Theta-3 is connected

Oswin Aichholzer¹ Sang Won Bae² Luis Barba³⁴
Prosenjit Bose³ Matias Korman⁵ André van Renssen³
Perouz Taslakian⁶ Sander Verdonschot³

¹Graz University of Technology

²Kyonggi University

³Carleton University

⁴Université Libre de Bruxelles

⁵Universitat Politécnica de Catalunya

⁶American University of Armenia

25th Canadian Conference on Computational Geometry

θ -graphs

- Partition plane into cones
- Add edge to 'closest' vertex in each cone

θ -graphs

- Partition plane into cones
- Add edge to 'closest' vertex in each cone

Geometric Spanners

- Graphs with short detours between vertices
- For every u and w, there is a path with length $\leq t \cdot |uw|$

Clarkson	1987	heta-graphs with $>$ 8 cones are spanners
Keil	1988	

Ruppert & Seidel $\,$ 1991 $\,$ θ -graphs with > 6 cones are spanners

Exercises

4.1. What can you prove about the stretch factor of $\Theta(S, \kappa)$ if $\kappa \leq 8$? In particular, is $\Theta(S, \kappa)$ connected for such values of κ ?

Clarkson Keil	1987 1988	θ -graphs with $>$ 8 cones are spanners
Ruppert & Seidel	1991	$\theta\text{-graphs}$ with $>$ 6 cones are spanners
El Molla	2009	θ_2 and θ_3 are not spanners

Clarkson Keil	1987 1988	θ -graphs with $>$ 8 cones are spanners
Ruppert & Seidel	1991	heta-graphs with $>$ 6 cones are spanners
El Molla	2009	$ heta_2$ and $ heta_3$ are ${f not}$ spanners
Bonichon et al.	2010	$ heta_6$ is a planar 2-spanner
Barba <i>et al.</i> Bose <i>et al.</i>	2013	$ heta_4$ and $ heta_5$ are spanners

 \bullet Even θ -graphs

ullet Odd heta-graphs

ullet Odd heta-graphs

ullet Odd heta-graphs

• Theta-routing does not work in θ_3

Properties

• Edges in the same cone cannot cross

Properties

- Edges in the same cone cannot cross
- Edges cannot cross empty cones

• Unique up-path from each vertex

• Paths can form barriers

• Paths can form barriers

- Up-paths cannot cross up-barriers
- Other paths can be forced to cross up-barriers

• Special configuration of up-sinks

• Special configuration of up-sinks

• Special configuration of up-sinks

Conclusion

• θ_3 is connected

Conclusion

- θ_3 is connected
- Properties hold for Yao3 as well
 - \Rightarrow Yao₃ is connected

Future work

Exercises

- **4.1.** What can you prove about the stretch factor of $\Theta(S, \kappa)$ if $\kappa \leq 8$? In particular, is $\Theta(S, \kappa)$ connected for such values of κ ?
- **4.2.** Algorithm Θ -Walk(p,q) in Section 4.1.1 computes a t-spanner path in the graph $\Theta(S,\kappa)$ between the points p and q. Is this path necessarily the shortest path in $\Theta(S,\kappa)$ between p and q?

