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Abstract Let P be a finite set of points in the plane and S a set of non-crossing line6

segments with endpoints in P. The visibility graph of P with respect to S, denoted7

Vis(P,S), has vertex set P and an edge for each pair of vertices u,v in P for which no8

line segment of S properly intersects uv. We show that the constrained half-θ6-graph9
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(which is identical to the constrained Delaunay graph whose empty visible region10

is an equilateral triangle) is a plane 2-spanner of Vis(P,S). We then show how to11

construct a plane 6-spanner of Vis(P,S) with maximum degree 6+ c, where c is the12

maximum number of segments of S incident to a vertex.13

Keywords Plane Spanners · Bounded-Degree · Constraints · Visibility Graph14

1 Introduction15

A geometric graph G is a graph whose vertices are points in the plane and whose16

edges are line segments between pairs of vertices. A graph G is called plane if no two17

edges intersect properly. Every edge is weighted by the Euclidean distance between18

its endpoints. The distance between two vertices u and v in G, denoted by dG(u,v)19

or simply d(u,v) when G is clear from the context, is defined as the sum of the20

weights of the edges along the shortest path between u and v in G. A subgraph H21

of G is a t-spanner of G (for t ≥ 1) if for each pair of vertices u and v, dH(u,v) ≤22

t · dG(u,v). The smallest value t for which H is a t-spanner is the spanning ratio or23

stretch factor of H. The graph G is referred to as the underlying graph of H. The24

spanning properties of various geometric graphs have been studied extensively in the25

literature (see [6,9] for a comprehensive overview of the topic). However, most of26

the research has focused on constructing spanners where the underlying graph is the27

complete Euclidean geometric graph. We study this problem in a more general setting28

with the introduction of line segment constraints.29

Specifically, let P be a set of points in the plane and let S be a set of line seg-30

ments with endpoints in P, with no two line segments intersecting properly. The line31

segments of S are called constraints. Two vertices u and v can see each other if and32

only if either the line segment uv does not properly intersect any constraint or uv is33

itself a constraint. If two vertices u and v can see each other, the line segment uv is34

a visibility edge. The visibility graph of P with respect to a set of constraints S, de-35

noted Vis(P,S), has P as vertex set and all visibility edges as edge set. In other words,36

it is the complete graph on P minus all edges that properly intersect one or more37

constraints in S.38

This setting has been studied extensively within the context of motion planning39

amid obstacles. Clarkson [7] was one of the first to study this problem and showed40

how to construct a linear-sized (1+ ε)-spanner of Vis(P,S). Subsequently, Das [8]41

showed how to construct a spanner of Vis(P,S) with constant spanning ratio and con-42

stant degree. Bose and Keil [4] showed that the Constrained Delaunay Triangulation43

is a 2.42-spanner of Vis(P,S). In this article, we show that the constrained half-θ6-44

graph (which is identical to the constrained Delaunay graph whose empty visible45

region is an equilateral triangle) is a plane 2-spanner of Vis(P,S) by generalizing the46

approach used by Bose et al. [3]. A key difficulty in proving the latter stems from47

the fact that the constrained Delaunay graph is not necessarily a triangulation (see48

Figure 1). We then generalize the elegant construction of Bonichon et al. [2] to show49

how to construct a plane 6-spanner of Vis(P,S) with maximum degree 6+ c, where50

c = max{c(v)|v ∈ P} and c(v) is the number of constraints incident to a vertex v.51
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Fig. 1 The constrained half-θ6-graph is not necessarily a triangulation. The thick line segment represents
a constraint

2 Preliminaries52

We define a cone C to be the region in the plane between two rays originating from a53

vertex referred to as the apex of the cone. We let six rays originate from each vertex,54

with angles to the positive x-axis being multiples of π/3 (see Figure 2). Each pair55

of consecutive rays defines a cone. For ease of exposition, we only consider point56

sets in general position: no two points define a line parallel to one of the rays that57

define the cones and no three points are collinear. These assumptions imply that we58

can consider the cones to be open. If a set of points is not in general position, one can59

easily find a suitable rotation of the point set to put it in general position.60

C0

C1C2

C1

C0

C2

u

Fig. 2 The cones having apex u
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C1,1

C1,0

C1,0

Fig. 3 The subcones having apex u. Constraints
are shown as thick line segments

Let (C1,C0,C2,C1,C0,C2) be the sequence of cones in counterclockwise order61

starting from the positive x-axis. The cones C0, C1, and C2 are called positive cones62

and C0, C1, and C2 are called negative cones. By using addition and subtraction mod-63

ulo 3 on the indices, positive cone Ci has negative cone Ci+1 as clockwise next cone64

and negative cone Ci−1 as counterclockwise next cone. A similar statement holds for65
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negative cones. We use Cu
i and Cu

j to denote cones Ci and C j with apex u. Note that66

for any two vertices u and v, v ∈Cu
i if and only if u ∈Cv

i .67

Let vertex u be an endpoint of a constraint c and let the other endpoint v lie68

in cone Cu
i . The lines through all such constraints c split Cu

i into several parts. We69

call these parts subcones and denote the j-th subcone of Cu
i by Cu

i, j, numbered in70

counterclockwise order (see Figure 3). When a constraint c = (u,v) splits a cone of71

u into two subcones, we define v to lie in both of these subcones. We call a subcone72

of a positive cone a positive subcone and a subcone of a negative cone a negative73

subcone. We consider a cone that is not split to be a single subcone.74

We now introduce the constrained half-θ6-graph, a generalized version of the75

half-θ6-graph as described by Bonichon et al. [1]: for each positive subcone of each76

vertex u, add an edge from u to the closest vertex in that subcone that can see u,77

where distance is measured along the bisector of the original cone (not the subcone)78

(see Figure 4). More formally, we add an edge between two vertices u and v if v can79

see u, v ∈Cu
i, j, and for all vertices w ∈Cu

i, j that can see u, |uv′| ≤ |uw′|, where v′ and80

w′ denote the projection of v and w on the bisector of Cu
i and |xy| denotes the length81

of the line segment between two vertices x and y. Note that our assumption of general82

position implies that each vertex adds at most one edge to the graph for each of its83

positive subcones.84

u

v
w

Fig. 4 Three vertices are projected onto the bisec-
tor of a cone of u. Vertex v is the closest vertex in
the left subcone and w is the closest vertex in the
right subcone

m

α

u

wa b

Fig. 5 Canonical triangle Tuw

Given a vertex w in a positive cone Ci of vertex u, we define the canonical triangle85

Tuw to be the triangle defined by the borders of Cu
i and the line through w perpendicu-86

lar to the bisector of Cu
i (see Figure 5). Note that for each pair of vertices there exists87

a unique canonical triangle. We say that a region is empty if it does not contain any88

vertices.89
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3 Spanning Ratio of the Constrained Half-θ6-Graph90

