
- IH: There exists a path between every two vertices with a smaller canonical triangle
- Case2: w lies far from the bisector

- Base case: smallest canonical triangle
- IH: There exists a path between every two vertices with a smaller canonical triangle
- Case2: w lies far from the bisector

- Base case: smallest canonical triangle
- IH: There exists a path between every two vertices with a smaller canonical triangle
- Case2: w lies far from the bisector

- Base case: smallest canonical triangle
- IH: There exists a path between every two vertices with a smaller canonical triangle
- Case2: w lies far from the bisector

- Base case: smallest canonical triangle
- IH: There exists a path between every two vertices with a smaller canonical triangle
- Case2: w lies far from the bisector

Spanning Ratio - Strategy

- Find a vertex v with
 - A path $w \rightsquigarrow v$ shorter than $a \cdot |\triangle_{uw}|$

Spanning Ratio - Strategy

- Find a vertex v with
 - A path $w \rightsquigarrow v$ shorter than $a \cdot |\triangle_{uw}|$
 - A canonical triangle smaller than $b \cdot |\triangle_{uw}|$

Spanning Ratio - Strategy

- Find a vertex v with
 - A path $w \rightsquigarrow v$ shorter than $a \cdot |\triangle_{uw}|$
 - A canonical triangle smaller than $b \cdot |\triangle_{uw}|$
- ullet Then there is a path $u\leadsto w$ shorter than $c\cdot |\triangle_{uw}|$

Case 1

•
$$w \rightsquigarrow v \leq a \cdot |\triangle_{uw}|$$

- $w \rightsquigarrow v \leq a \cdot |\triangle_{uw}|$
- $|\triangle_{uv}| \leq b \cdot |\triangle_{uw}|$

- $w \rightsquigarrow v \leq a \cdot |\triangle_{uw}|$
- $|\triangle_{uv}| \leq b \cdot |\triangle_{uw}|$
- Done!

Works for Case 2 and 3.

Case 4

 Our strategy doesn't work everywhere

- Our strategy doesn't work everywhere
- But it does work in a large part

- Our strategy doesn't work everywhere
- But it does work in a large part
- Left with a small region that we can't solve

- Our strategy doesn't work everywhere
- But it does work in a large part
- Left with a small region that we can't solve
- What about v_u ?

- Our strategy doesn't work everywhere
- But it does work in a large part
- Left with a small region that we can't solve
- What about v_u ?

Case 4b

- $w \rightsquigarrow v \leq a \cdot |\triangle_{uw}|$
- $|\triangle_{uv}| \leq b \cdot |\triangle_{uw}|$
- Done!

Case 4c

Convert to worst-case

Case 4c

Convert to worst-case

Case 4c

- Convert to worst-case
- $w \rightsquigarrow v \approx 0$
- $|\triangle_{uv}| \approx |\triangle_{uw}|$
- Done!

Case 4d

Case 4d

- Convert to worst-case
- Equivalent to Case 1
- Done!

Case 4e

• v_u is close to $w \Rightarrow Done!$

Case 4e

• v_u is close to $w \Rightarrow Done!$

- v_u is close to $w \Rightarrow Done!$
- v_u above v_w

- v_u is close to $w \Rightarrow Done!$
- v_u above v_w
 - Convert to worst-case

- v_u is close to $w \Rightarrow Done!$
- v_u above v_w
 - Convert to worst-case
 - Done!

- v_{μ} is close to $w \Rightarrow Done!$
- v_u above $v_w \Rightarrow \text{Done!}$
- v_u right of v_w

- v_{μ} is close to $w \Rightarrow Done!$
- v_u above $v_w \Rightarrow Done!$
- v_u right of v_w
 - Convert to worst-case

- v_{μ} is close to $w \Rightarrow Done!$
- v_u above $v_w \Rightarrow Done!$
- v_u right of v_w
 - Convert to worst-case

- v_{μ} is close to $w \Rightarrow Done!$
- v_u above $v_w \Rightarrow Done!$
- v_u right of v_w
 - Convert to worst-case

- v_{μ} is close to $w \Rightarrow Done!$
- v_u above $v_w \Rightarrow Done!$
- v_u right of v_w
 - Convert to worst-case
 - Done!

• There is a path between any pair of vertices, of length

$$\leq c \cdot |\triangle|$$

• There is a path between any pair of vertices, of length

$$\leq c \cdot |\triangle| = 2(2 + \sqrt{5}) \cdot |\triangle| \approx 8.472 \cdot |\triangle|$$

There is a path between any pair of vertices, of length

$$\leq c \cdot |\triangle| = 2(2 + \sqrt{5}) \cdot |\triangle| \approx 8.472 \cdot |\triangle|$$

- ullet To compute the spanning ratio, use the smallest of $\triangle_{\it uw}$ and $\triangle_{\it wu}$
- Worst-case when $\triangle_{uw} = \triangle_{wu}$

• There is a path between any pair of vertices, of length

$$\leq c \cdot |\triangle| = 2(2 + \sqrt{5}) \cdot |\triangle| \approx 8.472 \cdot |\triangle|$$

- ullet To compute the spanning ratio, use the smallest of $\triangle_{\it uw}$ and $\triangle_{\it wu}$
- Worst-case when $\triangle_{uw} = \triangle_{wu}$
- ullet The $heta_5$ -graph has spanning ratio at most

$$\frac{\cos\frac{\pi}{10}}{\cos\frac{\pi}{5}} \cdot c \quad \approx \quad 9.960$$

- We showed that the θ_5 -graph is a constant geometric spanner
- Its spanning ratio lies in

$$3.798 \leq ... \leq 9.960$$

- We showed that the θ_5 -graph is a constant geometric spanner
- Its spanning ratio lies in

$$3.798 \leq ... \leq 9.960$$

- Open:
 - Close the gap

- We showed that the θ_5 -graph is a constant geometric spanner
- Its spanning ratio lies in

$$3.798 \leq ... \leq 9.960$$

- Open:
 - Close the gap
 - Is θ_4 a spanner?

- We showed that the θ_5 -graph is a constant geometric spanner
- Its spanning ratio lies in

$$3.798 \leq ... \leq 9.960$$

- Open:
 - Close the gap
 - Is θ_4 a spanner? Yes! (WADS 2013)