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Abstract An edge guard set of a plane graph G is a subset I" of edges of G
such that each face of G is incident to an endpoint of an edge in I'. Such a
set is said to guard G. We improve the known upper bounds on the number
of edges required to guard any n-vertex embedded planar graph G:

1.

. We prove that there exists an edge guard set of G with at most § + §

We present a simple inductive proof for a theorem of Everett and Rivera-
Campo (1997) that G can be guarded with at most %” edges, then extend
. . . . . 3
this approach with a deeper analysis to yield an improved bound of =*

edges for any plane graph.

(e}
edges, where « is the number of quadrilateral faces in G. This improves
the previous bound of ¢ +a by Bose, Kirkpatrick, and Li (2003). Moreover,
if there is no short path between any two quadrilateral faces in G, we show
that 7 edges suffice, removing the dependence on a.
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1 Introduction

The original Art Gallery Problem: “How many guards are necessary, and how
many are sufficient to patrol the paintings and works of art in an art gallery
with n walls?” was posed by Victor Klee in 1973. Chvatal [5] offered the
first solution to the question by proving that n/3 guards are sufficient and
sometimes necessary to guard an n-vertex polygon. However, since then, an
active area of research was spawned, where researchers studied many different
variants of the problem, by allowing different types of guards and guarding
different types of objects. The field is vast and many surveys on the topic have
been written (see [11,13,10,12]). In this paper, the variant we study is when
the guards are edges and the object guarded is a plane graph.

A plane graph is a graph that is embedded in the plane without crossing
edges. Throughout this paper, G is a plane graph with n > 3 vertices and at
least one edge. The graph G divides the plane into regions called the faces
of G. A guard set for G is a subset I' of edges of G such that every face of
G (including the outer face) contains at least one endpoint of an edge in I’
on its boundary. In other words, when the endpoints of the edges of I" guard
the faces of G, we say that I' guards G. We focus on the problem of finding
a guard set for G with minimum size. To avoid some notational clutter, we
omit floors and ceilings in the statements of the bounds. However, since the
size is necessarily integer, all fractional bounds can be rounded down for upper
bounds and rounded up for lower bounds, except in the case when the upper
bound is less than 1, in which case, we round up to 1.

For maximal outerplanar graphs, O’Rourke [9] showed that % edge guards
are always sufficient and sometimes necessary. In his proof, both the upper
bound and lower bound require that every bounded face is a triangle and the
outer face is a cycle. By removing this restriction, both the upper and lower
bounds jump to % for arbitrary outerplanar graphs [4,5]. For maximal plane
graphs (triangulations), Everett and Rivera-Campo [6] showed that % edge
guards are always sufficient and Bose et al. [4] showed that 4’g4 edge guards
are sometimes necessary. The upper bound is derived using the four-color
theorem. Note the gap between the upper and lower bounds. The lower bound
is derived by constructing a triangulation where 4254 triangles are isolated.
Two triangles are isolated if there is no edge joining a vertex of one triangle
with a vertex of the other triangle. Since it is impossible to isolate % triangles
in a maximal plane graph, this would suggest that the upper bound argument
may not be exploiting all of the structure present in a maximal plane graph.

Indeed, when one studies plane graphs that are no longer restricted to be
maximal, the current best upper bound is no longer %. Everett and Rivera-
Campo [6] used the four-color theorem to prove that %” edges suffice. By using
a different coloring approach, Bose, Kirkpatrick and Li [3] proved that % + «
edges are sufficient, where « is the number of quadrilateral faces of G. Since
outerplanar graphs are planar, 5 edges are sometimes necessary and no better
lower bound is known. Although it seems that the number of quadrilateral
faces plays a key role in this problem, it is unclear which upper bound is

wl
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better in the worst case: 2?” or % + «, since a can be as high as n — 2. Our

main contribution is an improvement on both upper bounds. We give a simpler
proof for Everett and Rivera-Campo’s upper bound of %" edges. In addition,
by exploiting various properties of planar graphs, we are able to strengthen the
bound to %" edges. We then show that, for plane graphs with o quadrilateral
faces, § + § edges suffice, reducing the dependency on . Table 1 summarizes
the best known upper and lower bounds.