In this section we show that the constrained half-θ6-graph is a plane 2-spanner of the91

visibility graph Vis(P,S). To do this, we first prove a property of visibility graphs.92

Recall that a region is empty if it does not contain any vertices.93

Lemma 1 Let u, v, and w be three arbitrary points in the plane such that uw and vw94

are visibility edges and w is not the endpoint of a constraint intersecting the interior95

of triangle uvw. Then there exists a convex chain of visibility edges from u to v in96

triangle uvw, such that the polygon defined by uw, wv and the convex chain is empty97

and does not contain any constraints.98

Proof Let Q be the set of vertices of Vis(P,S) inside triangle uvw. If Q is empty, no99

constraint can cross uv, since one of its endpoints would have to be inside uvw, so our100

convex chain is simply uv. Otherwise, we build the convex hull of Q∪{u,v}. Note101

that uv is part of the convex hull since Q lies inside uvw to one side of the line through102

uv. When we remove this edge, we get a convex chain from u to v in triangle uvw. By103

the definition of a convex hull, the polygon defined by uw, wv and the convex chain104

is empty.105

u

v

w

u′

v′

x
y

Fig. 6 A convex chain from u to v and intersections u′ and v′ of the triangle and the line through x and y

Next, we show that two consecutive vertices x and y along the convex chain can106

see each other. Let u′ be the intersection of uw and the line through x and y and let v′107

be the intersection of vw and the line through x and y (see Figure 6). Since w is not the108

endpoint of a constraint intersecting the interior of triangle uvw and, by construction,109

both u′ and v′ can see w, any constraint crossing xy would need to have an endpoint110

inside u′wv′. But the polygon defined by uw, wv and the convex chain is empty, so111

this is not possible. Therefore x can see y.112

Finally, since the polygon defined by uw, wv and the convex chain is empty and
consists of visibility edges, any constraint intersecting its interior needs to have w
as an endpoint, which is not allowed. Hence, the polygon does not contain any con-
straints. ut

Theorem 1 Let u and w be vertices, with w in a positive cone of u, such that uw is a113

visibility edge. Let m be the midpoint of the side of Tuw opposing u, and let α be the114

unsigned angle between the lines uw and um. There exists a path connecting u and w115

in the constrained half-θ6-graph of length at most (
√

3 · cosα + sinα) · |uw| that lies116

inside Tuw.117



6 Prosenjit Bose et al.

Proof We assume without loss of generality that w ∈ Cu
0, j. We prove the theorem118

by induction on the area of Tuw. Formally, we perform induction on the rank, when119

ordered by area, of the triangles Txy for all pairs of vertices x and y that can see each120

other. Let δ (x,y) denote the length of the shortest path from x to y in the constrained121

half-θ6-graph that lies inside Txy. Let a and b be the upper left and right corner of Tuw,122

and let A and B be the triangles uaw and ubw (see Figure 7). Our inductive hypothesis123

is the following:124

– If A is empty, then δ (u,w)≤ |ub|+ |bw|.125

– If B is empty, then δ (u,w)≤ |ua|+ |aw|.126

– If neither A nor B is empty, then δ (u,w)≤max{|ua|+ |aw|, |ub|+ |bw|}.127

We first note that this induction hypothesis implies the theorem: using the side128

of Tuw as the unit of length, we have that δ (u,w) ≤ (
√

3 · cosα + sinα) · |uw| (see129

Figure 8).130

u

wa b

A B

Fig. 7 Triangles A and B

m

α

u

wa b

Fig. 8 Canonical triangle Tuw

u

v0

v1

v2

a0 b0

wa b

Fig. 9 Convex chain from v0 to w

Base case: Triangle Tuw has minimal area. Since the triangle is a smallest canon-131

ical triangle, w is the closest vertex to u in its positive subcone. Hence the edge uw132

is in the constrained half-θ6-graph, and δ (u,w) = |uw|. From the triangle inequality,133

we have that |uw| ≤min{|ua|+ |aw|, |ub|+ |bw|}, so the induction hypothesis holds.134

Induction step: We assume that the induction hypothesis holds for all pairs of135

vertices that can see each other and have a canonical triangle whose area is smaller136

than the area of Tuw. If uw is an edge in the constrained half-θ6-graph, the induc-137

tion hypothesis follows by the same argument as in the base case. If there is no138

edge between u and w, let v0 be the visible vertex closest to u in the positive sub-139

cone containing w, and let a0 and b0 be the upper left and right corner of Tuv0 (see140

Figure 9). By definition, δ (u,w) ≤ |uv0|+ δ (v0,w), and by the triangle inequality,141

|uv0| ≤min{|ua0|+ |a0v0|, |ub0|+ |b0v0|}. We assume without loss of generality that142

v0 lies to the left of uw, which means that A is not empty.143

Since uw and uv0 are visibility edges, by applying Lemma 1 to triangle v0uw, a144

convex chain v0, ...,vk = w of visibility edges connecting v0 and w exists (see Fig-145

ure 9). Note that, since v0 is the closest visible vertex to u, every vertex along the146

convex chain lies above the horizontal line through v0.147
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When looking at two consecutive vertices vi−1 and vi along the convex chain,148

there are three types of configurations: (i) vi−1 ∈Cvi
1 , (ii) vi ∈Cvi−1

0 and vi lies to the149

right of or has the same x-coordinate as vi−1, (iii) vi ∈Cvi−1
0 and vi lies to the left of150

vi−1. Let Ai = vi−1aivi and Bi = vi−1bivi, the vertices ai and bi will be defined for each151

case. By convexity, the direction of −−−→vivi+1 is rotating counterclockwise for increasing152

i. Thus, these configurations occur in the order Type (i), Type (ii), and Type (iii) along153

the convex chain from v0 to w. We bound δ (vi−1,vi) as follows (see Figure 10):154

Type (i): If vi−1 ∈Cvi
1 , let ai and bi be the upper left and lower corner of Tvivi−1 .155

Triangle Bi lies between the convex chain and uw, so it must be empty by Lemma 1.156

Since vi can see vi−1 and Tvivi−1 has smaller area than Tuw, the induction hypothesis157

gives that δ (vi−1,vi) is at most |vi−1ai|+ |aivi|.158

vi−1

vi biai

Ai Bi

vi−1

vi

bi

ai

(i) (ii)

Bi

Ai

vi−1

vi biai

Ai Bi

(iii)

