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Abstract In this paper we study the number of vertex recolorings that an8

algorithm needs to perform in order to maintain a proper coloring of a graph9

under insertion and deletion of vertices and edges. We present two algorithms10

that achieve different trade-offs between the number of recolorings and the11

number of colors used. For any d > 0, the first algorithm maintains a proper12

O(CdN1/d)-coloring while recoloring at most O(d) vertices per update, where13

C and N are the maximum chromatic number and maximum number of ver-14

tices, respectively. The second algorithm reverses the trade-off, maintaining15

an O(Cd)-coloring with O(dN1/d) recolorings per update. The two converge16

when d = logN , maintaining an O(C logN)-coloring with O(logN) recolor-17

ings per update. We also present a lower bound, showing that any algorithm18

that maintains a c-coloring of a 2-colorable graph on N vertices must recolor19

at least Ω(N
2

c(c−1) ) vertices per update, for any constant c ≥ 2.20
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1 Introduction22

It is hard to underestimate the importance of the graph coloring problem in23

computer science and combinatorics. The problem is certainly among the most24

studied questions in those fields, and countless applications and variants have25

been tackled since it was first posed for the special case of maps in the mid-26

nineteenth century. Similarly, the maintenance of some structures in dynamic27

graphs has been the subject of study of several volumes in the past couple28

of decades [1,2,12,20,21,23]. In this setting, an algorithmic graph problem is29

modelled in the dynamic environment as follows. There is an online sequence30

of insertion and deletion of edges or vertices, and our goal is to maintain the31

solution of the graph problem after each update. A trivial way to maintain32

this solution is to run the best static algorithm for this problem after each33

update; however, this is clearly not optimal. A dynamic graph algorithm seeks34

to maintain some clever data structure for the underlying problem such that35

the time taken to update the solution is much smaller than that of the best36

static algorithm.37

In this paper, we study the problem of maintaining a coloring in a dynamic38

graph undergoing insertions and deletions of both vertices and edges. At first39

sight, this may seem to be a hopeless task, since there exist near-linear lower40

bounds on the competitive factor of online graph coloring algorithms [10], a41

restricted case of the dynamic setting. In order to break through this barrier,42

we allow a “fair” number of vertex recolorings per update. We focus on the43

combinatorial aspect of the problem – the trade-off between the number of44

colors used versus the number of recolorings per update. We present a strong45

general lower bound and two simple algorithms that provide complementary46

trade-offs.47

1.0.1 Definitions and Results.48

Let C be a positive integer. A C-coloring of a graph G is a function that49

assigns a color in {1, . . . , C} to each vertex of G. A C-coloring is proper if no50

two adjacent vertices are assigned the same color. We say that G is C-colorable51

if it admits a proper C-coloring, and we call the smallest such C the chromatic52

number of G.53

A recoloring algorithm is an algorithm that maintains a proper coloring54

of a simple graph while that graph undergoes a sequence of updates. Each55

update adds or removes either an edge or a vertex with a set of incident edges.56

We say that a recoloring algorithm is c-competitive if it uses at most c · Cmax57

colors, where Cmax is the maximum chromatic number of the graph during the58

updates.59

For example, an algorithm that computes the optimal coloring after every60

update is 1-competitive, but may recolor every vertex for every update. At61
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the other extreme, we can give each vertex a unique color, resulting in a linear62

competitive factor for an algorithm that recolors at most 1 vertex per update.63

In this paper, we investigate intermediate solutions that use more than C64

colors but recolor a sublinear number of vertices per update. Note that we do65

not assume that the value C is known in advance, or at any point during the66

algorithm.67

In Section 2, we present two complementary recoloring algorithms: an68

O(dN1/d)-competitive algorithm with an amortized O(d) recolorings per up-69

date, and an O(d)-competitive algorithm with an amortized O(dN1/d) recolor-70

ings per update, where d is a positive integer parameter and N is the maximum71

number of vertices in the graph during a sequence of updates. Interestingly,72

for d = Θ(logN), both are O(logN)-competitive with an amortized O(logN)73

vertex recolorings per update. Using standard techniques, the algorithms can74

be made sensitive to the current (instead of the maximum) number of vertices75

in the graph. In addition, we present de-amortized versions of both algorithms76

in Section 3.77

We provide lower bounds in Section 4. In particular, we show that for78

any recoloring algorithm A using c colors, there exists a specific 2-colorable79

graph on N vertices and a sequence of m edge insertions and deletions that80

forces A to perform at least Ω(m · N 2
c(c−1) ) vertex recolorings. Thus, any81

x-competitive recoloring algorithm performs in average at least Ω(N
1

x(2x−1) )82

recolorings per update.83

To allow us to focus on the combinatorial aspects, we assume that we have84

access to an algorithm that, at any time, can color the current graph (or an85

induced subgraph) using few colors. Of course, finding an optimal coloring86

of an n-vertex graph is NP-complete in general [14] and even NP-hard to87

approximate to within n1−ε for any ε > 0 [25]. Still, this assumption is not as88

strong as it sounds. Most practical instances can be colored efficiently [5], and89

for several important classes of graphs the problem is solvable or approximable90

in polynomial time, including bipartite graphs, planar graphs, k-degenerate91

graphs, and unit disk graphs [16].92

1.0.2 Related results.93

Dynamic graph coloring. The problem of maintaining a coloring of a graph that94

evolves over time has been tackled before, but to our knowledge, only from95

the points of view of heuristics and experimental results. This includes for96

instance results from Preuveneers and Berbers [19], Ouerfelli and Bouziri [17],97

and Dutot et al. [8]. A related problem of maintaining a graph-coloring in an98

online fashion was studied by Borowiecki and Sidorowicz [4]. In that problem,99

vertices lose their color, and the algorithm is asked to recolor them.100

Online graph coloring. The online version of the problem is closely related101

to our setting, except that most variants of the online problem only allow102

the coloring of new vertices, which then cannot be recolored later. Near-linear103

lower bounds on the best achievable competitive factor have been proven by104
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Halldórsson and Szegedy more than two decades ago [10]. They show their105

bound holds even when the model is relaxed to allow a constant fraction of106

the vertices to change color over the whole sequence. This, however, does107

not contradict our results. We allow our algorithms to recolor all vertices at108

some point, but we bound only the number of recolorings per update. Algo-109

rithms for online coloring with competitive factor coming close, or equal to110

this lower bound have been proposed by Lovász et al. [15], Vishwanathan [24],111

and Halldórsson [9].112

Dynamic graphs. Several techniques have been used for the maintenance of113

other structures in dynamic graphs, such as spanning trees, transitive closure,114

and shortest paths. Surveys by Demetrescu et al. [6,7] give a good overview of115

those. Recent progress on dynamic connectivity [13] and approximate single-116

source shortest paths [11] are witnesses of the current activity in this field.117