Graph Type Lower Bound Upper Bound
Maximal Outerplanar 7 19 7 191
Outerplanar = [4] = [3]
Maximal Planar 2 4] 2 [6]
Planar = [4] min{% + g, %} [this paper]

Table 1: The best known upper and lower bounds for various types of graphs,
where n is the number of vertices and « is the number of quadrilateral faces.

2 Iterative Guarding

We first introduce a proof strategy that iteratively builds a guard set while
shrinking the graph. We use this strategy to give a simple proof of Everett
and Rivera-Campo’s [6] result that 2?” edges suffice for any plane graph, before
strengthening this bound to %”. Note that, if the graph has a single face, it
can be guarded by one edge and our bounds hold so long as n > 3. In the
remainder of this section, we assume that the initial graph has at least two
faces.

The general strategy works as follows. Suppose we are aiming for a bound
of cn edges, for some constant ¢ > 0. We start with an empty partial guard set
I' = (. Given a plane graph G, we identify a set of vertices V' and edges F’
such that (i) the edges in E’ guard all faces incident to vertices in V' and (ii)
we have that |E’| < ¢|V’|. We then add all edges of E’ to I', remove all vertices
in V' from G, along with their incident edges, and repeat until G has one face
left; i.e. G is a forest. This face has already been guarded in the penultimate
step, so we return I" as our guard set. Since we added at most ¢ edges for
every vertex we removed, its size is at most cn.

As a warmp-up, we use this strategy to prove the following bound for 2-
degenerate graphs (an undirected graph is k-degenerate if every subgraph has
a vertex of degree at most k).

Theorem 1 FEvery 2-degenerate plane graph withn > 3 vertices can be guarded
by at most 5 edges.

Proof Let G be a 2-degenerate plane graph with n > 3 vertices. If G has one
face, we guard it with a single edge and the theorem holds, so assume that
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G has more than one face. We use the iterative strategy described above to
construct a guard set I' for G with ¢ = % Thus, all that is left to do is to
describe how to find the sets E' and V.

w

Fig. 1: Edge (u,w) guards both faces incident to a vertex v of degree 2, allowing
us to remove all three vertices.

We consider two cases, depending on the minimum degree of G. If G con-
tains any vertex v of degree 0 or 1, we let £’ = () and V' = {v}. While this
does not technically satisfy our definition above that the edges in E’ guard all
faces incident to vertices in V', this operation is still safe, since any guard set
for G\ {v} is also a guard set for G.

If G does not contain any vertex of degree 0 or 1, the fact that it is 2-
degenerate tells us that it must have a vertex v of degree 2. Let u be a neighbor
of v, and let w # v be another neighbor of u (see Figure 1). Such a vertex
w must exist, since G has minimum degree 2. We now let E' = {(u,w)} and
V' = {v,u, w}. Since edge (u,w) guards both faces incident to v, as well as all
faces incident to v and w, this completes the proof. a

This gives an alternate proof for the bound on outerplanar graphs [5,7],
since they are 2-degenerate. We note that the result of [5,7] is stronger because
they show the sufficiency of n/3 vertex guards, which certainly implies the
sufficiency of n/3 edge guards.

Corollary 1 Every embedded outerplanar graph with n > 3 wvertices can be
guarded by at most 5 edges.

Since a set of 7 disjoint triangles comprises an outerplanar and 2-degenerate
graph, the bounds of Theorem 1 and Corollary 1 are best possible for these
classes.

We use the same technique to prove the 2?” and %” bounds. Since % < % <
%, we can use the arguments from the proof of Theorem 1 to eliminate vertices
of degree 2 or less, even if we are shooting for ¢ = % or ¢ = %. Thus, we may
assume for the remainder of the section that the graph has minimum degree 3.
Since planar graphs are 5-degenerate, we still need to handle vertices of degree
3, 4, or 5. The following lemma gives us a little more to work with in these
cases. For brevity, we denote a vertex of degree d as a d-vertex, and one with
degree at most d as a d”-vertex. Likewise, we denote a face with k boundary

edges as a k-face and one with at most k edges as a k™ -face.
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Lemma 1 (Lebesgue [8]) In each plane graph with minimum degree 3 there
exists either a 3-vertex incident to a 5~ -face, or a 4-vertex incident to a 3-face,
or a 5-vertex incident to four 3-faces.