Fig. 10 Charging the three types of configurations

Type (ii): If vi ∈ Cvi−1
0 , let ai and bi be the left and right corner of Tvi−1vi . Since159

vi can see vi−1 and Tvi−1vi has smaller area than Tuw, the induction hypothesis ap-160

plies. Whether Ai and Bi are empty or not, δ (vi−1,vi) is at most max{|vi−1ai|+161

|aivi|, |vi−1bi|+ |bivi|}. Since vi lies to the right of or has the same x-coordinate as162

vi−1, we know |vi−1ai|+ |aivi| ≥ |vi−1bi|+ |bivi|, so δ (vi−1,vi) is at most |vi−1ai|+163

|aivi|.164

Type (iii): If vi ∈Cvi−1
0 and vi lies to the left of vi−1, let ai and bi be the left and165

right corner of Tvi−1vi . Since vi can see vi−1 and Tvi−1vi has smaller area than Tuw,166

we can apply the induction hypothesis. Thus, if Bi is empty, δ (vi−1,vi) is at most167

|vi−1ai|+ |aivi| and if Bi is not empty, δ (vi−1,vi) is at most |vi−1bi|+ |bivi|.168

Recall that a and b are the upper left and right corner of Tuw and that B is169

the triangle ubw (see Figure 7). To complete the proof, we consider three cases:170

(a) 6 awu≤ π/2, (b) 6 awu> π/2 and B is empty, (c) 6 awu> π/2 and B is not empty.171

Case (a): If 6 awu ≤ π/2, the convex chain cannot contain any Type (iii) con-172

figurations: for Type (iii) configurations to occur, vi needs to lie to the left of vi−1.173

However, by construction, vi lies to the right of the line through vi−1 and w. Hence,174

since 6 awvi−1 < 6 awu≤ π/2, vi lies to the right of vi−1. We can now bound δ (u,w)175

as follows using the bounds on Type (i) and Type (ii) configurations outlined above176
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(see Figure 11):177

δ (u,w) ≤ |uv0|+
k

∑
i=1

δ (vi−1,vi)

≤ |ua0|+ |a0v0|+
k

∑
i=1

(|vi−1ai|+ |aivi|)

= |ua|+ |aw|

We see that the latter is equal to |ua|+ |aw| as required.178

u

w

vi

u

w

vi
ai

u

wa

Fig. 11 Visualization of the paths (thick lines) in the inequalities of case (a)

Case (b): If 6 awu > π/2 and B is empty, the convex chain can contain Type (iii)179

configurations. However, since B is empty and the area between the convex chain and180

uw is empty (by Lemma 1), all triangles Bi are also empty. Hence using the induction181

hypothesis, δ (vi−1,vi) is at most |vi−1ai|+ |aivi| for all i. Using these bounds on182

the lengths of the paths between the vertices along the convex chain, we can bound183

δ (u,w) as in the previous case. Therefore, δ (u,w)≤ |ua|+ |aw| as required.184

Case (c): If 6 awu > π/2 and B is not empty, the convex chain can contain185

Type (iii) configurations. Since B is not empty, the triangles Bi need not be empty.186

Recall that v0 lies in A, hence neither A nor B are empty. Therefore, it suffices to187

prove that δ (u,w) ≤ max{|ua|+ |aw|, |ub|+ |bw|} = |ub|+ |bw|. Let Tv jv j+1 be the188

first Type (iii) configuration along the convex chain (if it has any), let a′ and b′ be the189

upper left and right corner of Tuv j , and let b′′ be the upper right corner of Tv jw (see190

Figure 12). Note that since 6 awu > π/2 and v j lies to the left of uw, |a′v j| is smaller191

than |b′v j|.192

δ (u,w) ≤ |uv0|+
k

∑
i=1

δ (vi−1,vi)

≤ |ua0|+ |a0v0|+
j

∑
i=1

(|vi−1ai|+ |aivi|)+
k

∑
i= j+1

(|vi−1bi|+ |bivi|)

= |ua′|+ |a′v j|+ |v jb′′|+ |b′′w|
≤ |ub′|+ |b′v j|+ |v jb′′|+ |b′′w|
= |ub|+ |bw| ut
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u

w

u

w

vj

u

w

vj

b′′

a′

u

w

vj

b′′

b′

u

w b

Fig. 12 Visualization of the paths (thick lines) in the inequalities of case (c)

Since the expression
√

3 · cosα + sinα is increasing for α ∈ [0,π/6], the maxi-193

mum value is attained by inserting the extreme value π/6. This leads to the following194

corollary.195

Corollary 1 The constrained half-θ6-graph is a 2-spanner of the visibility graph.196

Next, we prove that the constrained half-θ6-graph is plane.197

Lemma 2 Let u, v, x, and y be four distinct vertices such that the two canonical198

triangles Tuv and Txy intersect. Then at least one of the corners of one canonical199

triangle is contained in the other canonical triangle.200

Proof If one triangle contains the other triangle, it contains all of its corners. There-201

fore we focus on the case where neither triangle contains the other.202

By definition, the upper boundaries of Tuv and Txy are parallel, the left boundaries
of Tuv and Txy are parallel, and the right boundaries of Tuv and Txy are parallel. Because
we assume that no two vertices define a line parallel to one of the rays that define the
cones, we assume, without loss of generality, that the upper boundary of Tuv lies
below the upper boundary of Txy. The upper boundary of Tuv must lie above the lower
corner of Txy, since otherwise the triangles do not intersect. If the upper left (right)
corner of Tuv lies to the right (left) of the right (left) boundary of Txy, the triangles
cannot intersect. Hence, either one of the upper corners of Tuv is contained in Txy or
the upper boundary of Tuv intersects both the left and right boundary of Txy. In the
latter case, the fact that the left boundaries of Tuv and Txy are parallel and the right
boundaries of Tuv and Txy are parallel, implies that the lower corner of Txy is contained
in Tuv. ut
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Lemma 3 The constrained half-θ6-graph is plane.203

Proof We prove the lemma by contradiction. Assume that two edges uv and xy cross204

at a point p. Since the two edges are contained in their canonical triangles, these205

triangles must intersect. By Lemma 2 we know that at least one of the corners of one206

triangle lies inside the other. We focus on the case where the upper right corner of Txy207

lies inside Tuv. The other cases are analogous. Since uv and xy cross, this also means208

that either x or y must lie in Tuv.209

u

v

x

y

p

Fig. 13 Edges uv and xy intersect at point p

Assume without loss of generality that v ∈ Cu
0, j and y ∈ Tuv (see Figure 13). If210

y ∈Cu
0, j, we look at triangle upy. Since both u and y can see p, we get by Lemma 1211

that either u can see y or upy contains a vertex. In both cases, u can see a vertex in212

this subcone that is closer than v, contradicting the existence of the edge uv.213

