
Routing on the Visibility Graph †1

Prosenjit Bose‡ Matias Korman§ André van Renssen ¶2

Sander Verdonschot‡3

Abstract4

We consider the problem of routing on a network in the presence of line segment5

constraints (i.e., obstacles that edges in our network are not allowed to cross). Let P6

be a set of n points in the plane and let S be a set of non-crossing line segments whose7

endpoints are in P . We present two deterministic 1-local O(1)-memory routing algorithms8

(i.e., the algorithms never look beyond the direct neighbours of the current location and9

store only a constant amount of additional information). These algorithms are guaranteed10

to find a path consisting of at most a linear number of edges between any pair of vertices11

of the visibility graph of P subject to a set of constraints S. Contrary to all existing12

deterministic local routing algorithms, our routing algorithms do not route on a plane13

subgraph of the visibility graph. Additionally, we provide lower bounds on the routing14

ratio of any deterministic local routing algorithm on the visibility graph.15

1 Introduction16

Routing is the process of sending a message through a network from a source vertex to a17

destination vertex. It is a fundamental problem in networks. If the routing algorithm has18

complete knowledge of the network, it is known how to send a message from any source vertex19

to any destination vertex (among others, Dijkstra’s algorithm can compute a shortest path20

between two vertices in a network).21

However, it is not always possible for the routing algorithm to have full knowledge of the22

network. If the network is very large it may be too expensive to store it explicitly. And even23

if storage constraints are not an issue, it may be hard to keep the representation up-to-date if24

the network changes frequently.25

Thus, there is a need for routing algorithms that guarantee message delivery and use as26

little information of the network as possible. For example, it is challenging to successfully27

route when the only information available to the routing algorithm is the location of the28

current vertex, the neighbours of the current vertex and a constant amount of additional29

information, such as the original source vertex of the message and the destination vertex. A30

†An extended abstract of this paper appeared in the proceedings of the 28th International Symposium on
Algorithms and Computation (ISAAC 2017) [6]. P. B. is supported in part by NSERC. M. K. was partially
supported by MEXT KAKENHI Nos. 15H02665, and 17K12635. M. K. and A. v. R. was supported by JST
ERATO Grant Number JPMJER1201, Japan. S. V. is supported in part by NSERC and the Carleton-Fields
Postdoctoral Award.

‡Carleton University, Ottawa, Canada
§Tohoku University, Sendai, Japan
¶The University of Sydney, Sydney, Australia

1

routing algorithm that can work under these constraints is often referred to as local (or k-local31

for some constant k, when the k-neighbourhood1 is available). In our setting, we assume that32

the network is a graph embedded in the plane, with edges as straight line segments connecting33

pairs of vertices, weighted by the Euclidean distance between their endpoints. We refer to34

such networks as geometric networks. Algorithms routing on such networks are referred to as35

geometric routing algorithms (see [11] and [12] for surveys of the area).36

Since local routing algorithms have little information beyond the immediate neighborhood37

of the current vertex, they use the structure of the network to guide their navigation. For38

example, intuitively speaking, the Θm-graph is a geometric network where each point connects39

to its nearest point in m different cones, which can be thought of as directions (a formal40

definition is given in Section 2). Thus, to route on this graph, it has been shown [10] that it41

suffices to send the message to the nearest node in the direction of the desired destination. If m42

is seven or larger, this strategy will ensure that the message always reaches its destination and43

its length is not much more than the Euclidean distance between the source and destination44

(see [1] for a survey on Θm-graphs). The argument can be extended to show that when m is45

six, the strategy always reaches the destination, but this no longer gives a guarantee on the46

length of the path.47

Using the structure of a graph to guide a routing strategy becomes more challenging in48

the presence of constraints, since constraints act as barriers and can disrupt the inherent49

structure that may be present in graphs built without constraints. For example a vertex in the50

Θm-graph may no longer have an edge in a given direction because of existing constraints. We51

model this more general setting in which some connections are forbidden by using a set S of52

non-intersecting line segment constraints whose endpoints are vertices of the network. These53

segments act as constraints in the sense that no edge can properly intersect an edge of S.54

Given a set P of n points in the plane and a set S of non-intersecting line segment55

constraints, we say that two vertices u and v can see each other (or are visible) when either the56

line segment uv does not properly intersect any constraint in S or uv is itself a constraint in57

S. If two vertices u and v can see each other, the line segment uv is referred to as a visibility58

edge. The visibility graph of P with respect to a set of constraints S, denoted Vis(P, S), has59

P as vertex set and all visibility edges as edge set.60

This setting has been studied extensively in the context of motion planning amid obstacles.61

Clarkson [8] was one of the first to study this problem. In his work, he showed how to find62

an approximate shortest path between two points in the plane amid a set of obstacles. In63

order to find this approximate shortest path efficiently, Clarkson constructs a (1 + ε)-spanner64

of Vis(P, S) with a linear number of edges. A subgraph H of G is called a t-spanner of G65

(for t ≥ 1) if for each pair of vertices u and v, the shortest path in H between u and v has66

length at most t times the shortest path between u and v in G. The smallest value t for which67

H is a t-spanner is the spanning ratio or stretch factor of H. Following Clarkson’s result,68

Das [9] showed how to construct a spanner of Vis(P, S) with constant spanning ratio and69

constant degree. Bose and Keil [4] showed that the Constrained Delaunay Triangulation is a70

2.42-spanner of Vis(P, S). Recently, the constrained half-Θ6-graph (which is identical to the71

constrained Delaunay graph whose empty visible region is an equilateral triangle) was shown72

to be a plane 2-spanner of Vis(P, S) [2] and all constrained Θ-graphs with at least 6 cones73

were shown to be spanners as well [7].74

To the best of our knowledge, all deterministic routing algorithms known to date that75

1The k-neighbourhood is the set of vertices reachable in at most k steps from the current vertex.

2

guarantee that each message eventually reaches its intended destination in geometric networks76

compute some plane subgraph of the complete Euclidean graph and somehow route on the77

subgraph. This means that of the potentially quadratic number of edges available to the78

routing algorithm, only a linear number are ever considered. This artificial constraint limits79

the number of options available and thus can create paths that are much longer than necessary,80

for example when the destination vertex is visible from the source vertex. The visibility graph81

Vis(P, S) depicts all connections that are not blocked by the set S of constraints. In other82

words, it has all connections that can be used (and this graph need not be plane). In this83

paper we present a strategy to route on the visibility graph, making it the first deterministic84

local routing algorithm that does not restrict its choices to a plane subgraph of Vis(P, S).85

1.1 Results and previous work86

Although motion planning amid obstacles has been studied extensively [8, 9, 2, 7], there has87

not been much work on routing in the same setting. Bose et al. [3] showed that it is possible to88

route locally and 2-competitively between any two visible vertices in the constrained Θ6-graph89