V2 !

U1 U1 U1

(a) (b) (c)

Fig. 2: Guarding a vertex (a) of degree 3 with two neighbors connected by an
edge; (b) of degree 3 with no neighbors connected by an edge; (c) of degree 4
or 5 and incident to a triangle.

Theorem 2 FEvery plane graph with n > 3 vertices can be guarded by at most
2?” edges.

Proof We use the iterative method with ¢ = % and, as argued above, can
assume that our graph G has minimum degree at least 3.

First consider the case where G has a vertex u of degree 3. Any two neigh-
bors of u together are incident to all faces incident to w. If any two neigh-
bors v; and vy of u are connected by an edge, we let E/ = {(vy,v2)} and
V' = {u,v1,v2} (see Figure 2a). Otherwise, let v; and vy be any two neigh-
bors of u, and let v] # u be a neighbor of v; and v} ¢ {u,v]} a neighbor of vy
(see Figure 2b). We set E' = {(v1,v]), (v2,v4)} and V' = {u, vy, v}, va, v5}.

Now suppose that G has minimum degree at least 4. Then Lemma 1 tells
us that there must be a 57 -vertex u incident to a triangle. Let v; and vs be
the other vertices of this triangle. Edge (v1,v2) guards three of the four or five
faces incident to u. Let vz be a neighbor of u incident to the faces not guarded
by (v1,v2), and let v§ ¢ {u,v1,v2} be a neighbor of vz (see Figure 2¢). We set
E' = {(v1,v2), (v3,v4)} and V' = {u,v1, v, v3,v5} (see Figure 2b).

Thus, in each case we can find E’ and V'’ such that the edges of E’ guard
all faces incident to vertices in V’ and |E'| < 2|V’|. O

To improve this bound further to %”, we need an even stronger version

of Lemma 1, inspired by Borodin [2]. Following his terminology, an edge is
incident to a face if one of its endpoints is on the face. An edge is weak if it
is incident to two triangles, semiweak if it is incident to exactly one triangle,
and strong otherwise.
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Lemma 2 FEvery plane graph with minimum degree 3 contains one of the fol-
lowing:
(L1) a weak edge joining a 3-vertex to a 10~ -vertex;
(L%) a weak edge joining a 4-vertex to a 6~ -vertex;
(LY) a weak edge joining a 4-vertex u to a T-vertex v such that at least
one edge adjacent to (u,v) around v is weak;
(Ls) a weak edge joining a 5-vertex incident to at least four 3-faces to a
6~ -vertex;
(L4) a semiweak edge joining a 3-vertex to an 8~ -vertex;
(Ls) a semiweak edge joining a 4-vertex to a 5~ -vertex;
(Lg) an edge incident to a 4-face and joining a 3-vertex to a 5~ -vertex;
(L7) a 5-face incident to at least four 3-vertices.

Proof Borodin [2] proved this lemma, except with configurations (%) and (L})
replaced by (Lg): a weak edge joining a 4-vertex to a 7~ -vertex. We describe
how to adapt Borodin’s discharging argument to prove our stronger version.
For full details, see the original paper [2].

Initially, we assign a charge of d — 4 to each d-vertex and each d-face. By
Euler’s formula, this results in a total charge of —8. Then, following Borodin,
we redistribute the charge as follows:

— Every face with more than 4 sides transfers % to every 3-vertex on its
boundary.

— Every vertex transfers é to each incident triangle.

— Each vertex u transfers the following to the other endpoint v of each inci-
dent edge:
— % if v has degree 3 and (u,v) is weak;

if v has degree 3 and (u,v) is semiweak;

if v has degree 3 and (u,v) is strong and u has degree at least 6;

if v has degree 4 and (u,v) is weak;

if v has degree 4 and (u,v) is semiweak;

if v has degree 5 and (u, v) is weak and v is incident to four triangles.