If y /∈ Cu
0, j, there exists a constraint uz such that v lies to one side of the line

through uz and y lies on the other side. Since this constraint cannot cross yp, z lies
inside upy and is therefore closer to u than v. Since by definition z can see u, this also
contradicts the existence of uv. ut

4 Bounding the Maximum Degree214

In this section, we show how to construct a bounded degree subgraph G9 of the con-215

strained half-θ6-graph that is a 6-spanner of the visibility graph. Given a vertex u and216

one of its negative subcones, we define the canonical sequence of this subcone as217

the vertices in this subcone that are neighbors of u in the constrained half-θ6-graph,218

in counterclockwise order (see Figure 14). These vertices all have u as their closest219

visible vertex in a positive subcone. The canonical path is defined by connecting con-220

secutive vertices in the canonical sequence. This definition differs slightly from the221

one used by Bonichon et al. [2].222

To construct G9, we start with a graph with vertex set P and no edges. Then223

for each negative subcone of each vertex u ∈ P, we add the canonical path and an224

edge between u and the closest vertex along this path, where distance is measured225

using the projections of the vertices onto the bisector of the cone containing the sub-226

cone. A given edge may be added by several vertices, but it appears only once in G9.227
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u

v1
v2
v3v4

Fig. 14 The edges that are added to G9 for a negative subcone of a vertex u with canonical sequence
v1,v2,v3 and v4

This construction is similar to the construction of the unconstrained degree-9 half-228

θ6-graph described by Bonichon et al. [2]. We proceed to prove that G9 is a spanning229

subgraph of the constrained half-θ6-graph with spanning ratio 3.230

Lemma 4 G9 is a subgraph of the constrained half-θ6-graph.231

Proof Given a vertex u, we look at one of its negative subcones, say Cu
0, j. The edges232

added to G9 for this subcone can be divided into two types: edges of the canonical233

path, and the edge between u and the closest vertex along the canonical path. Since234

every vertex along the canonical path is by definition connected to u in the constrained235

half-θ6-graph, it remains to show that the edges of the canonical path are part of the236

constrained half-θ6-graph.237

Let v and w be two consecutive vertices in the canonical path of Cu
0, j, with v238

before w in counterclockwise order. By applying Lemma 1 on the visibility edges vu239

and wu, we get a convex chain v = x0,x1, . . . ,xk−1,xk = w of k ≥ 1 visibility edges,240

which together with vu and wu form a polygon P empty of vertices and constraints.241

Since P is empty, v is not the endpoint of a constraint lying between vu and vx1.242

Hence, x1 cannot be in cone Cv
0, otherwise x1 would be closer to v than u in the243

subcone of v that contains u. Similarly, xk−1 cannot lie in cone Cw
0 . By convexity of244

the chain, this implies that no vertex on the chain can lie in cone C0 of another vertex245

on the chain. Hence, since P is empty, all vertices xi can see u.246

We first show that k = 1, i.e. that the chain is just the line vw. We prove this247

by contradiction, so assume that k > 1. Hence, there is at least one vertex xi with248

0 < i < k. As such a vertex is not part of the canonical path in Cu
0, j, it must see a249

closest vertex y different from u in the subcone of Cxi
0 that contains u. As vertices on250

the chain cannot lie in C0 of each other, y cannot be a vertex on the chain. As P is251

empty, y must therefore lie strictly outside of P, and yxi must properly intersect either252

vu or wu. But this contradicts the planarity of the constrained half-θ6-graph, as yxi,253

vu, and wu would all be edges of this graph. Hence, k = 1 and the chain is a single254

visibility edge vw.255

It remains to show that vw is an edge of the constrained half-θ6-graph. Assume256

without loss of generality that w lies in Cv
2 (the case that v lies in Cw

1 is similar). We257

need to show that w is the closest visible vertex in subcone Cv
2, j. We prove this by258

contradiction, so assume another vertex x in Cv
2, j is the closest. Vertex x lies in Tvw,259

which is partitioned into a part inside P, a part to the right of wu, and a part below vw260
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(see Figure 15). If x lies to the right of wu, we would have intersecting edges vx and261

wu, contradicting planarity of the constrained half-θ6-graph. As P is empty, x must262

lie below vw (see Figure 15).263

u

w

v

x

Fig. 15 Tvw is partitioned into a part inside P (light gray), a part to the right of wu (white), and a part
below vw (dark gray)

Applying Lemma 1 on the visibility edges vx and vw, we get a convex chain
x = x0,x1, . . . ,xk−1,xk = w of visibility edges and an empty polygon Q. Vertex x1
cannot lie in Cx

0, as this would contradict that x is the closest visible vertex to v in
Cv

2, j. Hence, since P and Q are empty, x can see u. Since v and w are two consecutive
vertices in the canonical sequence of Cu

0, j, x is not part of this canonical sequence.
So it must see a closest vertex y different from u in the subcone of Cx

0 that contains
u. Neither v nor the convex chain from x to w lie in Cx

0. As P and Q are empty, xy
must properly intersect either vu or wu, contradicting the planarity of the constrained
half-θ6-graph. ut

For future reference, we note that during the proof of Lemma 4 the following two264

properties were shown.265

Corollary 2 Let u, v, and w be three vertices such that v and w are neighbors along266

a canonical path of u in Cu
i . Vertex w cannot lie in Cv

i or Cv
i .267

Corollary 3 Let u, v, and w be three vertices such that v and w are neighbors along a268

canonical path of u in Cu
i . Triangle uvw is empty and does not contain any constraints.269

Theorem 2 G9 is a 3-spanner of the constrained half-θ6-graph.270

Proof We prove the theorem by showing that for every edge uw in the constrained271

half-θ6-graph, where w lies in a negative cone of u, G9 contains a spanning path272

between u and w of length at most 3 · |uw|. This path will consist of a part of the273

canonical path in the subcone of u that contains w plus the edge between u and the274

closest canonical vertex in that subcone.275

We assume without loss of generality that w ∈Cu
0. Let v0 be the vertex closest to276

u on the canonical path in the subcone Cu
0, j that contains w and let v0,v1, ...,vk = w be277

the vertices along the canonical path from v0 to w (see Figure 16). Let l j and r j denote278

the rays defining the left and right boundaries of C
v j
0 for 0 ≤ j ≤ k and let r denote279