(the constrained Θm-graph with 6 cones). A routing strategy is called c-competitive when90

the length of the path that the routing strategy follows is at most c times the length of the91

shortest path between the source and destination in the graph. Additionally, an 18-competitive92

routing algorithm between any two visible vertices in the constrained half-Θ6-graph (which is93

equivalent to the constrained Delaunay graph that uses an empty equilateral triangle) was94

provided [3], but this strategy does not work when the source and destination do not see95

each other. In the same paper it was shown that no deterministic local routing algorithm is96

o(
√
n)-competitive between all pairs of vertices of the constrained Θ6-graph, regardless of the97

amount of memory it is allowed to use. Recently, the authors presented a non-competitive98

1-local O(1)-memory routing algorithm to route on the visibility graph [5] (a formal definition99

of such an algorithm can be found in Section 2). However, this method also restricts the edge100

choices to a plane subgraph of Vis(P, S), as it locally determines the edges of the so-called101

constrained half-Θ6-graph and routes on it.102

We present two deterministic 1-local O(1)-memory routing algorithms on Vis(P, S). The103

first algorithm locally computes a non-plane subgraph of the visibility graph (the constrained104

Θ6-graph) and routes on it. We then modify this algorithm to obtain a routing algorithm that105

routes directly on the visibility graph (i.e., any edge of Vis(P, S) may be used). Both of these106

algorithms reach the destination in at most O(n) steps. To the best of our knowledge, this107

is the first local routing algorithm that does not compute a plane subgraph of the visibility108

graph.109

We also provide some lower bounds to the problem. Specifically, we show that no110

deterministic local routing algorithm can be o(n)-competitive if we measure the quality111

of the path by the number of steps taken between every pair of vertices in the visibility graph.112

Our routing strategy creates paths of linear length, hence they are the best we can hope for in113

this regard.114

Alternatively, if we measure the quality of the path with respect to the Euclidean length115

of the path, we show that no algorithm can be o(
√
n)-competitive. Under specific conditions116

we can also show that no algorithm can be o(n)-competitive. This second bound only holds if117

the algorithm considers only the subgraph induced by the endpoints of edges crossing the line118

segment between the source and destination (a technique commonly used in the unconstrained119

setting).120

3

2 Preliminaries121

The Θm-graph plays an important role in our routing strategy. We begin by defining it. Define122

a cone C to be the region in the plane between two rays originating from a vertex referred123

to as the apex of the cone. When constructing a (constrained) Θm-graph, for each vertex u124

consider the rays originating from u with the angle between consecutive rays being 2π/m.125

Each pair of consecutive rays defines a cone. The cones are oriented such that the bisector of126

some cone coincides with the vertical ray emanating from u that lies above u. Let this cone be127

C0 of u and number the cones in clockwise order around u (see Figure 1). The cones around128

the other vertices have the same orientation as the ones around u. We write Cui to indicate129

the i-th cone of a vertex u, or Ci if u is clear from the context. For ease of exposition, we only130

consider point sets in general position: no two points lie on a line parallel to one of the rays131

that define the cones, no two points lie on a line perpendicular to the bisector of a cone, and132

no three points are collinear. The main implication of this assumption is that no point lies133

on a cone boundary. These assumptions can be removed via classic symbolic perturbation134

techniques.135

C0

C1C5

C4

C3

C2

u

Figure 1: The cones with apex u in the
Θ6-graph. All points of S have exactly six
cones.

C0,0

C5,0

C4,0

C3,0

C2,0

u

C0,1
C1,0

C1,1

C1,2

C4,1

Figure 2: The subcones with apex u in the
constrained Θ6-graph (constraints denoted
as red thick segments).

Let vertex u be an endpoint of a constraint c (if any) and let v be the other endpoint and136

let cone Cui be the cone that contains v. The lines through all constraints c in Cui with u137

as an endpoint split Cui into several subcones (see Figure 2). We use Cui,j to denote the j-th138

subcone of Cui (again, numbered in clockwise order). When a constraint c = (u, v) splits a139

cone of u into two subcones, we define v to lie in both of these subcones. We consider a cone140

that is not split to be a single subcone.141

We now introduce the constrained Θm-graph: for each subcone Ci,j of each vertex u, add142

an edge from u to the closest vertex in that subcone that can see u, where distance is measured143

along the bisector of the original cone (not the subcone). More formally, we add an edge144

between two vertices u and v if v can see u, v ∈ Cui,j , and for all points w ∈ Cui,j that can see145

u, |uv′| ≤ |uw′|, where v′ and w′ denote the projection of v and w on the bisector of Cui and146

|xy| denotes the length of the line segment between two points x and y. Note that our general147

position assumption implies that each vertex adds at most one edge per subcone.148

We now define our routing model. Formally, a routing algorithm A is a deterministic 1-local,149

O(1)-memory routing algorithm, if the choice of the vertex to which a message is forwarded150

from the current vertex s is a function of s, t, N(s), and M , where t is the destination vertex,151

N(s) is the set of vertices adjacent to s and set of constraints incident to s and M is a memory152

of constant size, stored with the message. We consider a unit of memory to consist of a log2 n153

4

bit integer or a point in P . Our model assumes that the only information stored at each vertex154

of the graph is N(s).155

Lemma 1 [2] Let u, v, and w be three arbitrary points in the plane such that uw and vw are156

visibility edges and w is not the endpoint of a constraint intersecting the interior of triangle157

uvw (see Figure 3). Then there exists a convex chain of visibility edges from u to v in triangle158

uvw, such that the polygon defined by uw, wv and the convex chain is empty and does not159

contain any constraints.160

u

v

w

x
y

Figure 3: A convex chain from u to v via x and y.

If u and v do not see each other, the above lemma proves the existence of a convex path161

between them. We use this property repeatedly in our routing algorithm.162

3 Routing on the Constrained Θ6-Graph163

Prior to describing our routing strategy for the entire visibility graph, we first provide one for164

the constrained Θ6-graph. Note that the Θ6-graph is not necessarily plane. In this section, we165

assume that we are given the constrained Θ6-graph explicitly. In the next section, we show166

how to use this algorithm to route on the visibility graph.167

If there are no constraints, there exists a simple local routing algorithm that works on all168

Θ-graphs with at least 4 cones. This routing algorithm, which we call Θ-routing, always follows169

the edge to the closest vertex in the cone that contains the destination. In the constrained170

setting, this algorithm follows the edge to the closest vertex in the subcone that contains the171

destination. Unfortunately, this approach does not necessarily succeed in the constrained172

setting due to two issues. First, a key factor of convergence in the unconstrained Θ-routing173

algorithm is that each step gets us closer to the destination (as long as we have at least 6174

cones). Unfortunately, this property need not hold in the constrained setting (see Figure 4a).175

A second, more important problem is that the cone containing the destination need not176

contain any visible vertices. This happens when a constraint is directly blocking visibility (see177

Figure 4b). In this case, the Θ-routing algorithm will get stuck, since it cannot follow any178

edge in that cone.179

The first problem can be easily fixed: given a vertex u and the destination t, we define the180

canonical triangle of u with respect to t, denoted 4ut, as the triangle with apex u, bounded181

by the cone boundaries of the cone of u that contains t and the line through t perpendicular182

to the bisector of the cone (see Figure 4c). If the edge of u that lies in that cone ends outside183

the canonical triangle, we call the edge invalid and we ignore it. By ignoring invalid edges we184

make sure that any edge we follow leads to a vertex that is closer to t.185

To solve the second problem, the routing algorithm needs to find a path even when an186

obstacle is blocking visibility to the destination (either blocking all visibility from u in the cone187