Data structure dynamization. Our bucketing algorithms are very much in-118

spired by standard techniques for the dynamization of static data structures,119

pioneered by Bentley and Saxe [22,3], and by Overmars and van Leeuwen [18].120

1.1 Outline121

In this section, we describe the intuition behind the two complementary re-122

coloring algorithms presented in this paper: the small and the large bucket123

algorithms. Both algorithms partition the vertices of the graph into a set of124

buckets. Each bucket has C colors that are not used by any other bucket.125

These colors are used to properly color the subgraph induced by the vertices126

the bucket contains. This guarantees that the entire graph is always properly127

colored. Recall however that we assume that our algorithms have no prior128

knowledge of the value of C.129

The small-buckets algorithm uses many “small” buckets. This causes it to130

use more colors, but fewer recolorings per operation. The buckets are grouped131

into d levels (for some parameter d > 0), each containing roughly n1/d buckets,132

and all buckets on the same level have the same capacity (roughly ni/d for level133

i). Since each bucket uses at most the first C colors of its unique set of colors,134

the small-buckets algorithm uses a total of O(dN1/d · C) colors.135

The idea of the algorithm is simple: every time that an edge is added,136

we remove one of its endpoints from the bucket it lies in, and we move it to137

an empty bucket in the first level. At some point this operation “fills” the138

first level of buckets by filling all bucket at that level. Then all the vertices in139

this level are promoted to the next level. This promotion can be propagated140

again at the next level if that is also filled. If this propagation reaches the141

top level, a global recoloring is performed. Using amortization arguments, we142

can show that the algorithm performs O(d) amortized recolorings per update.143

Intuitively, it suffices to move and recolor a constant number of vertices from144

each level during each update.145

Our second algorithm uses larger buckets and thus uses fewer colors, but146

more recolorings per operation. Intuitively, a big bucket is the result of merging147
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all buckets on one level of the small-buckets algorithm. Thus, we get d buckets,148

corresponding to the d levels used above, where bucket i has size roughly149

n(i+1)/d. Since each bucket uses C colors, the big-buckets algorithm uses a total150

of O(d · C) colors. The number of recolorings per insertion however is larger as151

each insertion triggers a recoloring of the smallest bucket. Whenever a bucket152

becomes full, it is emptied into the next bucket, which is in turn recolored.153

If this propagation reaches the top level, a global recoloring is performed. We154

show that the big-buckets algorithm performs O(dN1/d) amortized recolorings155

per update. Using standard de-amortization techniques, we are able to obtain156

the same bounds in the worst-case for both algorithms.157

For the lower bound, consider a graph consisting of three stars with n/3158

vertices each. If a recoloring algorithm wants to maintain a 2-coloring of this159

graph, then two of the stars will have the same color scheme. By linking their160

roots, we force the algorithm to recolor at least n/3 vertices and removing the161

added edge brings us back to the initial state with the three 2-colored stars,162

two of them having the same color scheme. Repeating this process shows that163

any recoloring algorithm that maintains a 2-coloring needs to perform Ω(n)164

vertex recolorings per update. If we want to maintain a c-coloring instead, then165

this idea can be extended and used in different phases. We start constructing166

trees that are formed by merging stars with the same coloring scheme. Our167

construction builds up larger and larger trees through updates and with every168

step forces the algorithm to either recolor many vertices or use new colors.169

Eventually the algorithm has used up all its colors and is forced to recolor a170

large number of vertices.171

2 Upper bound: Recoloring-algorithms172

Before describing the specific strategies, we first introduce some concepts and173

definitions that are common to all our algorithms.174

It is easy to see that deleting a vertex or edge never invalidates the coloring175

of the graph. As such, our algorithms do not perform any recolorings when176

vertices or edges are deleted. The same is true when an edge is inserted between177

two vertices of different color, leaving only the insertion of an edge between178

two vertices of the same color, and the insertion of a new vertex, connected179

to a given set of current vertices, as interesting cases. In our algorithms, we180

simplify this even further, by implementing the edge insertion case as deleting181

one of its endpoints and re-inserting it with its new set of adjacent edges.182

Therefore both the description of the algorithms and the proofs in this section183

consider only vertex insertions.184

Our algorithms partition the vertices into a set of buckets, each of which185

has its own set of colors that it uses to color the vertices it contains. This186

set of colors is completely distinct from the sets used by other buckets. Since187

all our algorithms guarantee that the subgraph induced by the vertices inside188

each bucket is properly colored, this implies that the entire graph is properly189

colored at all times.190
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Fig. 1: The small-buckets algorithm uses d levels, each with s buckets of capacity si, where

i is the level, s = dN1/d
R e, and NR is the number of vertices during the last reset.

The algorithms differ in the number of buckets they use and the size (max-191

imum number of vertices) of each bucket. Typically, there is a sequence of192

buckets of increasing size, and one reset bucket that can contain arbitrarily193

many vertices and that holds vertices whose color has not changed for a while.194

Initially, the size of each bucket depends on the number of vertices in the in-195

put graph. As vertices are inserted and deleted, the current number of vertices196

changes. When certain buckets are full, we reset everything, to ensure that197

we can accommodate the new number of vertices. This involves emptying all198

buckets into the reset bucket, computing a proper coloring of the entire graph,199

and recomputing the sizes of the buckets in terms of the current number of200

vertices.201

We refer to the number of vertices during the most recent reset as NR,202

and we express the size of the buckets in s = dN1/d
R e, where d > 0 is an203

integer parameter that allows us to achieve different trade-offs between the204

number of colors and number of recolorings used. Since s = O(N1/d), where205

N is the maximum number of vertices thus far, we state our bounds in terms206

of N . Note that it is also possible to keep NR within a constant factor of the207

current number of vertices by triggering a reset whenever the current number208

of vertices becomes too small or too large. Standard amortization techniques209

can be used to show that this would cost only a constant number of additional210

amortized recolorings per insertion or deletion, although deamortization would211

be more complicated. We omit these details for the sake of simplicity.212

2.1 Small-buckets algorithm213

Our first algorithm, called the small-buckets algorithm, uses a lot of colors,214

but needs very few recolorings. In addition to the reset bucket, the algorithm215

uses ds buckets, grouped into d levels of s buckets each. All buckets on level i,216

for 0 ≤ i < d, have capacity si (see Fig. 1). Initially, the reset bucket contains217

all vertices, and all other buckets are empty. Throughout the execution of the218

algorithm, we ensure that every level always has at least one empty bucket.219

We call this the space invariant.220

When a new vertex is inserted, we place it in any empty bucket on level 0.221

The space invariant guarantees the existence of this bucket. Since this bucket222
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has a unique set of colors, assigning one of them to the new vertex establishes223

a proper coloring. Of course, if this was the last empty bucket on level 0, filling224

it violates the space invariant. In that case, we gather up all s vertices on this225

level, place them in the first empty bucket on level 1 (which has capacity s226

and must exist by the space invariant), and compute a new coloring of their227

induced graph using the set of colors of the new bucket. If this was the last228

free bucket on level 1, we move all its vertices to the next level and repeat229

this procedure. In general, if we filled the last free bucket on level i, we gather230

up all at most s · si = si+1 vertices on this level, place them in an empty231

bucket on level i + 1 (which exists by the space invariant), and recolor their232

induced graph with the new colors. If we fill up the last level (d− 1), we reset233