On Plane Constrained Bounded-Degree Spanners 13

b

m0

u

w

v0

v1

a

m1

m2

m3 m4

v2
v3

Fig. 16 Bounding the length of the canonical path

the ray defining the right boundary of Cu
0 (as seen from u). Let m j be the intersection280

of l j and r j−1, for 1 ≤ j ≤ k, and let m0 be the intersection of l0 and r. Let a be the281

intersection of r and the horizontal line through w and let b be the intersection of lk282

and r. The length of the path between u and w in G9 can now be bounded as follows:283

dG9(u,w) ≤ |uv0|+
k

∑
j=1
|v j−1v j|

≤ |um0|+ |m0v0|+
k

∑
j=1
|m jv j|+

k

∑
j=1
|v j−1m j|

= |um0|+
k

∑
j=0
|m jv j|+

k

∑
j=1
|v j−1m j|

Since u lies in C0 of each of the vertices along the canonical path, all m jv j project284

onto wb and all v j−1m j project onto m0b, when projecting along lines parallel to the285

boundaries of Cu
0 instead of using orthogonal projections. By Corollary 2 no edge on286

the canonical path can lie in C0 of one of its endpoints, hence the projections of m jv j287

onto wb do not overlap. For the same reason, the projections of v j−1m j onto m0b do288

not overlap. Hence, we have that ∑
k
j=0 |m jv j|= |wb| and ∑

k
j=1 |v j−1m j|= |m0b|.289

dG9(u,w) = |um0|+
k

∑
j=0
|m jv j|+

k

∑
j=1
|v j−1m j|

= |um0|+ |wb|+ |m0b|
≤ |ua|+2 · |wa|
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Let α be 6 auw. Using some basic trigonometry, we get |ua|= |uw| ·cosα + |uw| ·290

sinα/
√

3 and |wa|= 2 · |uw| · sinα/
√

3. Thus the spanning ratio can be expressed as:291

dG9(u,w)
|uw|

≤ cosα +5 · sinα√
3

Since this is a non-decreasing function in α for 0 < α ≤ π/3, its maximum value
is obtained when α = π/3, where the spanning ratio is 3. ut

It follows from Theorems 1 and 2 that G9 is a 6-spanner of the visibility graph.292

Corollary 4 G9 is a 6-spanner of the visibility graph.293

To bound the degrees of the vertices, we use a charging scheme that charges the294

edges of a vertex to its cones. Summing the charge for all cones of a vertex then295

bounds its degree.296

Recalling that the edges of G9 are generated by canonical paths, consider a canon-297

ical path in Cu
i, j, created by a vertex u. We use v to indicate an arbitrary vertex along298

the canonical path, and we let v′ be the closest vertex to u along the canonical path.299

The edges of G9 generated by this canonical path are charged to cones as follows:300

– The edge uv′ is charged to Cu
i and to Cv′

i .301

– An edge of the canonical path that lies in Cv
i+1 is charged to Cv

i .302

– An edge of the canonical path that lies in Cv
i−1 is charged to Cv

i .303

– An edge of the canonical path that lies in Cv
i+1 is charged to Cv

i−1.304

– An edge of the canonical path that lies in Cv
i−1 is charged to Cv

i+1.305

Essentially, the edge between u and v′ is charged to the cones that contain it and edges306

along the canonical path are charged to the adjacent cone that is closer to the cone of307

v that contains u. In other words, all charges are shifted one cone towards the positive308

cone containing u (see Figure 17).309

u

v

Fig. 17 Two edges of a canonical path and the associated charges

By Corollary 2, no edge on the canonical path can lie in Cv
i or Cv

i , so the charging310

scheme above is exhaustive. Note that each edge is charged to both of its endpoints311

and therefore the charge on a vertex is an upper bound on its degree (only an upper312

bound, since an edge can be generated and charged by several canonical paths).313
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Lemma 5 Let v be a vertex that is incident to at least two constraints in the same314

positive cone Cv
i . Let Cv

i, j be a subcone between two constraints and let u be the315

closest visible vertex in this subcone. Let Cu
i,k be the subcone of u that contains v and316

(when uv is a constraint) intersects Cv
i, j. Then v is the only vertex on the canonical317

path of Cu
i,k.318

Proof Let vw1 and vw2 be the two constraints between which subcone Cv
i, j lies. By ap-

plying Lemma 1 on these visibility edges, we get a convex chain w1 = x0,x1, . . . ,xk =
w2 which together with vw1 and vw2 form a polygon P ⊂Cv

i, j empty of vertices and
constraints. Since u is the closest vertex visible to v inside Cv

i, j, u must be the vertex
on this chain closest to v. In particular, it is at least as close to v as w1 and w2. Since
vw1 and vw2 are constraints and P is empty, there can be no vertex other than v in Cu

i,k

from which u is visible. Hence, v is the only vertex on the canonical path of Cu
i,k. ut

Lemma 6 Each positive cone Ci of a vertex v has a charge of at most max{2,ci(v)+319

1}, where ci(v) is the number of incident constraints in Cv
i .320

Proof Let u be a vertex such that v is part of the canonical path of u. We first show321

that if this canonical path charges Cv
i , then u must lie in Cv

i . Assume u lies in Cv
j , j 6= i.322

Since all charges of this canonical path are shifted one cone towards Cv
j , a charge to323

Cv
i would have to come from Cv

j. However, by Corollary 2, no edge on the canonical324

path of a vertex in Cv
j can lie in Cv

j.325

Next, we observe that there can be only one such vertex u for each subcone of Cv
i .326

This follows because v is only part of canonical paths of vertices u of which uv is an327

edge in the constrained half-θ6-graph, and there is at most one edge for each positive328

subcone.329

If Cv
i is a single subcone and v is not the closest vertex to u on its canonical path,330

Cv
i is charged for at most two edges along a single canonical path. Hence, its charge331

is at most 2. If v is the closest vertex to u, the negative cones adjacent to this positive332

cone cannot contain any vertices of the canonical path. If they did, these vertices333

would be closer to u than v is, as distance is measured using the projection onto the334

bisector of the cone of u. Hence, if v is the closest vertex to u, the positive cone335

containing u is charged 1. Thus, when the positive cone is a single subcone, the cone336

is charged 2 if it has an edge of the canonical path in each adjacent negative cone,337

and at most 1 otherwise.338

Next, we look at the case where Cv
i is not a single subcone. For each subcone,339

except the first and last, the canonical path of the vertex u from that subcone consists340

only of v, by Lemma 5. Hence, we get a charge of 1 per subcone and a charge of at341

most ci(v)−1 in total for all subcones except the first and last subcone. We complete342

the proof by showing that the vertices u of the first and the last subcone can add a343

charge of at most 1 each.344

Consider the first subcone Cv
i,0. The argument for the last subcone is symmetric.345

If v is the closest vertex to u on its canonical path, the negative cones adjacent to this346

positive cone cannot contain any vertices of the canonical path, since these would be347

closer to u than v is. Hence, the vertex u of this subcone adds a charge of 1. If v is348

not the closest vertex to u, we argue that v is the end of the canonical path of the349