5

u

t

v

w

Q

z
(a)

u

t

v
w

Q
z

(b)
u

t

(c)

Figure 4: (a) The situation in which Θ-routing follows an edge to v and ends up further away
from the destination. (b) The situation where the Θ-routing algorithm cannot follow any edges
at u, since the destination t lies behind a constraint. (c) The canonical triangle of u, 4ut.

of t or because the edge in that cone is invalid). In this case the algorithm enters the obstacle188

avoidance phase, routing differently until an endpoint of a blocking constraint is reached.189

Intuitively, our algorithm uses the Θ-routing algorithm until it gets stuck, at which point190

it switches to the obstacle avoidance phase in order to get around a constraint blocking its191

visibility to t. After this phase ends, the algorithm switches back to the Θ-routing algorithm.192

This process is repeated until t is reached. A more precise description follows in Section 3.2.193

3.1 Obstacle Avoidance Phase194

We first describe the obstacle avoidance phase. The algorithm enters this phase when routing195

from source s to destination t, and reaches a vertex u that does not have any valid edges196

in the cone that contains t. This can only happen if a constraint Q is blocking visibility to197

t (if many of them exist, let Q be the one whose intersection with segment ut is closest to198

u). The goal of this phase is to reach the right endpoint of Q, which we denote as z. The199

main difficulty with this phase is that the algorithm does not know where z is, since Q is not200

incident on u. In order to overcome this difficulty, the algorithm exploits several geometric201

properties arising from the unique symmetries present in the constrained Θ6-graph, some of202

which are outlined in the proof of Lemma 2.203

Without loss of generality, t lies in Cu0 . We first describe the case where u has no edges in204

C0. The general case, where u may have invalid edges in C0, will be considered afterwards.205

In this first case, the algorithm proceeds as follows. At a current vertex m, the algorithm206

considers one of two candidate edges to follow (see Figure 5). The first is the edge to the207

closest visible vertex v in the subcone of Cm2 that shares a boundary with Cm1 . The second208

edge is the edge from m to the vertex w in Cm1 that minimizes the angle α between mw and209

the right boundary of Cm0 . If v lies in Cw4 and m is not the endpoint of a constraint that210

intersects the interior of triangle mvw, the algorithm follows the edge to v. Otherwise, it211

follows the edge to w. In the proof of Lemma 2, we show that at least one of v or w exists. If212

one of the two vertices v or w does not exist, the algorithm follows the edge that does exist.213

The obstacle avoidance phase ends when the algorithm reaches the endpoint of a constraint214

that intersects ut. In order to recognize this, the algorithm stores u when the phase begins.215

6

v

wα

v

wα

m v

wα

(a) (b) (c)

m m

Figure 5: Routing from a vertex m. (a) Follow the edge to v, since v lies in Cw4 . (b) Follow
the edge to w, since m is the endpoint of a constraint that intersects mvw. (c) Follow the
edge to w, since v lies outside of Cw4 .

Lemma 2 When u has no edges in the cone containing the destination t, the obstacle216

avoidance phase initiated by u reaches the right endpoint z of the closest constraint Q blocking217

visibility to t.218

Proof. Without loss of generality, let t lie in Cu0 . Since u has no edges in C0, the closest219

constraint Q must intersect both boundaries of Cu0 . This implies that z is either in Cu1 or Cu2 .220

We maintain the invariant that each intermediate vertex m has no edges in Cm0 and that the221

intersection of the right boundary of Cm0 and Q is closer to z than in the previous step. We222

first show that there always exists either a w in Cm1 or a v in Cm2 as defined in the paragraph223

preceding this lemma. This implies that our algorithm eventually reaches z since there are a224

finite number of points in P .225

As a consequence of our invariant, z must either lie in Cm1 or Cm2 . Since m has no edges226

in C0, we have that Q is the closest constraint to m in Cm0 . Thus, any point x on Q ∩ Cm0 is227

visible from both m and z. Hence, we can apply Lemma 1 to the triangle mxz and obtain228

a convex chain of visibility edges from m to z. In particular, this implies that m can see a229

vertex in C1 ∪ C2, and therefore it has an edge in C1 ∪ C2. What remains to be shown is that230

the invariant is maintained after every step of the algorithm. We note that for any vertex231

in Cm1 ∪ Cm2 the intersection of the right boundary of its cone C0 is closer to z than that of232

m. Thus, it remains to show that C0 of this next vertex contains no edges. We consider the233

following two cases.234

The algorithm follows the edge to v. If the algorithm follows the edge to v, recall that235

v lies in Cw4 and m is not the endpoint of a constraint that intersects the interior of236

triangle mvw. In particular, this means that w lies outside of Cv0 . Since v is the closest237

visible vertex in the subcone of Cm2 that shares a boundary with Cm1 , the part of Cv0238

below the horizontal line through m must be empty of points visible to v (see Figure 6a).239

By the invariant, Cm0 ∩Cv0 is empty of visible points. What remains to be shown is that240

there are no points visible to v in Cv0 \ Cm0 above the horizontal line through m. If this241

region is not empty, we sweep the region using the right boundary of Cm0 . Let x be242

the first vertex hit by this sweep that is visible to m (see Figure 6b), and consider the243

canonical triangle 4xm. Recall that this triangle has x as apex and is bounded by the244

cone boundaries of the cone of x that contains m and the line through m perpendicular245

7

m

v

m

v

x

w

(a) (b)

m

w

(c)

Figure 6: (a) If m routes to v, the union of green and blue regions must be empty of points.
(b) An illustration of the proof: if the region is not empty, we find a point x that must have
an edge with m that we would have followed instead of v. (c) Routing from m to w.

to the bisector of the cone. In particular 4xm is empty of points visible to x (since it is246

contained in the union of Cm0 , which is empty), the swept part of Cm1 , and a portion247

of Cm2 that must also be empty by our choice of v. This implies that there is an edge248

from x to m. This means that w must exist. By construction, mw forms the smallest249

angle with the right boundary of Cm0 . This means that x ∈ 4mw. Furthermore, since250

mw and mv are visibility edges, Lemma 1 implies the existence of a vertex visible to w251

in 4wm. This contradicts the existence of the edge mw. Thus, Cv0 is empty of vertices252

visible to m. Suppose that there was a vertex y visible to v in Cv0 , then since vy and253

vm are visibility edges, Lemma 1 implies the existence of a vertex visible to m in Cv0 ,254

which is a contradiction.255

The algorithm follows the edge to w. As in the previous case, we consider the part below256

the horizontal line through w and the part above (solid green and dashed blue regions257

in Figure 6c, respectively). The former region must be empty or the edge mw would not258

be present: any point visible to m in this region prevents m from creating an edge to w259

and vice versa. An argument similar to the one for v, showing that the region above the260

horizontal boundary of C1 is empty, also proves that the region above the horizontal261

line through w is empty. Thus, Cw0 must be empty of points visible to w.262 �263

264

We now consider the general case, where u may have invalid edges in C0 (see Figure 7a).265

