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Abstract. In this paper, we introduce a variation of the well-studied1

Yao graphs. Given a set of points S ⊂ R2 and an angle 0 < θ ⩽ 2π, we2

define the continuous Yao graph cY (θ) with vertex set S and angle θ as3

follows. For each p, q ∈ S, we add an edge from p to q in cY (θ) if there4

exists a cone with apex p and aperture θ such that q is a closest point5

to p inside this cone.6

We study the spanning ratio of cY (θ) for different values of θ. Using a7

new algebraic technique, we show that cY (θ) is a spanner when θ ⩽ 2π/3.8

We believe that this technique may be of independent interest. We also9

show that cY (π) is not a spanner, and that cY (θ) may be disconnected10

for θ > π, but on the other hand is always connected for θ ⩽ π. Further-11

more, we show that cY (θ) is a region-fault-tolerant geometric spanner12

for convex fault regions when θ < π/3. For half-plane faults, cY (θ) re-13

mains connected if θ ⩽ π. Finally, we show that cY (θ) is not always14

self-approaching for any value of θ.15
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1 Introduction16

Let S be a set of points in the plane. The complete geometric graph with vertex17

set S has a straight-line edge connecting each pair of points in S. Because the18

complete graph has quadratic size in terms of number of edges, several methods19

for “approximating” this graph with a graph of linear size have been proposed.20

A geometric t-spanner G of S is a spanning subgraph of the complete geo-21

metric graph of S with the property that for all pairs of points p and q of S, the22

length of the shortest path between p and q in G is at most t times the Euclidean23

distance between p and q.24

The spanning ratio of a spanning subgraph is the smallest t for which this25

subgraph is a t-spanner. For a comprehensive overview of geometric spanners26

and their applications, we refer the reader to the book by Narasimhan and Smid27

[15].28

A simple way to construct a t-spanner is to first partition the plane around29

each point p ∈ S into a fixed number of cones10 and then add an edge connecting30

p to a closest vertex in each of its cones. These graphs have been independently31

introduced by Flinchbaugh and Jones [11] and Yao [17], and are referred to32

as Yao graphs in the literature. It has been shown that Yao graphs are good33

approximations of the complete geometric graph [7, 3, 6, 5, 8, 10, 4].34

We denote the Yao graph defined on S by Yk, where k is the number of cones,35

each having aperture θ = 2π/k. Clarkson [7] was the first to remark that Y12 is36

a 1 +
√
3-spanner in 1987. Althöfer et al. [3] showed that for every t > 1, there37

is a k such that Yk is a t-spanner. For k > 8, Bose et al. [6] showed that Yk38

is a geometric spanner with spanning ratio at most 1/(cos θ − sin θ). This was39

later strengthened to show that for k > 6, Yk is a 1/(1− 2 sin(θ/2))-spanner [5].40

Damian and Raudonis [8] proved a spanning ratio of 17.64 for Y6, which was later41

improved by Barba et al. to 5.8 [4]. The same authors also improved the spanning42

ratio of Yk for all odd values of k ⩾ 5 to 1/(1 − 2 sin(3θ/8)) [4]. In particular,43

they showed an upper bound on the spanning ratio for Y5 of 2 +
√
3 ≈ 3.74.44

Bose et al. [5] showed that Y4 is a 663-spanner. For k < 4, El Molla [10] showed45

that there is no constant t such that Yk is a t-spanner.46

Yao graphs are based on the implicit assumption that all points use identical47

cone orientations with respect to an extrinsic fixed direction. From a practical48

point of view, if these points represent wireless devices and edges represent com-49

munication links for instance, the points would need to share a global coordinate50

system to be able to orient their cones identically. Potential absence of global51

coordinate information adds a new level of difficulty by allowing each point to52

spin its cone wheel independently of the others. In this paper we take a first53

step towards reexamining Yao graphs in light of intrinsic cone orientations, by54

introducing a new class of graphs called continuous Yao graphs.55

Given an angle 0 < θ ⩽ 2π, the continuous Yao graph with angle θ, denoted56

by cY (θ), is the graph with vertex set S, and an edge connecting two points57

p and q of S if there exists a cone with angle θ and apex p such that q is a58

10 The orientation of the cones is the same for all vertices.
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closest point to p inside this cone. In contrast with the classical construction of59