16 Prosenjit Bose et al.

vertex u of the subcone, implying that u can add a charge of at most 1: Let x be the350

other endpoint of the constraint that defines the subcone. Since u is the closest visible351

vertex in this subcone of v, it cannot lie further from v than x. If u is x, constraint uv352

splits Cu
i and only one of these two parts intersects the first subcone of v. Hence v is353

the end of the canonical path of u. If u is not x, u lies closer to v than x. Any vertex y354

before v (in counterclockwise order) on the canonical path would have to lie in Cv
i+1355

or Cv
i−1, since by Corollary 2, y cannot lie in Cv

i or Cv
i . Since y must also lie in Cu

i356

to be on this canonical path, vertex u is not visible from y due to the constraint xv.357

Hence, no such vertex y can exist on the canonical path, implying that v is the end of358

the canonical path.359

Summing up all charges, each positive cone is charged at most ci(v)+1 if ci(v)≥
1, and at most 2 otherwise. Hence, a positive cone is charged at most max{2,ci(v)+
1}. ut

Corollary 5 If the i-th positive cone of a vertex v has a charge of ci(v) + 2, then360

ci(v) = 0, i.e. it does not contain any constraints having v as an endpoint in Ci and is361

charged for two edges in the adjacent negative cones.362

Lemma 7 Each negative cone Ci of a vertex v has a charge of at most ci(v) + 1,363

where ci(v) is the number of incident constraints in Cv
i .364

Proof A negative cone of a vertex v is charged by the edge to the closest vertex in365

each of its subcones and it is charged by the two adjacent positive cones if edges of366

canonical paths lie in those cones (see Figure 18). We first show that vertices that do367

not lie in the positive subcones directly adjacent to Cv
i cannot have an edge involving368

v along their canonical paths. Let u be a vertex that does not lie in a positive subcone369

directly adjacent to Cv
i and let vx be the constraint closest to Cv

i that defines the bound-370

ary of the subcone of v that contains u. For u to have an edge along its canonical path371

that is charged to Cv
i , it needs to lie further from u than x, since otherwise no vertex372

creating such an edge is visible to u. However, this implies that v would not connect373

to u, thus it would not part of the canonical path of u.374

u

w

v

Fig. 18 If vw is present, the negative cone does not contain edges having v as endpoint

As v can only be part of the canonical path of a single vertex in each of its positive375

subcones, we need to consider only the charges to Cv
i from the canonical path created376

by the closest visible vertices in the two positive subcones directly adjacent to Cv
i . Let377

these vertices be u and w.378
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Next, we show that every negative cone can be charged by at most one edge in379

total from its adjacent positive cones. Suppose that w lies in a positive cone of v and380

vw is part of the canonical path of u. Then w lies in a negative cone of u, which381

means that u lies in a positive cone of w and cannot be part of a canonical path for w.382

It remains to show that this negative cone of v cannot be charged by an edge vu′ from383

a canonical path of a different vertex w′. Since uvw forms a triangle in constrained384

half-θ6-graph and this graph is planar, no edge of u′vw′ can cross any of the edges385

of uvw. This implies that either u′ and w′ lie inside uvw or u and w lie inside u′vw′.386

However, by Corollary 3, triangles xyz formed by a vertex x and two vertices y and387

z that are neighbors along the canonical path of x are empty. Therefore, u′ and w′388

cannot lie inside uvw and u and w cannot lie inside u′vw′. Thus every negative cone389

charged by at most one edge in total from its adjacent positive cones.390

Finally, we show that if one of uv or vw is present, the negative cone does not391

have an edge to the closest vertex in that cone and it contains no constraint that has392

v as an endpoint. We first show that if one of uv or vw is present, the negative cone393

does not have an edge to the closest vertex in that cone. We assume without loss of394

generality that vw is present, u ∈Cv
i ∩Cw

i , and w ∈Cv
i−1. Since v and w are neighbors395

on the canonical path of u, we know that the triangle uvw is part of the constrained396

half-θ6-graph and, by Corollary 3, this triangle is empty. Furthermore, since uw is397

an edge of the constrained half-θ6-graph and, by Lemma 3, the constrained half-θ6-398

graph is plane, v cannot have an edge to the closest vertex beyond uw. Hence the399

negative cone does not have an edge to the closest vertex in that cone. By the same400

argument, the negative cone cannot contain a constraint that has v as an endpoint.401

It follows that if this negative cone contains no constraint that has v as an endpoint,
it is charged at most 1, by one of uv, vw, or the edge to the closest. Also, if this
negative cone does contain constraints that have v as an endpoint, it is not charged by
edges in the adjacent positive cones and hence its charge is at most ci(v)+1, one for
the closest in each of its subcones. ut

Theorem 3 Every vertex v in G9 has degree at most c(v)+9.402

Proof From Lemmas 6 and 7, each positive cone has charge at most ci(v)+ 2 and
each negative cone has charge at most ci(v)+1, where ci(v) and ci(v) are the number
of constraints in the i-th positive and negative cone. Since a vertex has three positive
and three negative cones and the ci(v) and ci(v) sum up to c(v), this implies that the
total degree of a vertex is at most c(v)+9. ut

5 Bounding the Maximum Degree Further403

In this section, we show how to reduce the maximum degree further, resulting in404

a plane 6-spanner G6 of the visibility graph in which the degree of any node v is405

bounded by c(v)+6.406

By Lemmas 6 and 7 we see that if we can avoid the case where a positive cone gets407

a charge of ci(v)+2, then every cone is charged at most ci(v)+1, for a total charge408

of c(v)+6. By Corollary 5, this case only happens when a positive cone has ci(v) = 0409

and is charged for two edges in the adjacent negative cones. This situation is depicted410
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in Figure 19, where x, v, and y are all on the canonical path of u. We construct G6 by411

performing a transformation on G9 for all positive cones in this situation.412

v

u

x
y

Fig. 19 A positive cone having charge 2

v

u

x
y

w
v

u

x
y

w

(a) (b)

Fig. 20 Transforming G9 (a) into G6 (b)

We now describe the transformation. We assume without loss of generality that413

the positive cone in question is Cv
0. We call a vertex v the closest canonical vertex in414

a negative subcone of u when, among the vertices of the canonical path of u in that415

subcone, v is closest to u.416

We first note that if x is the closest canonical vertex in one of the at most two417

subcones of Cv
2 that contain it, the edge vx is charged to Cv

0, since vx is an edge of418

the canonical path induced by u, and it is also charged to cone Cv
2, since it is the419

closest canonical vertex in one of its subcones. Since we need to charge it only once420

to account for the degree of v, we can remove the charge to Cv
0, reducing its charge by421