the structure, emptying each bucket into the reset bucket and recoloring the234

whole graph.235

Theorem 1 For any integer d > 0, the small-buckets algorithm is an O(dN1/d)-236

competitive recoloring algorithm that uses at most O(d) amortized vertex re-237

colorings per update.238

Proof The total number of colors is bounded by the maximum number of non-239

empty buckets (1 + d(s − 1)), multiplied by the maximum number of colors240

used by any bucket. Let C be the maximum chromatic number of the graph.241

Since any induced subgraph of a C-colorable graph is also C-colorable, each242

bucket requires at most C colors. Thus, the total number of colors is at most243

(1 + d(s− 1))C, and the algorithm is O(dN1/d)-competitive.244

To analyze the number of recolorings, we use a simple charging scheme that245

places coins in the buckets and pays one coin for each recoloring. Whenever we246

place a vertex in a bucket on level 0, we give d+ 2 coins to that bucket. One247

of these coins is immediately used to pay for the vertex’s new color, leaving248

d+ 1 coins. In general, we maintain the invariant that each non-empty bucket249

on level i has si · (d− i+ 1) coins.250

When we merge the vertices on level i into a new bucket on level i + 1,251

we pay a single coin for each vertex that changes color. Since each bucket had252

si · (d − i + 1) coins, and we recolored at most s · si = si+1 vertices, our new253

bucket has at least s · si · (d− i+ 1)− si+1 = si+1 · (d− (i+ 1) + 1) coins left,254

satisfying the invariant.255

When we fill up level d−1, we reset the structure and recolor all vertices. At256

this point, the buckets on level d−1 have a total of s·sd−1 ·(d−(d−1)+1) = 2sd257

coins, and no more than sd vertices. Since all new vertices are inserted on258

level 0, and vertices are moved to the reset bucket only during a reset, the259

number of vertices in the reset bucket is at most NR. Since sd = dN1/d
R ed ≥260

(N
1/d
R )d = NR, we have enough coins to recolor all vertices. Thus, we require261

no more than d+ 2 = O(d) amortized recolorings per update.262

2.2 Big-buckets algorithm263
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s si

∞
sd

Fig. 2: Besides the reset bucket, the big-buckets algorithm
uses d buckets, each with capacity si+1, where i is the
bucket number.

Our second algorithm,264

called the big-buckets265

algorithm, is similar to266

the small-buckets algo-267

rithm, except it merges268

all buckets on the same269

level into a single larger270

bucket. Specifically, the271

algorithm uses d buckets in addition to the reset bucket. These buckets are272

numbered sequentially from 0 to d−1, with bucket i having capacity si+1, see273

Fig. 2. Since we use far fewer buckets, an upper bound on the total number274

of colors drops significantly, to (d + 1)C. Of course, as we will see later, we275

pay for this in the number recolorings. Similar to the space invariant in the276

small-buckets algorithm, the big-buckets algorithm maintains the high point277

invariant : bucket i always contains at most si+1 − si vertices (its high point).278

When a new vertex is inserted, we place it in the first bucket. Since this279

bucket may already contain other vertices, we recolor all its vertices, so that the280

subgraph induced by these vertices remains properly colored. This revalidates281

the coloring, but may violate the high point invariant. If we filled bucket i282

beyond its high point, we move all its vertices to bucket i+ 1 and compute a283

new coloring for this bucket. We repeat this until the high point invariant is284

satisfied, or we fill bucket d− 1 past its high point. In the latter case we reset,285

adding all vertices to the reset bucket and computing a new coloring for the286

entire graph.287

Theorem 2 For any integer d > 0, the big-buckets algorithm is an O(d)-288

competitive recoloring algorithm that uses at most O(dN1/d) amortized vertex289

recolorings per update.290

Proof The bound on the number of colors follows directly from the fact that291

we use d buckets in addition to the reset bucket. Hence, we use at most (d+292

1)C colors at any point in time, making the algorithms O(d)-competitive. We293

proceed to analyze the number of recolorings per update.294

As in the small-buckets algorithm, we give coins to each bucket that we295

then use to pay for recolorings. In particular, we ensure that bucket i always296

has Pi = dki/sie · si+1 · (d − i) coins, where ki is the number of vertices in297

bucket i.298

Consider what happens when we place a vertex into bucket 0. Initially,299

the bucket has P0 = dk0/s0e · s1 · (d − 0) = k0sd coins. As a result of the300

insertion, we need to recolor all k0 +1 vertices, and the invariant requires that301

the bucket has (k0 + 1)sd coins afterwards. By the high point invariant, we302

have that 1 + k0 ≤ s, so we can bound the number of coins we need to pay303

per update by k0 + 1 + sd ≤ (d+ 1)s.304

Recall that this insertion may trigger a promotion of all vertices in bucket305

0 to bucket 1, and that this could propagate until the high point invariant is306

satisfied again. When we merge bucket i into bucket i+ 1, we need to recolor307

all vertices in these two buckets. This will be paid for by the coins stored in308
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the smaller bucket. At this point, the high point invariant gives us that bucket309

i contains at least ki ≥ si+1 − si + 1 vertices. Thus, since dki/sie ≥ d(si+1 −310

si + 1)/sie = s, bucket i has at least Pi = dki/sie · si+1 · (d− i) ≥ si+2 · (d− i)311

coins.312

At the same time, bucket i + 1 has Pi+1 = dki+1/s
i+1e · si+2 · (d − i − 1)313

coins, and needs to gain at most si+2 · (d− i−1) coins, as it gains at most si+1
314

vertices. This leaves si+2 · (d− i)− si+2 · (d− i− 1) = si+2 coins to pay for the315

recoloring. Since bucket i+ 1 contained no more than si+2 − si+1 vertices by316

the high-point invariant, and we added at most si+1 new ones, this suffices to317

recolor all vertices involved and maintain the coin invariant.318

Finally, we perform a reset when bucket d−1 passes its high point. In that319

case, bucket d− 1 contains at least sd− sd−1 + 1 vertices and therefore has at320

least d(sd−sd−1 +1)/sd−1e ·sd ·(d−d+1) = sd+1 coins. Since the reset bucket321

contains at most NR ≤ sd vertices, we need to recolor at most 2sd vertices.322

As s = dN1/d
R e ≥ 2 if NR ≥ 2, we have enough coins to pay for all these323

recolorings. Therefore we can maintain the coloring with (d+ 1)s = O(dN1/d)324

amortized recolorings per update.325

3 De-amortization326

In this section, we show how to de-amortize the algorithms presented in Sec-327

tion 2. We distinguish between the two different strategies.328

3.1 Shadow vertices329

To de-amortize the two algorithms, we simulate the amortized version using330

fake vertices, called shadow vertices. Each real vertex v either has a unique331

shadow vertex sh(v), representing its state (color and location) in the amor-332

tized version, or has no shadow vertex, if it would be in the same location and333

have the same color in the amortized algorithm. When an update happens,334

we first move the shadow vertices exactly as the amortized algorithm would335

(creating new shadow vertices for real vertices without a shadow if needed),336

and then move and recolor some real vertices to match their shadows, remov-337

ing the shadows. We call the first step the simulation step, and the second338

step the move step. Since we only count recolorings of real vertices, only the339

move step has any actual cost - we just use the simulation step to keep track340

of where vertices need to go.341

The only difference between the simulated versions of the amortized algo-342

rithms and the algorithms as presented in Section 2 is that the value for s343

is not allowed to decrease after a reset. Thus, s = dN1/d
R e, where NR is the344

maximum number of vertices during any reset so far.345
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3.2 Small-buckets algorithm346