In this case, when u initiates the obstacle avoidance phase, we either reach z or a vertex m266

that has no edges in C1 and C2 (see Figure 7b). This latter case can only occur when z lies in267

Cm3 . Note that this implies that Q intersects both boundaries of Cm1 . Therefore, we initiate a268

new obstacle avoidance phase from m where C1 plays the role of C0. By Lemma 2, the second269

invocation of the obstacle avoidance phase must reach z.270

Lemma 3 When u has no valid edges in the cone containing the destination t, the general271

obstacle avoidance phase initiated by u reaches the right endpoint z of the closest constraint272

Q blocking visibility to t.273

We note that the above proof relies heavily on the fact that we have exactly 6 cones (and274

thus we are in the constrained Θ6-graph). We have a specific example in which the routing275

8

u

t
Q

(a)

v

u

tQ

m

(b)

Figure 7: (a) When Q does not fully block the visibility of C0, we maintain the invariant that
the visible portion of the canonical triangle (gray region) must be empty along our routing.
Note that edge uv is invalid. (b) The situation where we restart the obstacle avoidance
algorithm at m.

strategy described above would fail for 14 cones (for some node, no edge will keep an invariant276

zone empty, see Figure 8). Thus, a different obstacle avoidance method is needed when the277

number of cones is not 6.278

t

u

v4

v1

v2 v3

Figure 8: The situation where no edge from u (orange) to its neighbors v1, v2, v3, and v4
(blue) preserves the empty triangle (gray) used in the above proof, when using 14 cones.

3.2 Global Routing Strategy279

We now have all the pieces in place to describe our routing strategy. Our routing strategy280

alternates between three phases: while not blocked by an obstacle, we use the classic Θ-routing281

algorithm. If the current vertex has no valid edges in the cone containing the destination,282

it must be blocked by a constraint Q. In this case, we enter the obstacle avoidance phase283

9

to reach the right endpoint of Q. Once we reach this endpoint, we check which of the two284

endpoints of Q is closer to the destination.285

If the closest point to destination is the other endpoint of Q, we enter the opposite endpoint286

phase, where we route to this other endpoint of Q. Note that the two endpoints of Q can see287

each other, so we can route between them using the strategy introduced in [3]. The general288

idea behind the routing strategy in [3] is to stay as close as possible to the visibility edge289

between the endpoints of Q in order to avoid becoming stuck behind constraints.290

Once we have reached the endpoint of Q that is closest to the destination, we resume291

classic Θ-routing. We call this alternation between the three phases the constrained Θ6-routing292

strategy.293

3.3 Convergence294

We now show that our routing algorithm always reaches the destination. First we give a proof295

of convergence which greatly overestimates the number of steps needed to reach the destination,296

but it turns out that first showing that the algorithm always reaches the destination simplifies297

the proof of bounding the number of steps.298

Lemma 4 The constrained Θ6-routing strategy always reaches the destination within a finite299

number of steps.300

Proof. By construction, each edge followed during the Θ-routing phase gets closer to the301

destination. Hence, each Θ-routing phase can consist of at most n steps. Similarly, an obstacle302

avoidance phase performs at most n steps, since each step brings the boundary of cone C0303

closer to the endpoint we are routing to. At the end of an obstacle avoidance phase, we may304

need an opposite endpoint phase which visits each vertex at most once [3]. Thus, each cycle305

of these three phases consists of at most 3n steps.306

Thus, in order to show termination it remains to bound the number of alternations between307

phases. Each invocation of an obstacle avoidance phase is tied to a single constraint Q. Even308

though Q can trigger several obstacle avoidance phases, we claim that the total number is309

bounded. Let z be the endpoint of Q that is closest to t. We claim that between two obstacle310

avoidance phases triggered by Q we must perform an obstacle avoidance phase using another311

constraint Q′ whose endpoint z′ that is closest to t, lies further away from t than z.312

Let D be the closed disk with center t and radius |tz|. We need to show that before using313

Q for another obstacle avoidance phase, we must reach an endpoint z′ that lies outside D.314

In order for Q to trigger another obstacle avoidance phase, the routing path needs to first315

reach a vertex v such that Q blocks visibility to t from v. This implies that v and t lie in316

different halfplanes with respect to the line through Q. Furthermore, v cannot lie on this line,317

since Q needs to block visibility between v and t. Let Hv be the open halfplane that contains318

v and let Ht be its complementary closed halfplane (see Figure 9).319

Consider the routing step we performed at z after reaching it as the endpoint of the320

obstacle avoidance phase of Q. Specifically, we look at which of the possible phases this321

step was executed. If the algorithm started a Θ-routing phase, the very first step must be322

towards the interior of Ht ∩D (since each step of Θ-routing gets closer to t and follows an323

edge in the subcone that contains t). The other option is that we immediately start another324

obstacle avoidance phase because of a new constraint. If the endpoint closest to t of this new325

constraint lies outside D we are done (since the obstacle avoidance phase will take us to the326

10

t

z
v

Ht

Hv

D

Q

m

Figure 9: For constraint Q to trigger another obstacle avoidance phase after reaching z, we
need to reach to a vertex v ∈ Hv (gray, note that v need not lie in D). However, after leaving
z, we first reach a vertex m ∈ Ht ∩ D. Since Q prevents the path between m and v from
remaining inside D, we need to leave D at some point and this can only be caused by a new
constraint Q′ whose endpoints are further from t than z is.

endpoint z′ that we claimed), so assume that this endpoint lies inside D. Furthermore, since327

this constraint blocks visibility from z to t, its endpoint closest to t must lie in Ht. Thus, we328

conclude that regardless of which strategy we used to route, after we leave z we must reach an329

intermediate vertex m that lies in Ht ∩D before we visit v.330

Overall, we have that our proposed routing reaches z, then m ∈ Ht ∩D, and somehow331

then goes to some vertex v ∈ Hv. Recall that z was defined as the closest endpoint of Q to t.332

In particular, the other endpoint is outside D. Thus, even though v may be in D, in order for333

the routing strategy to reach any point of Hv it must leave D at some point. Since during the334

Θ-routing phase we cannot get further away from t, the only way that this can happen is via335

an obstacle avoidance phase where both endpoints lie outside D, proving our claim.336