Yao graphs, for the continuous version the orientation of the cones is arbitrary.60

One can imagine rotating a cone with angle θ around each point p ∈ S and61

connecting it to each point that becomes closest to p inside the cone during this62

rotation. To simplify our proofs we assume general position, in the sense that no63

two points lie at the same distance from any point in S.64

In contrast with the Yao graph, the continuous Yao graph has the property65

that cY (θ) ⊆ cY (γ) for any θ ⩾ γ. This property provides consistency as the66

angle of the cone changes and could be useful in potential applications requiring67

scalability. Another advantage of continuous Yao graphs over regular Yao graphs68

is that they are invariant under rotations of the input point set. However, unlike69

Yao graphs that guarantee a linear number of edges, continuous Yao graphs70

may have a quadratic number of edges in the worst case. (Imagine, for instance,71

the input points evenly distributed on two line segments that meet at an angle72

α < π. For any θ < α, cY (θ) includes edges connecting each point on one line73

segment to each point on the other line segment.)74

Before summarizing our results, we introduce two more definitions. Let G75

be a geometric graph with vertex set S. For any pair of vertices s, t ∈ S, a76

path from s to t in G is called self-approaching if, for every point q on the path77

(not necessarily a vertex), a point moving continuously on the path from s to q78

never gets further away from q. The graph G is self-approaching if it contains a79

self-approaching path between every pair of vertices.80

For any region F in the plane, we define G ⊖ F to be the remaining graph81

after removing all vertices of G that lie inside F and all edges of G that intersect82

F . Given a set F of regions in the plane, we say that G is an F-fault tolerant83

t-spanner if, for any region F ∈ F , the graph G⊖ F is a t-spanner for KS ⊖ F ,84

where KS is the complete geometric graph on S.85

In this paper we study three properties of continuous Yao graphs: the span-86

ning property, the self-approaching property and the region-fault tolerance prop-87

erty. In Section 2, we show that cY (θ) has spanning ratio at most 1/(1 −88

2 sin(θ/4)) when θ < 2π/3. However, the argument used in this section breaks89

when θ = 2π/3. To deal with this case, we introduce a new algebraic technique90

based on the description of the regions where induction can be applied. To the91

best of our knowledge, this is the first time that algebraic techniques are used92

to bound the spanning ratio of a graph. As such, our technique may be of inde-93

pendent interest. In Section 3, we use this technique to show that cY (2π/3) is94

a 6.0411-spanner. In Section 4, we study the case when θ > 2π/3. Using ellip-95

tical constructions, we are able to show that cY (π) is not a t-spanner, for any96

constant t ≥ 1. While the algebraic techniques presented in Section 3 appear to97

extend beyond 2π/3, it remains open whether or not there is a constant t ≥ 198

such that cY (θ) with angle 2π/3 < θ < π is a t-spanner. We also study the99

connectivity of cY (θ) and show that cY (θ) is connected provided that θ ⩽ π,100

although for θ > π, there exist point sets for which cY (θ) is not connected. We101

study the fault-tolerancy of cY (θ) in Section 5, and finally we show that it is102

not a self-approaching graph in Section 6.103
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2 Continuous Yao for narrow cones104

In this section, we study the spanning ratio of cY (θ) for θ < 2π/3. In this case,105

we make use of an inductive proof similar to those used to bound the spanning106

ratio of Yao graphs [4].107

Lemma 1. [Lemma 1 of [4]] Let a, b and c be three points such that |ac| ⩽ |ab|
and ∠bac ⩽ α < π. Then

|bc| ⩽ |ab| − (1− 2 sin(α/2)) |ac| .

Given two points a and b of cY (θ), let Cab be the cone with apex a and b on108

its angle bisector. The cone Cba is defined analogously.109

Theorem 1. The graph cY (θ) has spanning ratio at most 1/(1−2 sin(θ/4)) for110

0 < θ < 2π/3.111

Proof. We need to show that there exists a path of length at most 1/(1 −112

2 sin(θ/4))|ab| between any two vertices a and b. We prove this by induction113

on the distance |ab|. In the base case a and b form the closest pair. Hence, the114

edge ab is added by any cone of a that contains b, as no other vertex can be at115

the same distance (by our assumption that distances from a vertex to all other116

vertices are unique) or closer to a.117

For the inductive step, we assume that the theorem holds for any two vertices118

whose distance is less than |ab|. If the edge ab is in the graph, the proof is119

finished, so assume that this is not the case. That means that there is a vertex120

closer to a in every cone with apex a that contains b. In particular, this also121

holds for the cone Cab. Let na be the vertex that is closest to a in Cab. Since122