The de-amortized version of the small-buckets algorithm uses the same buckets347

as the amortized version, except for an additional reset bucket. At each stage348

of the algorithm there is one primary reset bucket and one secondary reset349

bucket. The primary reset bucket contains shadow vertices and real vertices350

without a shadow, whose colors correspond to the reset bucket in the amortized351

version. The secondary reset bucket contains real vertices with a shadow in the352

primary reset bucket. During a reset, the primary and secondary reset buckets353

change roles.354

As before, we discuss only vertex insertion. Recall that the amortized algo-355

rithm places a new vertex v in an empty bucket on level 0, and then iteratively356

merges full levels into higher ones, possibly triggering a reset if the last level357

fills up. During the simulation step, the de-amortized algorithm mimics this.358

Note that for the purpose of the simulation, we ignore real vertices with a359

shadow and instead operate on their shadow vertices. Thus, a level is con-360

sidered full if every bucket contains either a shadow vertex or a real vertex361

without a shadow. On the other hand, whenever the amortized algorithm uses362

an empty bucket, we require that that bucket contains no real vertices at all,363

not even ones with a shadow. We show later that such a bucket is always364

available when needed.365

We first create a new shadow vertex for v and place it in an empty bucket366

on level 0. Then, if this level is full, we create a shadow vertex for every real367

vertex on this level without one, and move all shadow vertices to an empty368

bucket on level 1. Here, we color them with the new bucket’s colors so that369

their induced graph is properly colored. If this fills up the new level, we repeat370

this until we reach a level that is not full, or we fill up the last level. In the371

latter case, we trigger a reset.372

During a reset, we create a new shadow vertex for all real vertices without373

one and move all shadow vertices into the secondary reset bucket, computing374

a proper coloring for them. At this point, the primary and secondary reset375

buckets switch roles. As in the amortized algorithm, we also recompute the376

value of s. If s increases, we add additional empty buckets and increase the377

capacity of the current buckets (recall that we do not allow s to decrease in378

the de-amortized versions).379

All of this happens during the simulation step. During the move step, we380

perform the actual recolorings. We first move and recolor the inserted vertex381

v to its shadow: moving it into the bucket containing sh(v), giving it the color382

of sh(v), and removing sh(v). Then we move and recolor one vertex from383

each level to its shadow. Specifically, for each level, we consider all buckets384

containing only real vertices with a shadow. Among those buckets, we pick385

the bucket with the least number of vertices and move and recolor one of its386

vertices to its shadow. Finally, we check the secondary reset bucket for vertices387

with a shadow and move and recolor one if found. Thus, we recolor at most388

d+ 2 vertices per update.389
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Analysis We prove correctness by arguing that an empty bucket is available390

when needed.391

Lemma 1 After every update, there is at least one empty bucket on level 0.392

Proof Since the lemma is true for the amortized version by the space invariant,393

we know that after the simulation step there is at least one bucket on level 0394

that is either empty, in which case we are done, or contains a real vertex with395

a shadow. In this case, the move step will empty one such bucket.396

Lemma 2 Let ti be the number of updates since the last time level i was397

full, or the last reset, whichever is more recent. Then there is a bucket on398

level i + 1 that does not contain any shadow vertices and contains at most399

max(0, si+1 − ti) real vertices, each with a shadow.400

Proof We prove this by induction on ti. The base case ti = 0 follows from401

the space invariant of the amortized version, since a bucket that is empty in402

the amortized version will only contain real vertices with a shadow, and each403

bucket has capacity si+1, which cannot decrease during resets.404

For the inductive step ti > 0, we know that before this update level i + 1405

had a bucket without shadow vertices that was either completely empty (if406

ti > si+1), or had at most si+1 − (ti − 1) real vertices, each with a shadow. If407

the bucket was already empty, we are done. Otherwise, note that during the408

simulation step, the only time new vertices are created on level i+ 1 is when409

level i fills up, which did not happen, as ti > 0. During a move step, we move410

and recolor one vertex from a bucket without shadow vertices and with the411

least number of real vertices, each with a shadow. Therefore, there must now412

be a bucket without shadow vertices and with at most si+1 − ti real vertices,413

each with a shadow.414

Lemma 3 At least si+1 updates are required for level i to fill up again after415

a reset or after it has filled up.416

Proof Note that levels only fill up during the simulation step. Therefore this is417

a property of the amortized version of the algorithm. We prove the lemma by418

induction on i. Since each update creates at most one vertex on level 0, and419

there are s buckets, the lemma holds for level 0. Vertices on level i > 0 are only420

created when level i− 1 fills up. By induction, this happens at most every si421

updates, and each occurrence creates these vertices in only one bucket. Since422

there are s buckets on level i, it takes at least si+1 updates for it to fill up.423

By combining Lemmas 2 and 3 we get the following corollary.424

Corollary 1 When level i fills up, there is an empty bucket on level i+ 1 (for425

0 ≤ i < d− 1).426

Lemma 4 When a reset happens, the secondary reset bucket is empty.427
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Proof Initially, the entire point set is contained in the primary reset bucket,428

and the secondary one is empty. Since only a reset can create shadow vertices429

in a reset bucket, the lemma holds at the first reset. When a subsequent reset430

happens, we have performed at least sd ≥ NR updates in order to fill up level431

d− 1 by Lemma 3. Since we move one vertex from the secondary reset bucket432

to the primary reset bucket during each move step, and the secondary reset433

bucket contains at most NR vertices, this bucket will be empty when the next434

reset happens.435

This shows that an empty bucket is available when needed, completing the436

correctness proof. The additional reset bucket increases the number of colors437

we use by C compared to the amortized algorithm, giving the following result.438

Theorem 3 For any integer d > 0, the de-amortized small-buckets algorithm439

is an O(dN1/d)-competitive recoloring algorithm that uses at most d+2 vertex440

recolorings per update.441

3.3 Big-buckets algorithm442

As for the small-buckets algorithm, the de-amortized big-buckets algorithm443

splits the work into a simulation step, in which we move and recolor shadow444

vertices according to the amortized algorithm, and a move step in which we445

move and recolor a small number of real vertices to their shadows. The main446

difference is that we double all buckets, instead of just the reset bucket. There447

is a primary and secondary version of every bucket, each with its own set of448

colours. The primary buckets contain shadow vertices and real vertices without449

a shadow, while the secondary buckets contain only real vertices with a shadow.450

The simulation step acts only on the primary buckets, while the move step451

takes real vertices from the secondary buckets to their shadows in the primary452

buckets. The primary and secondary bucket on a level switch roles when new453

shadow vertices are added to the level. We prove that this happens only when454

the secondary bucket is empty.455

Recall that the high point invariant states that bucket i contains at most456

si+1 − si vertices. When a vertex is inserted, the amortized big-bucket algo-457

rithm tries to place it in bucket 0. If this violates the high point invariant, the458

bucket is emptied into the bucket on the next level, and so on, until we reach459

a level where the high point invariant is not violated. If such a level does not460

exist, we trigger a reset.461

The de-amortized algorithm simulates this as follows. During the simula-462

tion step, we find the first level i where we can insert the new vertex and all463

vertices on lower levels without violating the high point invariant. We give464

all these vertices, along with the vertices in the primary bucket of level i, a465

shadow in the secondary bucket of level i and compute a coloring for them,466

see Fig. 3. We then switch the roles of the primary and secondary buckets for467

all levels involved. During the move step, we move and recolor v to its shadow.468
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(a) (b)

(c)

Fig. 3: One vertex insertion in the de-amortized big-buckets algorithm. (a)
Before the update. (b) During the simulation step the new vertex causes the
first two levels to fill up, creating shadow vertices in the secondary third bucket
and swapping the roles of these bucket pairs. (c) During the move step we move
and recolor up to s vertices from each level.