With this claim shown, we can now proceed to bound the number of alternations between337

the different phases. Let Q1, . . . , Qk be all the constraints sorted by decreasing distance of338

their closest endpoint to t. Let zi be the endpoint of Qi closest to t (i.e., for any 1 ≤ i < j ≤ k,339

we have that |tzi| > |tzj |). Notice that Q1 cannot invoke more than one obstacle avoidance340

phase since there are no constraints whose closest endpoint zi is further from t than z1. By a341

similar reasoning, we can show that Q2 can trigger two obstacle avoidance phases, Q3 four342

such phases, and in general Qi cannot invoke an obstacle avoidance phase more than 2i−1343

times. Since there are k constraints, there cannot be more than 20 + 21 + . . . 2k−1 = 2k − 1344

invocations of an obstacle avoidance phase. As argued at the beginning of the proof, we345

execute at most 3n steps between two obstacle avoidance phases, thus the total number of346

steps is upper bounded by O(n · 2k). �347

348

Note that the above reasoning shows that a single constraint can trigger an obstacle349

avoidance phase many times. Having shown that our algorithm terminates after a finite350

number of steps, we can refine the argument to reduce the number of triggers per constraint351

to exactly one.352

Lemma 5 Let Q be a constraint and let z be the endpoint of Q that is closest to t. Vertex z353

can be visited as the final vertex of at most one obstacle avoidance or opposite endpoint phase.354

11

Proof. When we reach z at the end of an obstacle avoidance or opposite endpoint phase, we355

execute a step in the Θ6-routing strategy. Since this strategy is memoryless2, the routing356

strategy follows the same edge from z every time we reach it. This implies that z cannot be357

visited twice using an obstacle avoidance or opposite endpoint phase, since otherwise the path358

would cycle indefinitely, contradicting Lemma 4. �359

360

This immediately gives a linear bound on the number of phase changes, implying a quadratic361

bound on the number of steps. We now use a more detailed analysis of the circumstances in362

which a vertex may be visited to tighten this further to O(n). In order to do this, we first363

determine the number of constraints that can fully block visibility in a cone of a vertex v.364

Lemma 6 For any vertex v there can be at most three constraints that fully block visibility365

in some cone of v.366

Proof. Recall that there are six cones around v. This already implies that at most six367

constraints can fully block visibility in some cone of v. However, by taking their endpoints368

into account, we can reduce this number to three.369

If for any constraint Q fully blocking a cone of v both endpoints are visible from v (see370

Figure 10a), this accounts for at least three cones of v: at least one that is fully blocked by v371

and two cones that contain one endpoint each and are thus not fully blocked by any other372

constraint. Note that Q can block visibility to at most one endpoint of each other constraint.373

Now consider adding two more constraints. Each of these constraints again accounts for at374

least one cone that is fully blocked. Furthermore, they each have at least one endpoint whose375

visibility to v is not blocked by Q. One of these constraints can block visibility to the other376

endpoint of the other constraint, but since the set of constraints is plane, they cannot both377

block visibility to the endpoint of the other constraint. Hence, adding these two constraint378

implies that at least one cone contains a vertex visible to v, accounting for all six available379

cones. Thus in this case, there can be at most three constraints that fully block visibility in380

some cone of v.381

v

Q

v

(a) (b)

Figure 10: (a) Vertex v can see both endpoints of some constraint Q fully blocking visibility
in a cone. (b) Vertex v can see at most one endpoint of each constraint fully blocking visibility
in a cone.

If for no constraint fully blocking a cone of v both endpoints are visible, this implies that382

for all constraints at most one endpoint is visible. This means that we have either a clockwise383

2An algorithm is called memoryless if it makes the same decision when presented with the same input, i.e.,
it does not store previous decisions.

12

or counterclockwise set of line segments, where each segment blocks visibility to one endpoint384

of the next segment in the cyclic order (see Figure 10b). Hence, we alternate between a fully385

blocked cone and a cone that contains the other endpoint of a constraint. Since there are six386

cones, there can be at most three such constraints. �387

388

Lemma 7 The constrained Θ6-routing strategy always reaches the destination in O(n) steps.389

Proof. Consider any vertex v and consider how we reached it.390

1) v is reached during a Θ-routing phase. Since the routing strategy in this phase is391

memoryless, we would make the same routing step from v every time we reach it. In392

particular, this would imply that v cannot be visited twice using a Θ-routing phase393

(otherwise, the path would cycle indefinitely, contradicting with Lemma 4). Hence,394

we conclude that v is visited once during a Θ-routing phase during the whole routing395

algorithm.396

2) v is reached during an avoidance phase of constraint Q. We consider two subcases:397

2.1) v is not an endpoint of Q. Let u be the vertex that initiated the avoidance398

phase and first consider the case in which Q completely blocks visibility of u in399

the cone containing t (see Figure 4b). In this situation, the same cone remains400

empty for all vertices along the path (including v). By Lemma 6, if v is visited401

more than three times as part of an obstacle avoidance path, two of them share402

the same cone. Both of these times, the obstacle avoidance and opposite endpoint403

phases would end up at z, the endpoint of Q closest to t, contradicting Lemma 5.404

Thus, we conclude that v can be reached this way at most three times.405

It is possible that Q did not block the visibility in the cone completely (i.e., we406

initiated the obstacle avoidance phase because the edge was invalid, see Figure 4a).407

This situation is very similar to the case in which visibility was completely blocked.408

The only difference is that the choice of the edge we follow at v depends on the409

cone that contained t when we started this obstacle avoidance phase as well as on410

whether or not v has edges in the two adjacent cones. We again conclude that if v411

is visited more than a constant number of times in this way, the algorithm would412

route to the same neighbour of v, eventually ending at the same endpoint of Q and413

contradicting Lemma 5.414

2.2) v is an endpoint of Q. As argued in Lemma 5, v can only be visited once during415

the whole execution of the algorithm if it is the endpoint that is closest to t. Similarly,416

if v is the endpoint that is furthest away from t, we know the algorithm enters the417

opposite endpoint phase and routes to the opposite endpoint of Q. Note that v418

could be visited several times this way (see Figure 11). However, notice that v can419

never be visited twice because of the same constraint Q, as this would imply that420

we visit the same closest endpoint twice as well, contradicting Lemma 5. Thus,421

during the entire execution of the algorithm, we can visit at most 3n− 6 vertices422

as the endpoint of a constraint that is not closest to t, since the set of constraints423

is plane.424

13

t

v

u1

u2

uk

Figure 11: A vertex v can be visited Ω(n) times as the endpoint not closest to t. This implies
that v is the endpoint of many constraints and in all of them it is further away from t than
the other endpoint u2, ..., uk. For clarity, the disk centred at t passing through v is drawn (as
solid black), and a possible routing path that visits v multiple times is also shown (in dashed
black).