Cab has aperture θ, the angle ∠naab is at most θ/2, and Lemma 1 gives us123

that |bna| ⩽ |ab| − (1− 2 sin(θ/4))|ana|. Note that since θ < 2π/3, we have that124

θ/4 < π/6, which means that 1−2 sin(θ/4) > 0 and hence |bna| < |ab|. Therefore125

our inductive hypothesis applies to na and b, which tells us that there exists a126

path between them of length at most 1/(1 − 2 sin(θ/4))|bna|. Adding the edge127

ana to this path yields a path between a and b of length at most128

|ana|+
1

1− 2 sin(θ/4)
|bna| ⩽

|ana|+
1

1− 2 sin(θ/4)
(|ab| − (1− 2 sin(θ/4))|ana|) =

|ana|+
1

1− 2 sin(θ/4)
|ab| − |ana| =

1

1− 2 sin(θ/4)
|ab|.

This completes the proof.129

130
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nb can lie are depicted in light blue and
light red, respectively.

Fig. 1.

3 The graph cY (2π/3) is a spanner131

Let t ≈ 6.0411 be the largest root of the polynomial p(t) = −25 + 90t− 39t2 −132

246t3 + 363t4 + 138t5 − 589t6 + 216t7 + 291t8 − 204t9 − 84t10 + 6t11 + 2t12. In133

this section, we prove that cY (2π/3) is a t-spanner. That is, we show that for134

any two points a and b in cY (2π/3), there exists a path from a to b of length at135

most t |ab|. The way we derive this polynomial will become clear by the end of136

this section.137

The proof proceeds by induction on the rank of the distance |ab| among all138

distances between vertices of cY (2π/3). In the base case, a and b define the139

closest pair among the points of cY (2π/3). Hence, the edge ab is added by any140

cone of a that contains b, as no other vertex can be at the same distance (by141

our assumption that distances from a vertex to all other vertices are unique) or142

closer to a.143

We spend the remainder of this section proving the inductive step. Assume144

that the result holds for any two points whose distance is smaller than |ab|.145

Without loss of generality, assume that a = (0, 0) and b = (1, 0), so that |ab| =146

1. We start with a simple observation that follows from the general position147

assumption. Define Iab = {p ∈ R2 : |ap|+ t|pb| ⩽ t|ab|} be the inductive set of a148

with respect to b (see Fig. 1(a)).149

Symmetrically, let Iba = {p ∈ R2 : |bp| + t|pa| ⩽ t|ba|} be the inductive set150

of b with respect to a.151

Lemma 2. The inductive set Iab is contained in the disk D with center b and152

radius |ab|. Moreover, any point p ̸= a on the boundary of D lies outside of Iab.153

Proof. Let p ̸= a be a point in Iab. Because |ap| > 0, we have that t|pb| <154

|ap| + t|pb| ⩽ t|ab|. Consequently, p lies strictly inside the circle with center b155
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and radius |ab|.156

157

Recall that Cab denotes the cone with apex a and b on its angle bisector. Let158

na and nb be the neighbors of a and b in cones Cab and Cba, respectively. The159

inductive set Iab satisfies the inductive property : if na ∈ Iab, then there is a path160

from a to b with length at most t|ab|. Indeed, because na ∈ Iab, Lemma 2 implies161

that |nab| < |ab|. Therefore, we can apply the induction hypothesis and obtain162

a path from na to b of length at most t|nab|. Because na ∈ Iab, adding the edge163

ana to this path yields a path from a to b of length at most |ana|+ t|nab| ⩽ t|ab|164

as desired. The inductive set Iba has an analogous inductive property.165

Note that if na ∈ Iab or nb ∈ Iba, then we are done by the inductive property.
Thus, we assume that na ̸∈ Iab and nb ̸∈ Iba. Since a = (0, 0) and b = (1, 0), the
set of points on the boundary of Iab satisfy

((−2 + x)x+ y2)2 t4 + (x2 + y2)2

− 2(2 + (−2 + x)x+ y2)(x2 + y2) t2 = 0, (1)

which defines a quartic curve in x and y. Let c and c∗ be the intersection points166

of the boundaries of Cab and Cba and assume that c lies above c∗; see Fig. 1(b).167