1 as desired. Similarly, if y is the closest canonical vertex in one of the at most two422

subcones of Cv
1 that contain it, it is charged to both Cv

0 and Cv
1, so we can reduce the423

charge to Cv
0 by 1. Therefore, we only perform a transformation if neither x nor y is424

the closest canonical vertex in the subcones of v that contain them.425

In that case, the transformation proceeds as follows. First, we add an edge be-426

tween x and y. Next, we look at the sequence of vertices between v and the closest427

canonical vertex on the canonical path induced by u. If this sequence includes x,428

we remove vy. Otherwise we remove vx. Note that by Corollary 3, triangles uxv and429

uvy are empty and do not contain any constraints and therefore the edge xy does not430

intersect any constraints.431

We assume without loss of generality that vy is removed. By removing vy and432

adding xy, we reduce the degree of v at the cost of increasing the degree of x. Hence,433

we need to find a way to balance the degree of x. Since x lies in Cv
2 and the edge xv is434

part of the constrained half-θ6-graph, x lies on a canonical path of v in Cv
2 and, since435

x is not the closest canonical vertex to v on this canonical path, x has a neighbor w436

along this canonical path. We claim that x is the last vertex along the canonical path437

of v in Cv
2 and thus w is uniquely defined. This follows because for any vertex z later438

than x along that canonical path, either z must lie in triangle uvx, contradicting its439

emptiness by Corollary 3, or the edges zv and xu of the constrained half-θ6-graph440

must intersect, contradicting its planarity by Lemma 3. To balance the degree of x,441

we remove edge xw, if w lies in Cx
0 and w is not the closest canonical vertex in a442

subcone of Cx
0 that contains it. Otherwise xw is not removed. The situation before the443
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transformation is shown in Figure 20 (a) and the situation after the transformation is444

shown in Figure 20 (b). A curved line segment denotes a part of a canonical path plus445

the edge from its closest canonical vertex.446

To construct G6, we apply this transformation on each positive cone matching447

the situation above. Note that since edge uv is part of the constrained half-θ6-graph,448

which is plane, and G9 is a subgraph of the constrained half-θ6-graph, the edges449

added by this transformation cannot be part of G9 as they cross uv. Hence, since450

only edges of G9 are removed, there are no conflicts among the transformations of451

different cones, i.e. no cone will add an edge that was removed by another cone and452

vice versa. Before we prove that this construction yields a graph of maximum degree453

6+ c, we first show that the resulting graph is still a 3-spanner of the constrained454

half-θ6-graph.455

Lemma 8 Let vx be an edge of G9 and let x lie in a negative cone Ci of v. If x is not456

the closest canonical vertex in either of the at most two subcones of Cv
i that contain457

it, then the edge vx is used by at most one canonical path.458

Proof We prove the lemma by contraposition. Assume that edge vx is part of two459

canonical paths of two vertices u and w. For v and x to be neighbors on a canonical460

path of u and w, these vertices need to lie in Cv
i+1∩Cx

i+1 or Cv
i−1∩Cx

i−1, by Corollary 2.461

By Corollary 3 and planarity of the constrained half-θ6-graph, u and w cannot lie in462

the same region, hence one lies in Cv
i+1∩Cx

i+1 and one lies in Cv
i−1∩Cx

i−1. We assume463

without loss of generality that u ∈Cv
i+1 ∩Cx

i+1 and w ∈Cv
i−1 ∩Cx

i−1 (see Figure 21).464

Thus uvx and wvx form two disjoint triangles in the constrained half-θ6-graph and,465

by Corollary 3, both triangles are empty. Furthermore, since the constrained half-θ6-466

graph is plane, no edge from v can cross ux or wx, making vx the only edge of v in Ci.467

Therefore, x is the closest canonical vertex in any subcone of Cv
i that contains it.468

v

u x w

Fig. 21 If edge vx is part of two canonical paths, x is the only neighbor of v in the negative cone of v ut

Lemma 9 For every edge uw in the constrained half-θ6-graph, there exists a path in469

G6 of length at most 3 · |uw|.470

Proof In the proof of Theorem 2 we showed that for every edge uw in the constrained471

half-θ6-graph, where w lies in a negative cone of u, G9 contains a spanning path472

between u and w of length at most 3 · |uw|, consisting of a part of the canonical path473

in the subcone of u that contains w plus the edge between u and the closest canonical474

vertex in that subcone. We now show that G6 also contains a spanning path between475

u and w of length at most 3 · |uw|.476

Note that in the construction, we never remove an edge vx with x being the closest477

canonical vertex in a negative subcone of v. This means two things: 1) For any span-478

ning path in G9, its last edge still exists in G6. 2) By Lemma 8, any removed edge is479
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part of a single canonical path, so we need to argue only about this single canonical480

path and the spanning paths using it.481

During the construction of G6, two types of edges are removed: Type 1, repre-482

sented by vy in Figure 20, and Type 2, represented by xw in Figure 20. We first show483

that no edge removal of either of these types removes edge vx in Figure 20. A Type 1484

removal that has v as the middle vertex in the configuration, as shown in Figure 20,485

is called centered at v. A Type 1 removal of vy affects the single canonical path con-486

taining xv and vy (see Figure 20). We note that no Type 1 removal involving v can be487

centered at x or y, since v lies in a positive cone of both x and y and a Type 1 removal488

requires both neighbors of the center vertex to lie in negative cones. This implies that489

Type 1 removals are non-overlapping (i.e. their configurations do not share edges)490

and, in particular, it implies that edge vx is not removed by this type of removal.491

A Type 2 removal of xw affects the canonical path that contains w and x (see492

Figure 20). As argued during the construction of G6, x is the last vertex along a493

canonical path of v and the edge xw is removed if w lies in a negative cone of x and w494

is not a closest canonical vertex to x. We now show that edge vx cannot be removed495

by a Type 2 removal: For it to be removed, we need that either x lies in a negative496

cone of v and v is the last vertex along this canonical path, or v lies in a negative cone497

of x and x is the last vertex along this canonical path. However, since v is not the last498

vertex along the canonical path that contains v and x (it is followed by y) and v does499

not lie in a negative cone of x, neither condition is satisfied.500

Now that we know that for every Type 1 removal, edge vx is still present in the501

final G6, we look at the spanning paths in G6. Every spanning path present in G9502

can be affected by several non-overlapping Type 1 removals, as well as by a Type 2503

removal at either end. By applying the triangle inequality to Figure 20, it follows that504

|xy| ≤ |xv|+ |vy|. Combined with the fact that for every Type 1 removal, vx is present505

in G6, it follows that there still exists a spanning path between u and any vertex w506

along its canonical path, except possibly the last vertex x on either end, as the edge507

connecting x to its neighbor along the canonical path could be removed by a Type 2508

removal. However, we perform a Type 2 removal only when u and x are part of a509

Type 1 configuration centered at u and ux is the edge of this configuration that was510

not removed (see Figure 20, where v acts as the node called u in the Type 2 argument511

above). Furthermore, we showed that in this case ux is still present in G6. Hence,512

there exists a spanning path of length at most 3 · |uw| between u and any vertex w513

along its canonical path.514

Thus, we have proven that for every edge uw in the constrained half-θ6-graph,
where w lies in a negative cone of u, also G6 contains a spanning path between u and
w of length at most 3 · |uw|. ut