SRS EavE Lt b STEaeH [N

We now assume that G does not contain any of the configurations (L) through
(L7), and show that this implies that every vertex and face has non-negative
charge — a contradiction. The only change from the original proof is that we
cannot assume that weak edges between 4-vertices and 7-vertices do not exist.
This only affects the part of the proof dealing with 7-vertices, so if we can
show that 7-vertices still have non-negative charge, we are done.

Consider any 7-vertex u. Initially, v has charge +3. If there is no weak edge
connecting u to a 4-vertex, the original proof still applies, so suppose that v is
a neighboring 4-vertex and (u,v) is weak. Then u transfers % of its charge to v
and each of the two triangles incident to (u,v), leaving it with +2 charge. Let
v_ and vy be the neighbors of u preceding and following v in clockwise order
around u, respectively. Since G does not contain configuration (L%), neither
(u,v_) nor (u,vy) is weak, so u does not transfer any charge to the other faces
incident to these edges. Furthermore, v_ and vy must have degree at least 6,
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otherwise their edge to v would create configuration (L}) or (Ls). Therefore
they receive no charge from w either.

Even if the remaining faces all receive % charge and the remaining vertices
%, this would still leave u with positive charge. By (L1) and (L4), no neighbor
of u can receive more than % charge. If u has another 4-vertex v’ as neighbor
with (u,v’) weak, this results in even less charge distribution, since the neigh-
bors before and after v' do not receive any charge and they cannot overlap
with vy or v_, since (u,v_) and (u,vy) are not weak. Finally, a 3-vertex con-
nected to u by a strong edge would receive 1 charge, but would prevent the

3
adjacent faces from receiving charge. Thus, u will have non-negative charge

after redistribution, which completes the proof. O
p/ p/ p/
p p p
U v v o v vy, v v
q
{ ; E q q
7' q q
(L1) (L3) (L3) (Ls)
/
p p q
p
U v, v v v
ﬁ u/ u 1}/ p
u// u// U” p/
(La) (Ls) (Ls) (L7)

Fig. 3: How to select E’ (thick shaded edges) and V' (large shaded vertices)
in each configuration of Lemma 2.

With Lemma 2 in hand, we can improve our bound to %”.

Theorem 3 FEvery plane graph with n > 3 vertices can be guarded by at most

3n
5 edges.

Proof As before, we use the iterative method and assume that the minimum
degree of our plane graph G is 3. We describe how to find E’ and V' for each
configuration of Lemma 2 (see Figure 3).

If G contains (L1) or (L4), we consider a triangle incident to the (semi)
weak edge and let E’ be the edge of the triangle that is not incident to the 3-
vertex. Then V' consists of the 3-vertex and both endpoints of the edge in E’.
Thus, for the remainder of the proof, we can assume that any vertex incident
to a triangle has degree at least 4.
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If G contains (L)), let u be its 4-vertex, v be its 6~ -vertex, and p and g be
the other vertices of the triangles incident to (u,v) (we leave these definitions
implicit for the remaining cases; refer to Figure 3). We consider a neighbor
p’ of p. If p has an edge to q, we let ' = {(p,q)} and V' = {u,p,q}, so
suppose that p’ # ¢. Since g has degree at least 4, it has a neighbor ¢’ # p'.
We add (p,p’) and (¢,¢’) to E’. If this guards all faces incident to v, we
simply set V' = {u,v,p,p’, ¢, q'}. Otherwise, let v’ be a neighbor of v incident
to all unguarded faces (there can be at most two, since v is a 6~ -vertex).
Let v # v be the other neighbor of v along the boundary of one of the
unguarded faces incident to v. We know that v” ¢ {p,p’,q,¢,u}, otherwise
the face would already have been guarded. Thus, we can add (v’,v”) to E’
and set V' = {u,v,p,p',q,¢,v',v"}.