Because the triangles△abc and△abc∗ are equilateral, we have c = (1/2,
√
3/2)

and c∗ = (1/2,−
√
3/2). Let

u =

(
t(t− 2)

2(t2 − 1)
,

√
3 t(t− 2)

2(t2 − 1)

)
≈ (0.3438, 0.5956) (2)

be the intersection point of the boundary of Iab with the segment ac. Symmet-
rically, let

w =

(
1− t(t− 2)

2(t2 − 1)
,

√
3 t(t− 2)

2(t2 − 1)

)
≈ (0.6561, 0.5956)

be the intersection of the boundary of Iba with the segment bc. There are two168

cases to deal with. Either (i) na and nb lie on the same side of the x-axis or (ii)169

they lie on opposite sides.170

Given three points x, y and y′ such that |xy| = |xy′|, we denote by C(x, y, y′)171

the circular sector with apex x that is contained between xy and xy′, counter-172

clockwise.173

Case (i) Assume first that na and nb both lie above the x-axis. Because na174

and nb lie in the circular sectors C(a, b, c) and C(b, c, a), respectively, we have that175

|nanb| < |ab|. Therefore, we can apply induction on nanb to obtain a path φnanb
176

from na to nb of length at most t|nanb|. Consider the path φab = ana∪φnanb
∪nbb177

from a to b. We show that the length of φab is at most t|ab| = t. To this end, we178

provide a bound on the length of the segment nanb.179

Lemma 3. In the configuration of Case (i) depicted in Fig. 1(b), |nanb| ⩽180

|uc| = |wc| = |uw|.181
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Proof. Recall that na must lie in the circular sector C(a, b, c). Moreover, because182

we assumed that na lies outside of Iab, na lies in the region C(a, b, c) \ Iab.183

Let Na be the convex hull of C(a, b, c) \ Iab and let v be the intersection point184

between Iab and the circular arc of C(a, b, c); see Fig. 2. Analogously, let v′ be the185

intersection between Iba and the circular arc of C(b, c, a). Then, Na is bounded186

by the segments uc, uv and the circular arc joining v and c with center a and187

radius 1. We define Nb analogously as the convex hull of C(b, c, a) \ Iba.188

IabIba

u w

a

c

b

Nb Na

vv′

Fig. 2. The neighbor regions of a and b in Case (i).

Because na ∈ Na and nb ∈ Nb, we get an upper bound on the distance189

between na and nb by computing the maximum distance between a point in Na190

and a point in Nb. We refer to two points realizing this distance as a maximum191

Na-Nb-pair. Since the Euclidean distance function is convex and since both Na192

and Nb are convex sets, a maximum Na-Nb-pair must have one point on the193

boundary of Na and another on the boundary of Nb.194

In fact, we claim that we need only to consider the boundaries of the triangles195

△(u, v, c) ⊂ Na and △(w, c, v′) ⊂ Nb to find a maximum Na-Nb-pair. To prove196

this claim, consider the lune defined by Na \ △(u, v, c). For any point x in this197

lune, consider its farthest point f(x) in Nb and notice that the circle with center198

on f(x) that passes through x leaves either c or v outside (or both). This is199

because the radius of this circle is smaller than the radius of the circular arc200

on the boundary of Na; see Fig. 2. Therefore, either c or v is farther than x201

from f(x) and hence, the maximum Na-Nb-pair cannot have an endpoint in this202

lune. That is, the maximum Na-Nb-pair includes a point on the boundary of the203

triangle △(u, v, c). The same argument holds for △(w, c, v′) and Nb proving our204

claim.205

As we know the coordinates of the vertices of △(u, v, c) and △(w, c, v′), we206

can verify that uc, cw and uw are all maximum Na-Nb-pairs (notice that this is207

true for any t > 1).208

209

Because the length of nanb is at most |uc|, and since |ana| and |bnb| are
both at most 1, the length of the path φab = ana ∪ φnanb

∪ nbb is at most
2 + t|uc| by Lemma 3. We now prove that 2 + t|uc| ⩽ t|ab|. Since a = (0, 0),