In addition, we move and recolor up to s vertices from each level’s secondary469

bucket and the secondary reset bucket to their shadows.470

If we cannot find a level to insert the new vertex without violating the high471

point invariant, we reset. This involves discarding all current shadow vertices472

and creating a new shadow vertex in the secondary reset bucket for each real473

vertex, computing a coloring for these vertices, and switching the primary and474

secondary reset buckets. We also recompute s and increase the bucket sizes if475

necessary.476

Analysis For correctness, the only thing we need to show is that, when we477

place shadow vertices in a secondary bucket on level i, that bucket is empty.478

A similar argument shows that the secondary reset bucket is empty whenever479

the high point invariant would fail for level d− 1.480

Lemma 5 When an update causes us to place shadow vertices in the sec-481

ondary bucket of level i, that bucket is empty.482

Proof Since the buckets on level 0 contain fewer than s vertices, the move483

step after each update empties the secondary bucket. For i > 0, recall that we484

only place shadow vertices here if the high point invariant would have been485

violated at level i − 1, which means that there are at least si − si−1 + 1 real486
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vertices in the levels before i. Moreover, none of these vertices have a shadow,487

since each level’s secondary bucket is empty by induction, and the primary488

bucket contains only real vertices without a shadow. Recall that, whenever489

we place shadow vertices in the secondary bucket of level i, we do this for490

all of the vertices on the lower levels. Thus, these si − si−1 + 1 vertices were491

inserted after the secondary bucket was last filled. Since each move step moves492

s vertices from the secondary bucket into the primary bucket, and since the493

buckets on level i contain no more than si+1 − si vertices by the high point494

invariant, the secondary bucket will be empty before the current insertion.495

The number of colors used is doubled compared to the amortized version,496

but the number of recolorings per operation is the same: 1 for the inserted497

vertex, at most s − 1 for level 0, and at most s for every other level and the498

reset bucket.499

Theorem 4 For any integer d > 0, the de-amortized big-buckets algorithm500

is an O(d)-competitive recoloring algorithm that uses at most (d + 1)s =501

O(dN1/d) vertex recolorings per update.502

4 Lower bound503

In this section we prove a lower bound on the amortized number of recolorings504

for any algorithm that maintains a c-coloring of a 2-colorable graph, for any505

constant c ≥ 2. We say that a vertex is c-colored if it has a color in [c] =506

{1, . . . , c}. For simplicity of description, we assume that a recoloring algorithm507

only recolors vertices when an edge is inserted and not when an edge is deleted,508

as edge deletions do not invalidate the coloring. This assumption causes no loss509

of generality, as we can delay the recolorings an algorithm would perform in510

response to an edge deletion until the next edge insertion.511

The proof for the lower bound consists of several parts. We begin with512

a specific initial configuration and present a strategy for an adversary that513

constructs a large configuration with a specific colouring and then repeatedly514

performs costly operations in this configuration. In light of this strategy, a515

recoloring algorithm has a few choices: it can allow the configuration to be516

built and perform the recolorings required, it can destroy the configuration by517

recoloring parts of it instead of performing the operations, or it can prevent518

the configuration from being built in the first place by recoloring parts of the519

building blocks. We show that all these options require an amortized large520

number of recolorings.521

4.1 Maintaining a 3-coloring522

To make the general lower bound easier to understand, we first show that to523

maintain a 3-coloring, we need at least Ω(n1/3) recolorings on average per524

update.525
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. . . . . . . . .

n2/3 − 1 leaves

. . .

n1/3 1-trees

. . .

. . .

. . .

n2/3 − 1 leaves
n1/3

9 1-trees

. . . . . .

Fig. 4: (left) A 1-configuration is any forest that has many 1-trees as induced subgraphs.
(right) A 2-tree is constructed by connecting the roots of many 1-trees.

Lemma 6 For any sufficiently large n and any m ≥ 2n1/3, there exists a526

forest with n vertices, such that for any recoloring algorithm A, there exists a527

sequence of m updates that forces A to perform Ω(m · n1/3) vertex recolorings528

to maintain a 3-coloring throughout this sequence.529

Proof Let A be any recoloring algorithm that maintains a 3-coloring of a forest530

under updates. We use an adversarial strategy to choose a sequence of updates531

on a specific forest with n nodes that forces A to recolor “many” vertices. We532

start by describing the initial forest structure.533

A 1-tree is a rooted (star) tree with a distinguished vertex as its root and534

n2/3− 1 leaf nodes attached to it. Initially, our forest consists of n1/3 pairwise535

disjoint 1-trees, which account for all n vertices in our forest. The sequence536

of updates we construct never performs a cut operation among the edges of537

a 1-tree. Thus, the forest remains a 1-configuration: a forest of rooted trees538

with the n1/3 independent 1-trees as induced subgraphs; see Fig. 4 (left). We539

require that the induced subtrees are not upside down, that is, the root of the540

1-tree should be closer to the root of the full tree than its children. Intuitively,541

a 1-configuration is simply a collection of our initial 1-trees linked together542

into larger trees.543

Let F be a 1-configuration. We assume that A has already chosen an initial544

3-coloring of F . We assign a color to each 1-tree as follows. Since each 1-tree545

is properly 3-colored, the leaves cannot have the same color as the root. Thus,546

a 1-tree T always has at least n2/3−1
2 leaves of some color C, and C is different547

from the color of the root. We assign the color C to T . In this way, each 1-tree548

is assigned one of the three colors. We say that a 1-tree with assigned color C549

becomes invalid if it has no children of color C left. Notice that to invalidate550

a 1-tree, algorithm A needs to recolor at least n2/3−1
2 of its leaves. Since the551

coloring uses only three colors, there are at least n1/3

3 1-trees with the same552

assigned color, say X. In the remainder, we focus solely on these 1-trees.553

A 2-tree is a tree obtained by merging n1/3

9 1-trees with assigned color554

X, as follows. First, we cut the edge connecting the root of each 1-tree to its555

parent, if it has one. Next, we pick a distinguished 1-tree with root r, and556

connect the root of each of the other n1/3

9 − 1 1-trees to r. In this way, we557

obtain a 2-tree whose root r has n2/3 − 1 leaf children from the 1-tree of r,558
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and n1/3

9 − 1 new children that are the roots of other 1-trees; see Fig. 4 (right)559

for an illustration. This construction requires n1/3

9 − 1 edge insertions and560

at most n1/3

9 edge deletions (if every 1-tree root had another parent in the561

1-configuration).562

We build 3 such 2-trees in total. This requires at most 6(n
1/3

9 ) = 2n1/3

3563

updates. If none of our 1-trees became invalid, then since our construction564

involves only 1-trees with the same assigned color X, no 2-tree can have a565

root with color X. Further, since the algorithm maintains a 3-coloring, there566

must be at least two 2-trees whose roots have the same color. We can now567

perform a matching link, by connecting the roots of these two trees by an edge568