If G contains (L), we again set E' = {(p,q)} with V' = {u,p, ¢} if edge
(p, q) exists. Otherwise, let ¢’ # u be the other neighbor of ¢ adjacent around
v. Since p’ has degree at least 4, it has a neighbor p’ # ¢’. We add (p,p’) and
(g,q') to E'. If all faces incident to v are guarded, we set V' = {u, v, p,p’, ¢, ¢’}
Otherwise, we use the same reasoning as in the previous case to find an extra
edge (v',v”) that guards the remaining faces around v.

If G contains (L3), let ¢’ # v be the other neighbor of ¢ adjacent around
u. Since p has degree at least 4, it either has a neighbor p’ ¢ {q,q’}, or it is
connected to both ¢ and ¢'. In the first case, we add (p,p’) and (q,¢’) to E’
and again find a third edge (v',v"”) to cover the remaining faces around v. In
the second case, v must have a neighbor v’ # ¢’ otherwise these five vertices
would form a K. Then we let E' = {(¢,¢'), (v,v')} and V' = {u,p,q,¢,v,v'},
since (q,q") guards all faces incident to both u and p except for the triangle
uvp.

If G contains (Ls), let ' # p be the other neighbor of u adjacent to v
around w. If p and «’ are connected by an edge, let E' = {(p,v’)} and V' =
{u,p,u'}. Otherwise, let v” ¢ {u,v} be a neighbor of v’ and let p’ ¢ {u,v, v}
be a neighbor of p. These neighbors exist since v’ and p have minimum degree
3 and 4, respectively. We add (v/,v”) and (p,p’) to E’ and, if necessary, find a
third edge (v',v") to cover the remaining faces around v as before. Thus, we
get B/ = {(p,p), (v, u"), (W', v")} and V' = {u, v/, u", p,p’',v,0", 0" }.

If G contains (Lg), either u is connected to g or it has a neighbor u’ # gq.
In the first case, we let E' = {(p,q)} and V' = {u,p,q}. In the second case,
if u’ is connected to any vertex = € {p,q,v} then that edge would cover all
faces around u and give us E' = {(v/,z)} and V' = {u, v, z}. Otherwise, let
u” # u be another neighbor of u’. We add (p,q) and (v/,u”) to E' and again
find another edge to cover the remaining faces around v.

Finally, if G contains (L7), let f be the 5-face and let u be a vertex of
maximum degree on f. Let v be one of u’s neighbors around the face and let p
be the vertex on f not adjacent to w or v around f. If p has an edge to u or v,
then that edge covers all faces around p, u, and v and we are done. Otherwise,
let p’ ¢ {u,v} be a neighbor of p not on f. We set E' = {(u,v), (p,p’)} and
Vi=v(fHiu{p'}

Thus, in each case we can find a set £’ and V' such that [E'| < 2|V’|. O
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3 Guarding by Coloring

Historically, many questions about guard placement have been resolved by
finding an appropriate vertex or edge coloring. Bose et al. [3] defined a face-
respecting k-coloring of a plane graph G as a k-coloring of the vertices of
G such that no face is monochromatic. They were particularly interested in
face-respecting 2-colorings with the additional property that every face has a
monochromatic edge. For brevity, we call such colorings guard colorings. They
proved the following result, which we include here as a good introduction to
the general technique.

Lemma 3 (Bose et al. [3]) If a plane graph with n > 3 vertices has a guard
coloring, it can be guarded by % edges.

Proof Consider two subgraphs GG; and G2 of G, induced by the two color
classes of the guard coloring. Let M; be a maximal matching in G; and My
in G2. Now consider a face f that has a boundary edge e with both endpoints
in GG1. Since M7 is maximal, if it does not contain e, it must contain one of its
endpoints. Otherwise, we would obtain a larger matching by adding e. Thus,
in each case, M7 guards f. Recall that one of the properties of a guard coloring
is that every face has a monochromatic edge. This implies that M; U M> is a
guard set for G.

We now have one guard set for G, but we do not have a good bound on
the size of this guard set. Indeed, there are examples where M; U Ms contains
many more than 7 edges. To prove the lemma, we find two more guard sets
for G such that the total size of all three guard sets is n. Then the smallest of
these three sets must have size at most 3.