7



b = (1, 0), c = (1/2,
√
3/2) and |au| = µ = t(t−2)

t2−1 , the inequality 2+ t|uc| ⩽ t|ab|
is equivalent to

2 + t

(
1− t(t− 2)

t2 − 1

)
⩽ t

which is true, provided that t3−4t2+2 ⩾ 0 and t > 1. Since t = 6.0411 is bigger210

than the largest real root of x3 − 4x2 + 2, we are done. Therefore, whenever we211

are in the configuration of Case (i), we can apply induction and obtain a path212

φab from a to b of length at most 2 + t|uc| ⩽ t|ab|.213

Case (ii) The proof of Case (ii) is a bit more involved but follows the same214

line of reasoning as the proof of Case (i). If na and nb lie on different sides of215

ab, we can assume without loss of generality that na lies below the x-axis while216

nb lies above it. Recall that c∗ is the intersection of the boundaries of Cab and217

Cba that lies below the x-axis.218

b)

b

u

c

w

a

Iba Iab

c∗ v∗

ψ

b

u

c

w

a

Iba Iab

c∗ v∗

ψ

c′

u′

C ′aba)

Fig. 3. a) Point v∗ and angle ψ = ∠v∗ac∗ b) Cone C′
ab is obtained by rotating Cab

counter-clockwise ψ degrees.

Since ab is not an edge of cY (2π/3), na must lie inside C(a, c∗, b). Let v∗ be
the intersection of the boundary of Iab with the circular arc of C(a, c∗, b); see
Fig. 3. This intersection point always exists because b lies inside Iab and c∗ lies
outside of Iab by Lemma 2. The circular arc of C(a, c∗, b) is part of the circle
defined by x2 + y2 = 1. Therefore, from (1),

v∗ =

(
t2 + 2t− 1

2t2
,− t− 1

2t2

√
(t+ 1)(3t− 1)

)
(3)

≈ (0.6518,−0.7583) .
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Let ψ = ∠v∗ac∗; see Fig. 3a. Since ψ = π/3−∠bav∗, from (3) we have tan(ψ)

= tan(π/3− ∠bav∗) = tan(π/3)− tan(∠bav∗)
1 + tan(π/3) tan(∠bav∗)

=

√
3
(
t2 + 2t− 1

)
− (t− 1)

√
(t+ 1)(3t− 1)

t2 + 2t− 1 +
√
3(t− 1)

√
(t+ 1)(3t− 1)

(4)

from which tan(ψ) ≈ 0.1885 and hence, ψ ≈ 10.6800◦. Consider the cone C ′
ab219

(respectively the point c′) obtained by rotating Cab (respectively c) counter-220

clockwise around a by an angle ψ. Note that C(a, v∗, b) ⊂ Iab; see Fig. 3b. Let221

n′a be the neighbor of a inside C ′
ab. If n

′
a lies inside Iab, we are done by the222

inductive property. Therefore, assume that n′a ̸∈ Iab. Because C(a, v∗, b) ⊂ Iab,223

n′a cannot lie inside C(a, v∗, b) and hence, n′a must lie above the x-axis. Let N ′
a224

be the convex hull of C(a, c′, b) \ Iab. Then n′a must lie inside of N ′
a; see Fig. 4225

for an illustration. As in Case (i), nb must lie inside of the region Nb being the226

convex hull of C(b, c, a) \ Iba.227

Let u′ ∈ ac′ be the intersection of the boundaries of C ′
ab and Iab (see Fig. 4).

From (4), the equation of the line supported by a and c′ is

y = tan(π/3 + ψ)x =
tan(π/3) + tan(ψ)

1− tan(π/3) tan(ψ)
x

=

√
3
(
t2 + 2t− 1

)
+ (t− 1)

√
(t+ 1)(3t− 1)

− (t2 + 2t− 1) +
√
3(t− 1)

√
(t+ 1)(3t− 1)

x .

Thus, the x-coordinate of u′ is given by the expression

1

4t2(t2 − 1)

(
5t4 − 2t3 + 2t2 + 2t− 1

−
√
3(t− 1)(t2 + 4t− 1)

√
(t+ 1)(3t− 1)

)
and the x-coordinate of c′ is given by the expression

−(t2 + 2t− 1) +
√
3(t− 1)

√
(t+ 1)(3t− 1)

4t2
.