(in general, we may need to perform a cut first). To maintain a 3-coloring569

after a matching link, A must recolor the root of one of the 2-trees and either570

recolor all its non-leaf children or invalidate a 1-tree. If no 1-tree has become571

invalidated, this requires at least n1/3

9 recolorings, and we again have two 2-572

trees whose roots have the same color. Thus, we can perform another matching573

link between them. We keep doing this until we either performed n1/3

6 matching574

links, or a 1-tree is invalidated.575

Therefore, after at most n1/3 updates ( 2n1/3

3 for the construction of the576

2-trees, and n1/3

3 for the matching links), we either have an invalid 1-tree, in577

which case A recolored at least n2/3−1
2 nodes, or we performed n1/3

6 matching578

links, which forced at least n1/3

6 · n1/3

9 = n2/3

54 recolorings. In either case, we579

forced A to perform at least Ω(n2/3) vertex recolorings, using at most n1/3580

updates.581

Since no edge of a 1-tree was cut, we still have a valid 1-configuration,582

where the process can be restarted. Consequently, for any m ≥ 2n1/3, there583

exists a sequence of m updates that starts with a 1-configuration and forces584

A to perform b m
n1/3 cΩ(n2/3) = Ω(m · n1/3) vertex recolorings.585

4.2 On k-trees586

· · ·{ { { {n2/c

0-trees n
2(c−2)
c(c−1)

1-trees
n

2(c−k+1)
c(c−1)

(k − 2)-trees

n
2(c−k)
c(c−1)

(k − 1)-trees

Fig. 5: A k-tree is constructed by connecting the roots of a
large number of (k − 1)-trees.

We are now ready587

to describe a gen-588

eral lower bound589

for any number of590

colors c. The gen-591

eral approach is the592

same as when us-593

ing 3 colors: We con-594

struct trees of height up to c+ 1, each excluding a different color for the root595

of the merged trees. By now connecting two such trees, we force the algorithm596

A to recolor the desired number of vertices.597

A 0-tree is a single node, and for each 1 ≤ k ≤ c, a k-tree is a tree obtained598

recursively by merging 2 · n
2(c−k)
c(c−1) (k − 1)-trees as follows: Pick a (k − 1)-tree599
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and let r be its root. Then, for each of the 2·n
2(c−k)
c(c−1) −1 remaining (k−1)-trees,600

connect their root to r with an edge; see Fig. 5 for an illustration.601

As a result, for each 0 ≤ j ≤ k − 1, a k-tree T consists of a root r with602

2 · n
2(c−j−1)
c(c−1) − 1 j-trees, called the j-subtrees of T , whose root hangs from r.603

The root of a j-subtree of T is called a j-child of T . By construction, r is also604

the root of a j-tree which we call the core j-tree of T .605

Whenever a k-tree is constructed, it is assigned a color that is present606

among a “large” fraction of its (k − 1)-children. Indeed, whenever a k-tree is607

assigned a color ck, we guarantee that it has at least
⌈
2
c · n

2(c−k)
c(c−1)

⌉
(k − 1)-608

children of color ck. We describe later how to choose the color that is assigned609

to a k-tree.610

We say that a k-tree that was assigned color ck has a color violation if611

its root no longer has a (k − 1)-child with color ck. We say that a k-tree T612

becomes invalid if either (1) it has a color violation or (2) if a core j-tree of T613

has a color violation for some 1 ≤ j < k; otherwise we say that T is valid.614

Observation 1 To obtain a color violation in a k-tree constructed by the above615

procedure, A needs to recolor at least
⌈
2
c · n

2(c−k)
c(c−1)

⌉
vertices.616

Proof Let T be a valid k-tree constructed by the above procedure. Assume617

that T was assigned color ck and recall that by definition, T had at least618 ⌈
2
c · n

2(c−k)
c(c−1)

⌉
(k−1)-children of color ck when its color was assigned. Therefore,619

in order for T to have a color violation, A needs to change the color of at least620 ⌈
2
c · n

2(c−k)
c(c−1)

⌉
vertices.621

Notice that a valid c-colored k-tree of color ck cannot have a root with622

color ck. Formally, color ck is blocked for the root of a k-tree if this root has a623

child with color ck. In particular, the color assigned to a k-tree and the colors624

assigned to its core j-trees for 1 ≤ j ≤ k − 1 are blocked as long as the tree is625

valid.626

4.3 On k-configurations627

A 0-configuration is a set F0 of c-colored nodes, where |F0| = T0 = αn, for
some sufficiently large constant α which will be specified later. For 1 ≤ k < c,
a k-configuration is a set Fk of Tk k-trees, where

Tk =
α

(4c)k
· n1−

∑k
i=1

2(c−i)
c(c−1) .

Note that the trees of a k-configuration may be part of m-trees for m > k.628

If at least Tk

2 k-trees in a k-configuration are valid, then the configuration is629

valid.630
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For our construction, we let the initial configuration F0 be an arbitrary631

c-colored 0-configuration in which each vertex is c-colored. To construct a k-632

configuration Fk from a valid (k− 1)-configuration Fk−1, consider the at least633

Tk−1

2 valid (k− 1)-trees from Fk−1. Recall that the trees of Fk−1 may be part634

of larger trees, but since we consider edge deletions as “free” operations we635

can separate the trees. Since each of these trees has a color assigned, among636

them at least Tk−1

2c have the same color assigned to them. Let ck−1 denote this637

color.638

Because each k-tree consists of 2 · n
2(c−k)
c(c−1) (k − 1)-trees, to obtain Fk we

merge Tk−1

2c (k − 1)-trees of color ck−1 into Tk k-trees, where

Tk =
Tk−1

2c
· 1

2 · n
2(c−k)
c(c−1)

=
α

(4c)k
· n1−

∑k
i=1

2(c−i)
c(c−1) .

Once the k-configuration Fk is constructed, we perform a color assign-639

ment to each k-tree in Fk as follows: For a k-tree τ of Fk whose root has640

2 · n
2(c−k)
c(c−1) − 1 c-colored (k− 1)-children, we assign τ a color that is shared by641

at least
⌊
2
c · n

2(c−k)
c(c−1) − 1

⌋
of these (k − 1)-children. Therefore, τ has at least642 ⌊

2
c · n

2(c−k)
c(c−1)

⌋
children of its assigned color. After these color assignments, if643

each (k − 1)-tree used is valid, then each of the Tk k-trees of Fk is also valid.644

Thus, Fk is a valid configuration. Moreover, for Fk to become invalid, A would645

need to invalidate at least Tk

2 of its k-trees.646

Observation 2 Let τ be a valid j-tree with color cj assigned to it. If r is the647

root of τ , then r has at least one (j − 1)-child with color cj .648

The following result shows how colors are distributed inside a valid k-tree.649

Lemma 7 Let Fk be a valid k-configuration. For each 1 ≤ j < k, each core650

j-tree of a valid k-tree of Fk has color cj assigned to it. Moreover, ci 6= cj for651

each 1 ≤ i < j < k.652

Proof The proof goes by induction on k. For k = 0 the results holds trivially.653