Our second guard set starts with all edges of M7, and then adds one edge
incident to each vertex of (G; that is not in M;. Since our guard coloring has
no monochromatic faces, each face has a vertex in G;. Thus, this set is also a
guard set for G. We obtain our third guard set by repeating this construction
for MQ.

The size of the first guard set is | M7 |+ |Mz]|. The other guard sets have size
|Ma| + |V(G1)| — 2|My| = |V(G1)| — |My], and |V(Ga)| — | Mz|, respectively.
Thus, in the total size the size of the matchings cancels and we are left with
V()| + [V(Ga)| = n. 0

Bose et al. also showed that every plane graph without quadrilateral faces
has a guard coloring. Thus, a natural question is whether all plane graphs —
even those with quadrilateral faces — have a guard coloring? In the following
theorem we show that this is not the case.

Theorem 4 There are plane graphs that have no guard coloring.

Proof Consider the graph in Figure 4. We need to color its vertices with two
colors, say white and blue, such that every face contains (i) vertices of both
colors and (ii) an edge whose endpoints have the same color. We show that
such a coloring does not exist.
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Fig. 4: A plane graph without a guard coloring. The illustrated 2-coloring is
forced under the assumption that a and b have the same color, but leaves
quadrilateral bvsvge without a monochromatic edge.

Suppose, for a contradiction, that it does. Since the outer face is a triangle,
two of its vertices must have the same color, say white. Suppose that the two
vertices are a and b; the other cases are symmetric. This forces ¢ to be blue,
since otherwise triangle abc would be monochromatic. Now either vy or wvg
needs to be white, otherwise triangle cvivg is monochromatic. Since the graph
is symmetric, we suppose without loss of generality that v; is white. This
forces vo to be white as well, otherwise quadrilateral acv;ve would not have
a monochromatic edge. This, in turn, forces s and vz to be blue, since they
are part of triangles with two white vertices. Now a sequence of such triangles
forces vy to be white, vs blue, and vg white. But this leaves quadrilateral
busvge without a monochromatic edge. Since the entire coloring was forced,
this graph has no guard coloring. ad

Note that this counter-example does not require a large guard set: ¢ = 2
edges suffice. Thus, it only shows that the technique of guard colorings does
not extend to all plane graphs.

Everett and Rivera-Campo [6] used a different vertex coloring to find small
guard sets. We modify their approach here to give an upper bound that im-
proves on the § + « bound by Bose et al. [3].

Theorem 5 FEvery plane graph with n > 3 vertices and « quadrilateral faces
can be guarded by at most 5 + § edges.

Proof We first construct a triangulation G’ by inserting extra diagonals in
every non-triangular face of G, with two restrictions. First, we do not insert
edges that are already in G. Second, for every k-face with k£ > 6 and boundary
V1,2, ..., Uk, v1, we first add the three edges vivs, vsvs, and vsv; (see Fig-
ure 5a). By the four-color theorem [1], we can find a proper coloring of G’ with
a set of four colors {ci, ca,c3,cq}. Consider one such coloring, and note that
it is also a proper coloring of G.

Since each face of G was triangulated in G’, its vertices have at least three
distinct colors. Thus, if we consider any two colors, say c¢; and ¢y, each face
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has a vertex with at least one of these two colors. In other words, each face
of G contains a vertex of (G12, the subgraph of G induced by the vertices with
color ¢ or co. This means we can create a guard set for G by finding a set
of edges whose endpoints include all vertices of G12. We do this by finding a
maximal matching Mjs of G2, then adding one extra edge incident to each
vertex of G2 not in Mi5. We call the resulting guard set 175, and note that
it contains |I'o| = |V(G12)| — | Mi2| edges, since each edge of Mjs covers two
vertices in G12. We can do this for each combination of two colors, giving us
six different guard sets.

(a)

Fig. 5: A triangulation and coloring of the faces of G. The red dashed edges
are added when triangulating (a) a face with six or more sides and (b) a
quadrilateral.