3) v is reached during an opposite endpoint phase. Every time a vertex is part of a425

path in the opposite endpoint phase, Lemma 3 of [3] shows that at least one of its cones426

is empty.427

Hence, excluding case 2.2, each vertex is visited a constant number times. Since case 2.2428

adds at most 3n− 6 visited vertices during the entire execution of the algorithm, this implies429

that a total of O(n) steps are executed as claimed. �430

431

Theorem 8 There exists a 1-local O(1)-memory routing algorithm for the constrained Θ6-432

graph that reaches the destination in O(n) steps.433

Proof. The algorithm is 1-local by construction, since we consider only information about434

vertices the current vertex is connected to. The Θ-routing phase does not require any memory.435

The obstacle avoidance phase and opposite endpoint phase store a single vertex each and this436

information is discarded when the phase ends. Hence, the algorithm requires O(1) memory.437

Lemma 7 shows that the algorithm terminates in O(n) steps. �438

439

4 Routing on the Visibility Graph440

We now return our attention to our main goal: routing on the visibility graph. Since in the441

previous section we presented a routing algorithm for the constrained Θ6-graph, we first show442

that we can use this algorithm to route on the visibility graph as well. Afterwards, we also443

describe how to modify the constrained Θ6-routing algorithm to route on the visibility graph444

directly without locally determining the edges of the constrained Θ6-graph.445

We note that, unfortunately, the length of the paths resulting from these two approaches446

need not be related to the length of the shortest path in the visibility graph. Since we cannot447

determine locally which endpoint of a constraint is closest to t, the routing algorithms may448

follow a path to an endpoint arbitrarily far away, preventing us from being competitive.449

14

However, we show in Section 5 that no deterministic local routing strategy can be o(
√
n)-450

competitive with respect to the length of the shortest path.451

4.1 Using the Constrained Θ6-Graph452

In order to use the constrained Θ6-routing algorithm from the previous section, we need to453

determine locally at a vertex which of its visibility edges are part of the constrained Θ6-graph.454

Since it is easy to locally determine at a vertex u if a vertex v is the closest vertex in one of its455

subcones, we focus on the situation where this is not the case and we thus have to determine at456

u if it is the closest vertex in one of the subcones of v. Let the constrained canonical triangle457

of v be 4vu clipped using the constraints intersecting the boundary of the canonical triangle458

with one endpoint at u (see Figure 12). Note that we can determine the constrained canonical459

triangle of v locally at u.460

v

u

z y

p

q

Figure 12: The constrained canonical triangle of v (gray). Constraint uz is used to clip the
triangle. Constraint uy does not clip the triangle, since it does not cross the triangle boundary.
Constraint pq does not clip the triangle, since it has no endpoint at u.

Lemma 9 Let u and v be two vertices such that v is not the closest vertex to u in any461

subcone of u. Edge uv is part of the constrained Θ6-graph if and only if u does not have any462

visible vertices in the constrained canonical triangle of v.463

Proof. We first note that we can consider the subcone of v that contains u to be the full cone:464

If the constraint defining the subcone ends in the constrained canonical triangle, Lemma 1465

implies that it also contains a vertex visible to u, correctly implying that uv is not an edge. If466

the constraint does not end in the constrained canonical triangle, the part of the constrained467

canonical triangle outside the subcone is not visible to u and hence it does not influence the468

decision at u.469

It is easy to see that if u has any visible vertices in the constrained canonical triangle of v,470

uv is not an edge of the constrained Θ6-graph: Consider the vertex x such that the smaller471

angle of ux and uv is minimized. Since the angle is minimized, u is not the endpoint of any472

constraints intersecting triangle uvx, so we can apply Lemma 1 to uvx. This gives us a vertex473

inside the constrained canonical triangle that is visible to v. Hence, u is not the closest visible474

vertex to v and thus uv is not an edge of the constrained Θ6-graph.475

Next we show that if u has no visible vertices in the constrained canonical triangle of v,476

uv is an edge of the constrained Θ6-graph. We prove this by contradiction, so assume that uv477

is not an edge of the constrained Θ6-graph. This implies that there exists a vertex x in the478

subcone of v that contains u that is closer to v than u is. Hence, x lies in the constrained479

15

canonical triangle. Applying Lemma 1 to uvx gives us a vertex inside the constrained canonical480

triangle that is visible to u, contradicting that u has no visible vertices in this region. �481

482

4.2 Routing Directly on the Visibility Graph483

In order to route directly on the visibility graph, instead of at each vertex computing the local484

neighbourhood in the constrained Θ6-graph, the constrained Θ6-routing algorithm needs to485

be modified. We do this in such a way that the vertices do not need to store any fixed cone486

orientations.487

When a vertex s wants to send a message, it picks an arbitrary cone orientation and stores488

it in the message it sends. We note that a vertex can pick a different orientation of the cones489

for each message that it sends and this only requires a constant amount of storage. Since the490

orientation is stored in the message, vertices do not need to agree on a fixed orientation in491

advance, as every vertex along the routing path can extract the orientation from the message492

and use that for its decisions.493

Like in the constrained Θ6-routing algorithm, routing directly on the visibility graph works494

in three phases: Θ-routing, obstacle avoidance, and opposite endpoint. During the Θ-routing495

phase a vertex u simply sends the message to the closest vertex in the cone that contains t,496

again limiting the edges it is allowed to follow to the edges that end in 4ut.497

During the obstacle avoidance phase, we start by routing to either endpoint of the constraint498

blocking visibility to t. Since we are routing on the visibility graph, Lemma 1 tells us that there499

is a convex chain of visibility edges to these endpoints. Hence, in order to reach an endpoint500

of the constraint, we follow one of these convex chains. In order to determine the next edge501

on the chain at an intermediate vertex m, the message needs to store the predecessor of m on502

the chain and whether the path should continue to the next clockwise or counter-clockwise503

edge of m. The next edge along the convex chain at m is the edge that minimizes the angle504

with the line through m and the predecessor of m in the stored direction.505

When we arrive at an endpoint of a constraint, we can determine the location of the other506

endpoint, since they are connected in the visibility graph. Using this information, we can507

determine if this constraint is the one that caused the obstacle avoidance phase by checking if508

it blocks visibility of u to t. If this is the case, we also determine which of the two endpoints is509

closer to t. If we are not yet at the endpoint closest to t, we start the opposite endpoint phase,510

which is now simplified to following the edge in the visibility graph to the other endpoint of511

the constraint.512

Theorem 10 There exists a 1-local O(1)-memory routing algorithm for the visibility graph513

that reaches the destination in O(n) steps.514

Proof. We first note that locality follows from the fact that we only need to consider the515

neighbours of the current vertex in each of the steps. The memory bound follows from the516

fact that we need to store only the orientation of the cones in the message, as well as the517

starting vertex of the obstacle avoidance phase and the previous vertex along the obstacle518

avoidance path.519

It remains to bound the number of steps. This algorithm has properties similar to those of520

the constrained Θ6-routing algorithm. First, the Θ-routing phase always gets closer to the521

destination and thus cannot repeat vertices. This implies that Lemma 4 also holds for this522

16

routing algorithm. This in turn implies that a vertex can be the closest endpoint of an obstacle523

avoidance or opposite endpoint phase at most once. Next, since the obstacle avoidance path524

is convex, this implies that this path visits a subset of the vertices visited by the obstacle525

avoidance phase of the constrained Θ6-routing algorithm. Finally, the opposite endpoint526

phase consists of at most a single edge, hence this phase too is a subpath of its constrained527

Θ6-routing counterpart. Hence, when we compare the path of this routing algorithm to the528

constrained Θ6-routing path that uses the same cone orientation, the routing path on the529

visibility graph is a subpath of the constrained Θ6-routing path. Hence, it takes at most O(n)530

steps. �531

532

5 Lower Bounds533

In this section we provide a number of lower bounds on the competitive ratio of any deterministic534

local routing algorithm on the visibility graph compared to the shortest path in that graph.535