Thus, u′ ≈ (0.1124, 0.3207) and c′ ≈ (0.3308, 0.9436).228

A proof similar to that of Lemma 3 yields the following result.229

Lemma 4. In the configuration of Case (ii), the distance between n′a and nb is230

at most |u′c|.231

Proof. Because n′a ∈ N ′
a and nb ∈ Nb, we obtain an upper bound on the distance232

between n′a and nb by computing the maximum distance between a point in N ′
a233

and a point in Nb. Using the same arguments as in the proof of Lemma 3, we234

can show that the maximum distance is achieved by a point on the boundary of235

N ′
a and a point on the boundary of Nb. We refer to a pair of points that realizes236

this maximum distance as a maximum N ′
a-Nb-pair.237
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One can verify that every point in Nb is farther from u′ than from any other238

point in N ′
a. Therefore, it suffices to find the point farthest from u′ in Nb. Note239

also that the circle centered at u′ that passes through any point in the circular240

arc of Nb does not contain c. Therefore, it suffices to find the point farther from241

u′ in the boundary of the triangle △(w, c, v′) ⊂ Nb.242

As we have exact expressions for u′ and for the vertices on the boundary of243

△(w, c, v′), we can verify that the maximum N ′
a-Nb-pair is found when when244

n′a = u′ and nb = c, proving our result.245

246

By Lemma 4, the distance between n′a and nb is at most |u′c| < 1. Therefore,247

we can apply the induction hypothesis to obtain a path φn′
anb

from n′a to nb of248

length at most t|n′anb|.249

Let φab = an′
a ∪ φn′

anb
∪ nbb be a path from a to b. Similarly to what we250

observed in Case (i), the length of φab is at most 2 + φn′
anb

⩽ 2 + t|u′c| by251

Lemma 4.252

We now prove that 2 + t|u′c| ⩽ t|ab|. Since a = (0, 0), b = (1, 0) and c =253

(1/2,
√
3/2), using the exact expressions for u′ we find that 2 + t|u′c| ⩽ t|ab|,254

provided that p(t) = −25+ 90t− 39t2 − 246t3 +363t4 +138t5 − 589t6 +216t7 +255

291t8 − 204t9 − 84t10 +6t11 +2t12 ⩾ 0. Because we chose t ≈ 6.0411 to be equal256

to the largest real root of p, we infer that 2+ t|u′c| ⩽ t|ab|. Therefore, whenever257

we are in the configuration of Case (ii), we can apply induction and obtain a258

path φab from a to b of length at most 2 + t|u′c| ⩽ t|ab|.259

In summary, given any two points a and b of cY (2π/3) and a constant t ≈260

6.0411, we can construct a path from a to b which uses edges of cY (2π/3) and261

has length at most t|ab|. We obtain the following result.262

Theorem 2. The graph cY (θ) has spanning ratio at most 6.0411 if θ = 2π/3, or263

min
{
6.0411, 1

1−2 sin(θ/4)

}
if θ < 2π/3.264

u

c

w

a

Iab

c′

u′

C ′
ab

N ′
a

Nb

b

v
v′

Iba

Fig. 4. N ′
a, Nb and maximum N ′

a-Nb-pair u
′c.
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4 Larger angles265

Theorem 2 provides upper bounds for the spanning ratio of cY (θ) for values of266

θ ⩽ 2π/3. But what happens when θ is larger than 2π/3? The next result shows267

that if θ is very large, the graph can be disconnected.268

vP
P ′

Fig. 5. cY (θ) can be disconnected when θ > π.

Theorem 3. For θ > π, there are point sets for which cY (θ) is disconnected.269

Proof. Let θ = π + ε, for any ε > 0. Take a regular polygon P with interior270

angles of at least π − ε/2 radians, and let P ′ be a copy of P . Now place P and271

P ′ such that the distance between them is larger than the distance between two272

consecutive vertices on P (see Fig. 5). Consider a vertex v on P . The exterior273

angle at v is at most 2π− (π−ε/2) = π+ε/2 radians. As this is less than θ, any274

cone with apex v will include one of v’s neighbors on P . And since the distance275

between P and P ′ is larger than the distance between v and its neighbors, v will276

never connect to a vertex on P ′. As the choice of v was completely arbitrary,277

and P ′ is a duplicate of P , this implies that no edge of cY (θ) will connect P to278