Lemma 10 Every vertex v in G6 has degree at most c(v)+6.515

Proof To bound the degree, we look at the charges of the vertices. We prove that after516

the transformation each positive cone has charge at most ci(v)+1 and each negative517

cone has charge at most ci(v)+1. This implies that the total degree of a vertex is at518

most c(v)+6. Since the charge of the negative cones is already at most ci(v)+1, we519

focus on positive cones having charge ci(v)+2. By Corollary 5, this means that these520

cones have charge 2 and ci(v) = 0.521
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Let v be a vertex such that one of its positive cones Cv
i has charge 2, let u be the522

vertex whose canonical path charged 2 to Cv
i , and let x ∈ Cv

i−1 and y ∈ Cv
i+1 be the523

neighbors of v on this canonical path (see Figure 19). If x or y is the closest canonical524

vertex in a subcone of Cv
i−1 or Cv

i+1, this edge has been charged to both that negative525

cone and Cv
i . Hence we can remove the charge to Cv

i while maintaining that the charge526

is an upper bound on the degree of v.527

If neither x nor y is the closest canonical vertex in a subcone of Cv
i−1 or Cv

i+1, edge528

xy is added. We assume without loss of generality that edge vy is removed. Thus vy529

need not be charged, decreasing the charge of Cv
i to 1. Since vy was charged to Cy

i−1530

and this charge is removed, we charge edge xy to Cy
i−1. Thus the charge of y does not531

change.532

It remains to show that we can charge xy to x. Recall that x lies on the canonical533

path of v in Cv
i−1, is the last vertex on this canonical path, and has w as neighbor on534

this canonical path (see Figure 20). Since vertices uvx and vwx each form a trian-535

gle of neighboring vertices on a canonical path in the constrained half-θ6-graph, by536

Corollary 3 they are empty and do not contain any constraints. This implies that x is537

not the endpoint of any constraint in Cx
i−1. Hence, since x is the last vertex along the538

canonical path of v, Cx
i−1 has charge at most 1 by Lemma 6 and Corollary 5. Now,539

consider the neighbor w of x. Vertex w can be in one of two cones with respect to x:540

Cx
i+1 and Cx

i . If w ∈ Cx
i+1, xw is charged to Cx

i . Thus the charge of Cx
i−1 is 0 and we541

can charge xy to it.542

If w ∈ Cx
i and w is the closest canonical vertex to x in a subcone of Cx

i , xw has
been charged to both Cx

i−1 and Cx
i . We can remove that charge from Cx

i−1 and instead
charge xy to it, while keeping the charge of Cx

i−1 at 1. If w∈Cx
i and w is not the closest

canonical vertex to x in a subcone of Cx
i that contains it, xw was removed during the

transformation. Since this edge was charged to Cx
i−1, we can now charge xy to Cx

i−1,
while keeping the charge of Cx

i−1 at 1. ut

Lemma 11 G6 is a plane subgraph of the visibility graph.543

Proof Since G9 is a plane subgraph of the visibility graph by Lemmas 3 and 4, only544

the edges added in the transformation from G9 to G6 can violate the lemma. An added545

edge xy can potentially intersect edges of G6 that are in the constrained half-θ6-graph,546

other edges that were added (recall that added edges are not in the constrained half-547

θ6-graph, so these two cases are disjoint), and constraints.548

First, we consider intersections of xy with edges of G6 that are in the constrained549

half-θ6-graph. Since xy was added in the transformation, x, y, and v are part of a550

canonical path of some vertex u (see Figure 20). Thus, in the constrained half-θ6-551

graph uvx and uvy form two triangles, each containing a pair of neighboring vertices552

along the canonical path, which are empty by Corollary 3. Since the constrained half-553

θ6-graph is plane and xy lies inside uxvy, the only edge of the constrained half-θ6-554

graph that can intersect xy is uv. We now argue that uv is not in G6. By construction,555

uv can only be part of G9 if v is the closest vertex to u on this canonical path, or556

if uv are neighboring vertices along another canonical path of some vertex t. The557

former cannot be the case, by the conditions for adding xy in the transformation (see558

Figure 20). Assume the latter is the case. If u ∈ Cv
i , then either t ∈ Cu

i+1 ∩Cv
i+1 or559
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t ∈ Cu
i−1 ∩Cv

i−1, by Corollary 2. If t ∈ Cu
i−1 ∩Cv

i−1, the triangle uvt contains all of560

Cu
i ∩Cv

i+1, which contains y, as shown in Figure 22.561

As uvt is empty by Corollary 3, this is a contradiction. If t ∈Cu
i+1∩Cv

i+1, a similar562

contradiction based on x arises. This shows that uv is not in G9, and hence not in G6563

either, as edges added in the transformation from G9 to G6 are not in the constrained564

half-θ6-graph.565

v

u

y
x

t

Fig. 22 If t ∈Cu
i−1 ∩Cv

i−1, the triangle uvt contains all of Cu
i ∩Cv

i+1, which contains y

Next, we consider intersections of xy with other added edges. By Corollary 3566

the quadrilateral uxvy does not contain any vertices. Its sides ux, xv, vy, and yu are567

edges of the constrained half-θ6-graph, which we showed above cannot be intersected568

by added edges. Hence, the only possibility for an added edge to intersect xy is the569

edge uv. However, uv cannot be an added edge, as we argued above. Thus, xy cannot570

intersect an added edge.571

Finally, we consider intersection of xy with constraints. By Corollary 3, triangles
uxv and uvy are empty and do not contain any constraints. Hence, since edge xy is
contained in uxvy, it does not intersect any constraints. ut

6 Conclusion572

We showed that the constrained half-θ6-graph is a plane 2-spanner of Vis(P,S). We573

then generalized the construction of Bonichon et al. [2] to show how to construct a574

plane 6-spanner of Vis(P,S) with maximum degree 6+c, where c = max{c(v)|v∈ P}575

and c(v) is the number of constraints incident to a vertex v.576

A number of open problems still remain. For example, since constrained θ -graphs577

with at least 6 cones were recently shown to be spanners [5], a logical next question578

is to see if the method shown in this paper can be generalized to work for any con-579

strained θ -graph. It would also be interesting to see if the degree can be reduced580

further still, while remaining a spanner of Vis(P,S).581
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