Now consider the set 1234 = M7 U M34. We show that this is a guard set
for all non-quadrilateral faces of G. First, suppose that some face has an edge
e whose endpoints have colors ¢; and cy. If neither endpoint of e is in M5, we
can add e to M5 to obtain a larger matching. But M, is maximal, so it must
already contain some edge incident to an endpoint of e. Thus, M, guards all
faces with a (c1, ca)-edge. We claim that every non-quadrilateral face of G has
either a (c1,ce)-edge, or a (cs, cq4)-edge and is therefore guarded by Ij234. To
show this, we group colors ¢; and ¢y into one color class ¢4 and c¢3 and ¢4 into
cp. Our claim is equivalent to saying that every non-quadrilateral face has a
monochromatic edge in this two-coloring. This is clear for faces of odd length,
since they cannot be properly two-colored.

Let f be a k-face with k£ > 6 and with boundary vy, ..., v; (see Figure 5a).
To avoid a monochromatic edge, the colors c4 and cp must alternate along the
boundary. This means that vy, vs, and vs get the same color. But these form
a triangle in G, since we started triangulating this face by inserting the edges
v1V3, V305, and vsvy. Thus, they must have three distinct colors in the four-
coloring, which means they cannot have the same color in the two-coloring.
Therefore I'234 guards all non-quadrilateral faces. An analogous argument
shows that the same holds for F1324 = M13 U M24 and F1423 = M14 U Mgg.
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What about quadrilateral faces? Let ¢ be a quadrilateral face with bound-
ary vp,vs,vs,vs and suppose that it was triangulated by adding vivs (see
Figure 5b). We show that at least two of 7234, 324, and I7423 guard g.
Suppose that ¢ is not guarded by I}234, which means that it does not have
(c1, c2)-edges, or (cs, cq)-edges. Without loss of generality, assume that vy has
color ¢1. Then the two-coloring argument and the presence of edge vyvs force
vz to have color co, while v and vy have color c3 or c¢4. Either way, there is
both a (c1,c3)- or (co,cq)-edge and a (c1,cq)- or (co,c3)-edge. By symmetry,
this means that if one of the three does not guard ¢, the other two do. We
complete I234 to a guard set by adding, for each quadrilateral g not guarded
by I234, one edge incident to ¢, and likewise for 1324 and I'7403. The total size
of these three guard sets is |Mya| + | Msy| + | My3| + | Mag| + | Mia| + | Mi3] + a.

We now have nine guard sets for G. The total number of edges in these
sets is 3n + «, since each vertex occurs in three of the G;;, and the size
of the matchings cancels. Thus, the smallest of these sets has size at most

3nta _ n «a
9 _3+9' 0

4 Distant Quadrilaterals

In this section, we combine both methods used previously to prove a better
upper bound for plane graphs in which every pair of quadrilaterals is far apart.
To make this more precise, we say that two faces f and g are h-hop apart if
every path from a vertex on the boundary of f to a vertex on the boundary
of g contains at least h edges.

Theorem 6 Fvery plane graph with n > 3 vertices in which every two quadri-
lateral faces are 3-hop apart can be guarded by at most 5 edges.

Proof We first use the iterative algorithm as described in the proof of Theo-
rem 1 to remove any vertices of degree less than 3. We have to be a little careful
here, since removing these vertices could introduce a new quadrilateral face
that is not 3-hop apart from existing quadrilaterals. To remedy this, we first
mark all quadrilateral faces in the original graph. Now, if removing a vertex v
of degree 1 would introduce a new quadrilateral face, we instead consider its
neighbor u and another of u’s neighbors w # v (these vertices must exist if
removing v would introduce a new quadrilateral). We then add (u,w) to our
partial guard set Iy and remove all three vertices. This guarantees that all
newly introduced quadrilaterals are guarded by I, since we already do the
same for vertices of degree 2.