We give bounds both on the total length of the path, and on the number of steps taken. Our536

first two lower bounds are adaptations of the lower bound given by Bose et al. [3] in Theorem 1.537

Their focus of interest is the constrained Θ6-graph, where they showed that no deterministic538

1-local routing algorithm on this graph can be o(
√
n)-competitive. In this section, we modify539

their construction for the visibility graph instead.540

We start by giving an overview of their bound. For a given n, the general idea is to541

initially construct a plane graph with a number of vertices quadratic in n. This graph is grid542

shaped, with the source at the bottom and sink at the top (see Figure 13). We run the routing543

algorithm and see which path it follows on the large graph. Note that the graph is of quadratic544

size, but the shortest path uses a linear number of edges. Thus, competitive algorithms cannot545

afford to fully explore the graph. Once we know the path of the routing strategy, we trim the546

graph to one of linear size in n, removing the portions of the graph that the routing algorithm547

did not explore (and in the process we insert a shorter path, see Figure 14). The key point of548

the construction is that the routing algorithm has the exact same information in both the549

original and the trimmed graph. Since the algorithm is deterministic, it will make the same550

choices and follow the same path in both cases.551

s

t

Figure 13: The initial graph for the lower bound construction. The edges shown are the ones
that would be created in the Θ6-graph. The same graph can be realized as a visibility graph
by simply turning every edge into a constraint.

We start by showing a lower bound on the competitive ratio with respect to the number552

of steps in the path (often referred to as the hop distance) as opposed to the length of the553

17

shortest path.554

Lemma 11 No deterministic 1-local routing algorithm is o(n)-competitive with respect to555

the number of steps of the shortest path on all pairs of vertices of the visibility graph on n556

vertices, regardless of the amount of memory it is allowed to use.557

Proof. We need to show that the large and the trimmed graphs can both be realized as a558

visibility graph (instead of the constrained Θ6-graph). The large graph consists of n × n559

vertices in the unit grid in which the vertices in every other column are shifted half a unit560

in the x-coordinate, and then we scale the instance in the x-coordinate by a factor of n (see561

exact details in [3]). Since the graph is a maximal plane graph (i.e., any additional edge would562

create a crossing), we can realize it as a visibility graph by making every edge a constraint.563

Now we explain how to also make the trimmed graph. Consider any deterministic 1-local564

routing algorithm and the path it follows from s to t. Let π be the path consisting of the first565

n/2 steps of this routing path. We note that since the initial graph has n rows, the shortest566

path must have at least n/2 steps (by following edges on the left or right boundary you can567

skip one every two rows) and thus π is well defined.568

Next, we modify the initial graph in exactly the same way as done by Bose et al.: for569

every vertex visited by π, we mark that vertex, and all of its neighbours. We also mark t, its570

neighbors, and all constraints whose two endpoints are marked vertices. The trimmed graph571

consists of the visibility graph consisting of marked vertices and constraints only. That is, we572

remove any non-marked vertex, edge, and constraint, and “update” the visibility graph (see573

Figure 14).574

s

t

Figure 14: Once we know the path π (orange and dash-dotted) followed by the routing strategy
we can create the trimmed graph: this graph will have the same local information as in the
initial graph, hence the same choices will be made. However, the trimmed graph contains a
shorter path with a constant number of steps (blue and dotted). Constraints are shown in
thick red. Note that in the left side of the graph there could be quadratically many edges
(in solid black), but this can be reduced to a linear number by choosing any plane graph and
adding those edges as constraints.

Now we analyze the performance of the routing algorithm in the trimmed graph. Consider575

the n columns of the construction. We say that a vertex touches a column if it lies in that576

column or has a neighbour in that column. Observe that every vertex of π (other than s and577

t) touches a constant number of columns. Since π consists of n/2 steps, there exists a column578

c that is touched at most O((n/2)/n) = O(1) times.579

Regardless of π, we observe that there is a path from s to t that consists of O(1) steps:580

follow the edge from s to the column c, and go upwards in that column until you reach the top581

18

row, and follow the edge to t. There are only O(1) vertices in that column (i.e., the touched582

vertices). Between any two consecutive vertices we need a constant number of steps. Since any583

deterministic 1-local routing algorithm would follow a path consisting of at least n/2 steps,584

we get the claimed lower bound on the competitive ratio with respect to the number of steps.585

In order to complete the proof, we need to argue that the trimmed graph has linear size.586

Since π consists of n/2 steps and every vertex other than s and t has a constant number of587

neighbors, we obtain a graph with Θ(n) vertices. However, note that the resulting graph could588

have quadratically many edges (see the left side of Figure 14 for example). We can reduce589

the number of edges to linear by adding additional constraints. The only requirement is that590

these constraints do not cross the edges used in the short path in column c. For example, we591

can add an arbitrary plane graph where every edge is a constraint. �592

593

The same construction can be used to show a lower bound on the competitiveness in terms594

of the length of the shortest path.595

Lemma 12 No deterministic 1-local routing algorithm is o(
√
n)-competitive with respect to596

the length of the shortest path on all pairs of vertices of the visibility graph on n vertices,597

regardless of the amount of memory it is allowed to use.598

Proof. The construction of both the large and the trimmed graphs is the same as in Lemma 11.599

The main change is that now the analysis is based on Euclidean length instead of number600

of steps. Recall that we scaled the instance by a factor of n in the x-coordinates. This in601

particular implies that any non-vertical edge of the graph has length at least n. Consider the602

path π consisting of the first n/2 steps taken by the routing algorithm. If none of these edges603

is vertical, we obtain a lower bound of n2/2 on the length of the routing path. If at least one604

edge is vertical, we observe that both of these vertical sides are at distance n2/2 from s, thus605

giving the same lower bound on the length of the path.606

However, in the trimmed path we can find a shorter path. Consider the 2
√
n columns3 at607

distance at most n
√
n from s. Since π consists of n/2 vertices, there exists a column c that is608

touched at most
√
n times.609

For ease of exposition, first consider the case in which c is touched only by s and t. This610

would give us a path of length at most O(n
√
n): go from s to the column c and follow the611

upward edges to t. Each of the horizontal steps has length O(n
√
n) and there are two of them612

in total, whereas the n upward edges have unit length.613

In the general case, recall that c is touched at most
√
n times. For each vertex that is614

touched, we need to make a small detour via the next column, adding an extra cost of O(n)615

per detour, leading to a total path length of O(n
√
n). Hence, the ratio between the two path616

lengths tends to ω(
√
n), giving the lower bound. �617

618

Next, we show that this lower bound can be improved in some cases. A common strategy619

for routing is to use the segment st as a guide to reach the destination. Thus, even though620

one is allowed to use all edges of the graph, routing algorithms often only consider edges of621

the subgraph induced by the endpoints of edges that cross st. For any such algorithm we can622

increase the lower bound to show that no o(n)-competitive algorithm exists in terms of the623

shortest path distance.624

3Since we need to consider the Euclidean distance traveled to reach these columns later, we cannot consider
all n columns.