Assume the result holds for k − 1.654

When constructing Fk−1 from Fk, we know that each (k − 1)-tree in Fk is655

assigned the same color ck−1. Moreover, by the induction hypothesis, for each656

1 ≤ j < k − 1, each core j-tree of a valid (k − 1)-tree in Fk−1 had color cj657

assigned to it. Thus, each core j-tree of a valid k-tree also has color cj assigned658

to it.659

We now show that ci 6= cj for each i < j. Let τj be a core j-tree of a valid660

k-tree in Fk with color cj . Since every core j-tree of a valid k-tree is also valid,661

τj is a valid j-tree. Therefore, there is a (j − 1)-child, say r, of τk of color cj .662

Let τj−1 be the (j − 1)-subtree of τj rooted at r. Since τj−1 has color cj−1663

assigned to it by the first part of this lemma, we know that its root cannot664

have color cj−1. Therefore, cj 6= cj−1 and hence, we can assume that i < j−1.665
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By construction and since i < j − 1, we know that r is also the root of its666

core i-tree, say τi. Because τi is valid and has color ci, it must have an (i− 1)-667

child v of color ci. Since r is the root of τi, r and v are adjacent. Because r668

has color cj while v has color ci, and since Fk is c-colored, we conclude that669

ci 6= cj .670

We also provide bounds on the number of updates needed to construct a671

k-configuration.672

Lemma 8 Using Θ(
∑k
i=j Ti) = Θ(Tj) edge insertions, we can construct a k-673

configuration from a valid j-configuration.674

Proof To merge Tk−1

2c (k − 1)-trees to into Tk k-trees, we need Θ(Tk−1) edge675

insertions. Thus, in total, to construct a k-configuration from a j-configuration,676

we need Θ(
∑k
i=j Ti) = Θ(Tj) edge insertions.677

4.4 Reset phase678

Throughout the construction of a k-configuration, the recoloring-algorithm A679

may recolor several vertices which could lead to invalid subtrees in Fj for any680

1 ≤ j < k. Because A may invalidate some trees from Fj while constructing681

Fk from Fk−1, one of two things can happen. If Fj is a valid j-configuration for682

each 1 ≤ j ≤ k, then we continue and try to construct a (k + 1)-configuration683

from Fk. Otherwise a reset is triggered as follows.684

Let 1 ≤ j < k be an integer such that Fi is a valid i-configuration for each685

0 ≤ i ≤ j − 1, but Fj is not valid. Since Fj was a valid j-configuration with686

at least Tj valid j-trees when it was first constructed, we know that in the687

process of constructing Fk from Fj , at least
Tj

2 j-trees where invalidated by688

A. We distinguish two ways in which a tree can be invalid:689

(1) the tree has a color violation, but all its j− 1-subtrees are valid and no690

core i-tree for 1 ≤ i ≤ j − 1 has a color violation; or691

(2) A core i-tree has a color violation for 1 ≤ i ≤ j − 1, or the tree has a692

color violation and at least one of its (j − 1)-subtrees is invalid.693

In case (1) the algorithm A has to perform fewer recolorings, but the tree can694

be made valid again with a color reassignment, whereas in case (2) the j-tree695

has to be rebuild.696

Let Y0, Y1 and Y2 respectively be the set of j-trees of Fj that are either697

valid, or are invalid by case (1) or (2) respectively. Because at least
Tj

2 j-trees698

were invalidated, we know that |Y1|+ |Y2| > Tj

2 . Moreover, for each tree in Y1,699

A recolored at least 2
c ·n

2(c−j)
c(c−1)−1 vertices to create the color violation on this j-700

tree by Observation 1. For each tree in Y2 however, A created a color violation701

in some i-tree for i < j. Therefore, for each tree in Y2, by Observation 1, the702

number of vertices that A recolored is at least 2
c ·n

2(c−i)
c(c−1) −1 > 2

c ·n
2(c−j+1)
c(c−1) −1.703
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Case 1: |Y1| > |Y2|. Recall that each j-tree in Y1 has only valid (j − 1)-704

subtrees by the definition of Y1. Therefore, each j-tree in Y1 can be made705

valid again by performing a color assignment on it while performing no up-706

date. In this way, we obtain |Y0| + |Y1| > Tj

2 valid j-trees, i.e., Fj becomes a707

valid j-configuration contained in Fk. Notice that when a color assignment is708

performed on a j-tree, vertex recolorings previously performed on its (j − 1)-709

children cannot be counted again towards invalidating this tree.710

Since we have a valid j-configuration instead of a valid k-configuration,711

we “wasted” some edge insertions. We say that the insertion of each edge712

in Fk that is not an edge of Fj is a wasted edge insertion. By Lemma 8,713

to construct Fk from Fj we used Θ(Tj) edge insertions. That is, Θ(Tj) edge714

insertions became wasted. However, while we wasted Θ(Tj) edge insertions, we715

also forced A to perform Ω(|Y1| · n
2(c−j)
c(c−1) ) = Ω(Tj · n

2(c−j)
c(c−1) ) vertex recolorings.716

Since 1 ≤ j < k ≤ c − 1, we know that n
2(c−j)
c(c−1) ≥ n

2
c(c−1) . Therefore, we can717

charge A with Ω(n
2

c(c−1) ) vertex recolorings per wasted edge insertion. Finally,718

we remove each edge corresponding to a wasted edge insertion, i.e., we remove719

all the edges used to construct Fk from Fj . Since we assumed that A performs720

no recoloring on edge deletions, we are left with a valid j-configuration Fj .721

Case 2: |Y2| > |Y1|. In this case |Y2| > Tj

4 . Recall that Fj−1 is a valid (j−1)-722

configuration by our choice of j. In this case, we say that the insertion of each723

edge in Fk that is not an edge of Fj−1 is a wasted edge insertion. By Lemma 8,724

we constructed Fk from Fj−1 using Θ(Tj−1) wasted edge insertions. However,725

while we wasted Θ(Tj−1) edge insertions, we also forced A to perform Ω(|Y2| ·726

n
2(c−j+1)
c(c−1) ) = Ω(Tj ·n

2(c−j+1)
c(c−1) ) vertex recolorings. That is, we can charge A with727

Ω(
Tj

Tj−1
·n

2(c−j+1)
c(c−1) ) vertex recolorings per wasted edge insertions. Since

Tj−1

Tj
=728

4c · n
2(c−j)
c(c−1) , we conclude that A was charged Ω(n

2
c(c−1) ) vertex recolorings per729

wasted edge insertion. Finally, we remove each edge corresponding to a wasted730

edge insertion, i.e., we go back to the valid (j−1)-configuration Fj−1 as before.731

Regardless of the case, we know that during a reset consisting of a sequence732

of h wasted edge insertions, we charged A with the recoloring of Ω(h ·n 2
c(c−1) )733

vertices. Notice that each edge insertion is counted as wasted at most once734

as the edge that it corresponds to is deleted during the reset phase. A vertex735

recoloring may be counted more than once. However, a vertex recoloring on a736

vertex v can count towards invalidating any of the trees it belongs to. Recall737

though that v belongs to at most one i-tree for each 0 ≤ i ≤ c. Moreover,738

two things can happen during a reset phase that count the recoloring of v739

towards the invalidation of a j-tree containing it: either (1) a color assignment740

is performed on this j-tree or (2) this j-tree is destroyed by removing its edges741

corresponding to wasted edge insertions. In the former case, we know that v742

needs to be recolored again in order to contribute to invalidating this j-tree.743