If the graph was 2-degenerate, we are now done. Otherwise, this results
in a graph G with minimum degree at least 3 and a partial guard set I of
size at most ‘-, where n; is the number of vertices removed. We proceed
to find a guard set I for G of size at most =2, where ny is the number of
vertices in G. The final guard set is I3 U I and has size at most - + =2 = 7.
Since removing vertices cannot decrease the hop distance between two faces,
all marked quadrilaterals in G are still 3-hop apart.
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We now turn to the coloring method from Theorem 5 to find a guard set
for G. However, we take greater care with quadrilateral faces in triangulating
G and constructing the matchings Mys and M3y, to ensure that Mo U M3y
actually guards every face of G instead of just the non-quadrilateral faces.
Together with I15 and I'34, this then gives us three guard sets of total size na,
which means the smallest of the three has size at most 2.

Fig. 6: Triangulating the face resulting from merging quadrilateral ¢ with a
neighboring face.

We construct a triangulation G’ from G as in the proof of Theorem 5,
with one exception. If a quadrilateral ¢ does not share a boundary edge with
a triangle, we merge it with one of its neighboring faces f by removing the
edge (u,v) separating them (see Figure 6). The result is a face with at least 7
sides, since f was not a triangle and all quadrilaterals are further apart. Let
wy # v be the other neighbor of v along the boundary of f, and wy # v the
other neighbor of u along the boundary of ¢. We insert edges (v, wy), (v, wy),
and (wy,w,), then triangulate the rest of the face as usual.

Next, we four-color G’ and consider the resulting coloring of G. Note that
the edges we removed could be monochromatic, but this is not a problem.
Let G12 and G34 be the subgraphs of G induced by all vertices with colors in
{c1, ¢} and {es3, cq}, respectively. First, suppose Mz is an arbitrary maximal
matching in G2 and M34 in G34. Since each face of G contained a triangle in
G’, it has vertices of at least three different colors. Therefore we still obtain
guard sets I'12 and I'34 by taking the matchings and adding an edge incident to
every vertex of the right colors not in the corresponding matching. Similarly,
as argued in the proof of Theorem 5, M1 U M34 guards all non-quadrilateral
faces of G. We now show how to pick initial edges for M7 and M34 such that
My U M3, also guards the marked quadrilateral faces of G. Recall that the
unmarked quadrilateral faces of G are already guarded by I7.

Initially, Myo and Ms4 are empty. If a marked quadrilateral ¢ shares a
boundary edge with a triangle ¢, then the vertices of ¢t have three distinct
colors. Therefore one of the edges of ¢ must belong to G2 or G4, and we
add this edge to the corresponding matching. If ¢ does not share an edge
with a triangle, we merged it with a neighboring face by removing edge (u,v).
Suppose that u has a color in {¢1, ca}. Since three of its neighbors in G — v,
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wy, and wy, — formed a triangle in G’, one of them must also have a color in
{c1,c2}, and we add this edge to Myo. If u has a color in {c3, ¢4}, we add the
corresponding edge to Msy.

Thus, we seed My and M3, with edges that together guard all marked
quadrilateral faces of G. We then complete these sets to maximal matchings
by greedily adding edges of G12 and G34, respectively. This makes Mo U M3y
a third guard set. The only thing left to argue is that none of the seed edges
share an endpoint. This is guaranteed by the 3-hop distance between marked
quadrilaterals in G; since each seed edge is incident to a marked quadrilateral,
two seed edges sharing an endpoint would give a 2-hop path between two
marked quadrilateral faces. O

5 Conclusion

Our main contribution lies in the development of techniques that allowed us
to improve the upper bound on the number of edge guards that suffice to
guard a plane graph. The role of quadrilateral faces in the size of these guard
sets is intriguing. Of our bounds, one depends on the number of quadrilateral

faces, while the other does not. The first bound (5 + §) almost matches the

lower bound for graphs with few quadrilateral faces, while the second bound

(%") is stronger for graphs with many quadrilaterals — the two bounds balance

at a = %" since 5 + %‘ = %”. It is interesting that quadrilateral faces are

the limiting factor in all techniques based on graph colorings. In contrast, our
iterative technique appears to be limited by the local nature of the operation.
Thus, the solution may lie in a more global approach that does not stumble
over quadrilateral faces.

We leave as an open question to close the gap between the upper and lower
bounds, both for maximal planar graphs and general planar graphs.
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