19

Lemma 13 No deterministic 1-local routing algorithm, that considers only edges of the625

subgraph induced by the endpoints of edges that cross st, is o(n)-competitive with respect626

to the length of the shortest path on all pairs of vertices of the visibility graph on n vertices,627

regardless of the amount of memory it is allowed to use.628

Proof. In order to obtain this lower bound, we modify the lower bound for routing on the629

constrained Θ6-graph, presented by the authors [5] in Lemma 4.1. The proof of this claim630

only needs one graph (shown in Figure 15).631

ε
ρ ρ

1

n/3

s

t

Figure 15: Lower bound construction: the shortest path in the subgraph induced by all
endpoints of edges crossing st (orange and dash-dotted) is about n/12 times as long as the
shortest path in the visibility graph (blue and dotted). Constraints are shown in thick red
and the remaining edges are shown in solid black.

The construction is as follows (see Figure 16): start with 3 columns of n/3 vertices each,632

aligned on a grid4. We add a constraint between every horizontal pair of vertices of two633

consecutive columns. We also add constraints from every vertex that is in an odd row of the634

first two columns to the vertex in the next column that is in either the next or previous row.635

Next, we shift every odd row by 1/2 + ε units to the right (for some arbitrarily small but636

positive ε < 1/2). We add a vertex s below the lowest row and a vertex t above the highest637

row, centered the first two vertices on said row. Finally, we stretch the point set by a factor638

2ρ in the horizontal direction, for some large constant ρ. When we construct the visibility639

graph on this point set, we get the graph shown in Figure 15.640

The shortest path in the visibility graph goes from s to the leftmost column in one step,641

travels vertically upwards, and goes to t in one step. Ignoring the terms that depend on ε,642

the first and last step have length less than 2ρ+ 2 whereas the vertical steps each have unit643

length, giving a path whose total length is less than 4ρ+ n/3 + 4.644

However, if we restrict ourselves to the subgraph induced by the endpoints of edges that645

cross st the path becomes significantly longer: we must now zig-zag left and right in a path of646

n/3 steps, each time crossing the segment st (see Figure 15). Ignoring the terms that depend647

on ε, each edge of this path has length at least ρ, giving an overall lower bound of ρ · n/3 for648

4For simplicity, we assumed that n is a multiple of 3. This assumption can be removed by placing the 1 or 2
remaining points far enough away from the remainder of the point set.

20

s

t

(a) (b) (c)

(e)

1

1

(d)

s

t

(f)

Figure 16: Constructing the lower bound: (a) the initial point set, (b) adding the horizontal
constraints, (c) adding the constraints between rows, (d) shifting the rows, (e) adding s and t,
(f) stretching the construction.

the length of any restricted path. Hence, the ratio between the two bounds approaches n/12,649

since limρ→∞
ρ·n

3
4ρ+n

3
+4 = n

12 .650

Since the shortest path in the subgraph is n/12 times the length of the shortest path in the651

visibility graph, no routing algorithm that considers only the subgraph can be o(n)-competitive652

with respect to the length of the shortest path in the visibility graph. �653

654

6 Conclusion655

We presented the first deterministic 1-local O(1)-memory routing algorithms for the visibility656

graph that does not require the computation of a planar subgraph. Unfortunately, our657

algorithms do not give any guarantees on the length of the routing path, only on the number658

of edges used. A natural improvement would be the design of a routing strategy that is659

competitive with respect to the length of the shortest path.660

Our lower bounds show that o(
√
n)-competitiveness is not possible (and that it will be even661

hard to obtain o(n)-competitiveness). The same lower bounds also give rise to the following662

questions: Can we design an O(
√
n)-competitive deterministic 1-local routing strategy? Can663

we actually beat these lower bounds by introducing randomness into the routing algorithms?664

Acknowledgements665

Part of this work was performed at the Sendai Workshop on Discrete and Computational666

Geometry and the Shonan Meeting 106 - Geometric Graphs: Theory and Applications.667

We thank the participants of both workshops for providing a fun and stimulating research668

environment.669

21

References670

[1] Prosenjit Bose, Jean-Lou De Carufel, Pat Morin, André van Renssen, and Sander671

Verdonschot. Towards tight bounds on theta-graphs: More is not always better. Theoretical672

Computer Science, 616:70–93, 2016.673

[2] Prosenjit Bose, Rolf Fagerberg, André van Renssen, and Sander Verdonschot. On674

plane constrained bounded-degree spanners. In Proceedings of the 10th Latin American675

Symposium on Theoretical Informatics (LATIN 2012), volume 7256 of Lecture Notes in676

Computer Science, pages 85–96, 2012.677

[3] Prosenjit Bose, Rolf Fagerberg, André van Renssen, and Sander Verdonschot. Competitive678

local routing with constraints. Journal of Computational Geometry (JoCG), 8(1):125–152,679

2017.680

[4] Prosenjit Bose and J. Mark Keil. On the stretch factor of the constrained Delaunay681

triangulation. In Proceedings of the 3rd International Symposium on Voronoi Diagrams682

in Science and Engineering (ISVD 2006), pages 25–31, 2006.683

[5] Prosenjit Bose, Matias Korman, André van Renssen, and Sander Verdonschot. Constrained684

routing between non-visible vertices. In Proceedings of the 23rd Annual International685

Computing and Combinatorics Conference (COCOON 2017), volume 10392 of Lecture686

Notes in Computer Science, pages 62–74, 2017.687

[6] Prosenjit Bose, Matias Korman, André van Renssen, and Sander Verdonschot. Routing688

on the visibility graph. In Proceedings of the 28th International Symposium on Algorithms689

and Computation (ISAAC 2017), volume 92 of Leibniz International Proceedings in690

Informatics, pages 18:1–18:12, 2017.691

[7] Prosenjit Bose and André van Renssen. Upper bounds on the spanning ratio of constrained692

theta-graphs. In Proceedings of the 11th Latin American Symposium on Theoretical693

Informatics (LATIN 2014), volume 8392 of Lecture Notes in Computer Science, pages694

108–119, 2014.695

[8] Ken Clarkson. Approximation algorithms for shortest path motion planning. In Proceedings696

of the 19th Annual ACM Symposium on Theory of Computing (STOC 1987), pages 56–65,697

1987.698

[9] Gautam Das. The visibility graph contains a bounded-degree spanner. In Proceedings of699

the 9th Canadian Conference on Computational Geometry (CCCG 1997), pages 70–75,700

1997.701

[10] J. Mark Keil and Carl A. Gutwin. Classes of graphs which approximate the complete702

Euclidean graph. Discrete & Computational Geometry, 7(1):13–28, 1992.703

[11] Sudip Misra, Subhas Chandra Misra, and Isaac Woungang. Guide to Wireless Sensor704

Networks. Springer, 2009.705

[12] Harald Räcke. Survey on oblivious routing strategies. In Mathematical Theory and706

Computational Practice, volume 5635 of Lecture Notes in Computer Science, pages 419–707

429, 2009.708

22

