Theta-3 is connected Oswin Aichholzer¹ Sang Won Bae² Luis Barba³⁴ Prosenjit Bose³ Matias Korman⁵ André van Renssen³ Perouz Taslakian⁶ Sander Verdonschot³ ¹Graz University of Technology ²Kyonggi University ³Carleton University ⁴Université Libre de Bruxelles ⁵Universitat Politécnica de Catalunya ⁶American University of Armenia 25th Canadian Conference on Computational Geometry # θ -graphs - Partition plane into cones - Add edge to 'closest' vertex in each cone # θ -graphs - Partition plane into cones - Add edge to 'closest' vertex in each cone # Geometric Spanners - Graphs with short detours between vertices - For every u and w, there is a path with length $\leq t \cdot |uw|$ | Clarkson | 1987 | heta-graphs with $>$ 8 cones are spanners | |----------|------|---| | Keil | 1988 | | Ruppert & Seidel $\,$ 1991 $\,$ θ -graphs with > 6 cones are spanners Exercises **4.1.** What can you prove about the stretch factor of $\Theta(S, \kappa)$ if $\kappa \leq 8$? In particular, is $\Theta(S, \kappa)$ connected for such values of κ ? | Clarkson
Keil | 1987
1988 | θ -graphs with $>$ 8 cones are spanners | |------------------|--------------|--| | Ruppert & Seidel | 1991 | $\theta\text{-graphs}$ with $>$ 6 cones are spanners | | El Molla | 2009 | θ_2 and θ_3 are not spanners | | Clarkson
Keil | 1987
1988 | θ -graphs with $>$ 8 cones are spanners | |---|--------------|--| | Ruppert & Seidel | 1991 | heta-graphs with $>$ 6 cones are spanners | | El Molla | 2009 | $ heta_2$ and $ heta_3$ are ${f not}$ spanners | | Bonichon et al. | 2010 | $ heta_6$ is a planar 2-spanner | | Barba <i>et al.</i>
Bose <i>et al.</i> | 2013 | $ heta_4$ and $ heta_5$ are spanners | \bullet Even θ -graphs ullet Odd heta-graphs ullet Odd heta-graphs ullet Odd heta-graphs • Theta-routing does not work in θ_3 # **Properties** • Edges in the same cone cannot cross ## **Properties** - Edges in the same cone cannot cross - Edges cannot cross empty cones • Unique up-path from each vertex • Paths can form barriers • Paths can form barriers - Up-paths cannot cross up-barriers - Other paths can be forced to cross up-barriers • Special configuration of up-sinks • Special configuration of up-sinks • Special configuration of up-sinks ### Conclusion • θ_3 is connected #### Conclusion - θ_3 is connected - Properties hold for Yao3 as well - \Rightarrow Yao₃ is connected #### Future work #### Exercises - **4.1.** What can you prove about the stretch factor of $\Theta(S, \kappa)$ if $\kappa \leq 8$? In particular, is $\Theta(S, \kappa)$ connected for such values of κ ? - **4.2.** Algorithm Θ -Walk(p,q) in Section 4.1.1 computes a t-spanner path in the graph $\Theta(S,\kappa)$ between the points p and q. Is this path necessarily the shortest path in $\Theta(S,\kappa)$ between p and q?