In the latter case, the tree is destroyed and hence, the recoloring of v cannot744

be counted again towards invalidating it. Therefore, the recoloring of a vertex745

can be counted towards invalidating any j-tree at most c times throughout746
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the entire construction. Since c is assumed to be a constant, we obtain the747

following result.748

Lemma 9 After a reset phase in which h edge insertions become wasted, we749

can charge A with Ω(h·n 2
c(c−1) ) vertex recolorings. Moreover, A will be charged750

at most O(1) times for each recoloring.751

After a reset, we consider our new valid j- or (j − 1)-configuration (de-752

pending on the above case), and continue our construction trying to reach a753

c-configuration.754

4.5 Constructing a c-tree755

If A stops triggering resets, then at some point we reach a (c−1)-configuration.756

In this section, we describe what happens when constructing a c-configuration757

from this (c− 1)-configuration. Recall that a color ci is blocked for the root of758

a k-tree if this root has a child with color ci.759

Lemma 10 Let Fk be a valid k-configuration. Then colors {c1, c2, . . . , ck−1}760

are blocked for the root of each valid k-tree in Fk.761

Proof Let τ be a valid k-tree in Fk with root r. Recall that τ is also the root762

of a valid j-tree for each 1 ≤ j < k. Let τj be the j-tree rooted at r. By763

Lemma 7, we know that τj was assigned color cj . By Observation 2, r has a764

child of color cj . Therefore, r has color cj blocked. In summary, r has colors765

{c1, c2, . . . , ck−1} blocked.766

A valid (c−1)-configuration Fc−1 consists of at least Tc−1

2 valid (c−1)-trees,
where

Tc−1 =
α

(4c)c−1
· n1−

∑c−1
i=1

2(c−i)
c(c−1) = O(1).

Therefore, by choosing α sufficiently large, we can guarantee that Fc−1 consists767

of at least 2(c+ 1) valid (c− 1)-trees.768

Because Fc−1 is valid, half of its (c+1)-trees are valid, i.e., it consists of at769

least (c+1) valid (c−1)-trees. Because each of these trees has a color assigned770

to it, among them at least two valid (c− 1)-trees τ and τ ′ have the same color771

assigned to them. Since Fc−1 is a valid (c−1)-configuration, Lemma 10 implies772

that each valid (c− 1)-tree in Fc−1 has colors {c1, . . . , cc−2} blocked. Let cc−1773

denote the color assigned to τ and τ ′.774

Note that the roots of τ and τ ′ have color cc−1 blocked by Observation 2.775

Moreover, since both τ and τ ′ have colors {c1, . . . , cc−2} blocked, we conclude776

that their roots have the same color.777

To construct a c-tree, we consider these 2 · n
2(c−c)
c(c−1) = 2 valid (c − 1)-trees778

and add an edge connecting their roots. Since the roots of τ and τ ′ have the779

same color, A needs to recolor one of them, say r. However, to recolor r with780

color ci, it must recolor each child of r with color ci. That is, in the core i-tree781
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rooted at r, r ends with no children of color ci. Since this i-tree has color ci782

assigned to it by Lemma 7, this makes the core i-tree rooted at r invalid and783

triggers a reset. Therefore, every time we reach a c-configuration we guarantee784

that a reset is triggered.785

Theorem 5 Let c be a constant. For any sufficiently large integers n and α786

depending only on c, and any m = Ω(n) sufficiently large, there exists a forest787

F with αn vertices, such that for any recoloring algorithm A, there exists a788

sequence of m updates that forces A to perform Ω(m·n 2
c(c−1) ) vertex recolorings789

to maintain a c-coloring of F .790

Proof Use the construction described in this section until m updates have been791

performed. Let m′ ≤ m be the number of edge insertions during this sequence792

of m updates. Notice that m′ ≥ m/2 as an edge can only be deleted if it was793

first inserted and we start with a graph having no edges.794

During the construction, A can be charged with Ω(n
2

c(c−1) ) vertex recol-795

orings per wasted edge insertion by Lemma 9. Because the graph in our con-796

struction consists of at most O(n) edges at all times, at most O(n) of the797

performed edge insertions are non-wasted. Since every other edge insertion is798

wasted during a reset, we know that A recolored Ω((m′−n) ·n 2
c(c−1) ) vertices.799

Because m′ ≥ m/2 and since m = Ω(n), our results follows.800

5 Conclusion801

In this paper we introduced the first method for recoloring few vertices so as802

to maintain a proper coloring of a large graph with theoretical guarantees.803

These results give rise to a number of open problems. The obvious one being804

to close the gap between the upper bounds achieved by our algorithms and the805

lower bound construction. This question is open even for the case of dynamic806

forests. It is also worth investigating if a similar lower bound construction can807

give improved lower bounds for graphs with a higher chromatic number.808

Another thing to note is that our algorithms use the maximum chromatic809

number. This is undesirable when the graph starts with high chromatic num-810

ber, but after a number of operations has far lower chromatic number, for811

example because a number of edges of a large clique are deleted. In this case,812

an upper bound on the number of colors and recolorings that uses the current813

chromatic number instead of the maximum would be better.814

Finally, there are a number of different models to consider. For example,815

can we improve the algorithms when we support only a subset of the opera-816

tions, such as only vertex insertion? A number of operations can be simulated817

using the other operations (for example, vertex removal can be effectively818

achieved by removing all edges to the vertex and ignoring it in the rest of819

the execution), however this changes the number of operations we execute,820

possibly allowing fewer recolorings per operation. Similarly, it is interesting to821

see what happens when we allow different operations, such as edge flips on822

triangulations or edge slides for trees?823



Dynamic Graph Coloring 23

References824

1. Baswana, S., Gupta, M., Sen, S.: Fully dynamic maximal matching in O(logn) update825

time. SIAM J. on Comp. 44(1), 88–113 (2015)826

2. Baswana, S., Khurana, S., Sarkar, S.: Fully dynamic randomized algorithms for graph827

spanners. ACM Trans. on Alg. 8(4), 35 (2012)828

3. Bentley, J.L., Saxe, J.B.: Decomposable searching problems I: static-to-dynamic trans-829

formation. J. Alg. 1(4), 301–358 (1980)830

4. Borowiecki, P., Sidorowicz, E.: Dynamic coloring of graphs. Fundamenta Informaticae831

114(2), 105–128 (2012)832

5. Coudert, O.: Exact coloring of real-life graphs is easy. In: Proc. 34th Design Autom.833

Conf., pp. 121–126. ACM (1997). DOI 10.1145/266021.266047834

6. Demetrescu, C., Eppstein, D., Galil, Z., Italiano, G.F.: Dynamic graph algorithms. In:835

M.J. Atallah, M. Blanton (eds.) Algorithms and Theory of Computation Handbook.836

Chapman & Hall/CRC (2010)837

7. Demetrescu, C., Finocchi, I., Italiano, P.: Dynamic graphs. In: D. Mehta, S. Sahni (eds.)838

Handbook on Data Structures and Applications, Computer and Information Science.839

CRC Press (2005)840

8. Dutot, A., Guinand, F., Olivier, D., Pigné, Y.: On the decentralized dynamic graph-841
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