P ′.279

280

Indeed, π is the true breaking point here: the continuous Yao graph with281

θ ⩽ π is always connected.282

Theorem 4. For θ ⩽ π, the continuous Yao graph cY (θ) is connected.283

Proof. Consider a set Cr of cones whose union is exactly the right half-plane.284

Such a set can be constructed by starting with the cone whose left boundary285

aligns with the positive y-axis, and rotating by π − θ degrees until the right286

boundary aligns with the negative y-axis. Since θ ⩽ π, this set is non-empty.287

Now, if a vertex v is not a rightmost vertex, there is a cone C in Cr that is not288

empty. Since C is completely contained in the right half-plane, the closest vertex289

in C must lie further to the right than v. Thus, there is an edge connecting v290

to a vertex to its right. Since we only have finitely many points, by repeating291

this, we obtain a path from any vertex to a rightmost vertex. Finally, by slightly292
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1

r

p q

a) b) c) d)

Fig. 6. Establishing a lower bound for the spanning ratio of cY (θ) for large values of
θ.

rotating the right half plane at each rightmost point (so that it includes only293

rightmost vertices), we obtain a path connecting all rightmost vertices (if several294

rightmost vertices exist). Thus, by concatenating the paths from two arbitrary295

points a and b to rightmost vertices to the path connecting these rightmost ver-296

tices, we obtain a path between a and b.297

298

Next we show that there is no constant t such that cY (π) is a t-spanner.299

Theorem 5. The continuous Yao graph cY (π) is not a t-spanner, for any con-300

stant t ≥ 1.301

Proof. Consider two points p and q at unit distance. We will add points such302

that the shortest path between p and q in cY (π) is arbitrarily long. The con-303

struction is illustrated in Fig. 6. We place these additional points on an ellipsis304

that is obtained from the circle with diameter pq by stretching it vertically by305

a factor of 2r, for a fixed real r ≥ 1. (Fig. 6a). We start by placing four points,306

each at distance 1/2 from p or q (Fig. 6b). Then we place points at distance307

1/2 from these points, and so on, until the two chains meet (when the distance308

between the last point on the upwards chain from p and the symmetric point309

from q is less than 1/2: Fig. 6c).310

With these points, any half-plane through a vertex v that contains vertices311

on the other side of the ellipsis also contains a neighbor of v. As these neighbors312

are always closer (before the end of the chain), no diagonals are created. Thus313

cY (π) forms a convex polygon, following the contour of the ellipsis (Fig. 6d).314

As we increase r, the number of vertices on each chain grows. When the315

chains each have k vertices, the shortest path between p and q has length at316

least 2k/2 = k. Since the distance between p and q remains fixed, and we can317

make r arbitrarily large, there is no constant t such that cY (π) is a t-spanner.318

319

5 Fault-tolerance of cY (θ)320

One of the useful properties of a network is fault tolerance: intituively, if one321

or more network nodes or edges fail, the remaining graph should be a good322

12



network for the remaining nodes (vertices). In particular, a graph G = (S,E) is323

called a k-vertex fault-tolerant t-spanner [13] for S, denoted by (k, t)-VFTS, for324

a given real number t ⩾ 1 and positive integer k > 0, if for each set S′ ⊆ S with325

cardinality of at most k, the graph G\S′ is a t-spanner for S\S′. In addition, G326

is called a k-edge fault-tolerant t-spanner [13] for S, denoted by (k, t)-EFTS, if327

for each set E′ ⊆ E with cardinality at most k, the graph G\E′ is a t-spanner of328

KS\E′, where KS is the complete Euclidean graph on S. Levcopoulos et al. [13]329

were the first to consider the problem of constructing fault-tolerant spanners330

in Euclidean spaces efficiently. They proposed three algorithms for constructing331

k-vertex fault-tolerant spanners.332

In 2009, Abam et al. [1] introduced the concept of region-fault-tolerant span-333

ners for planar point sets. For a fault region F and a geometric graph G on a334

point set S, let G⊖ F be the remaining graph after removing the vertices of G335

that lie inside F and all edges that intersect F . For a set F of regions in the336

plane, an F-fault tolerant t-spanner is a geometric graph G on S such that for337

any region F ∈ F , the graph G⊖ F is a t-spanner of KS ⊖ F , where KS is the338

complete geometric graph on S. Abam et al. showed that, for any set of n points339

in the plane and any family C of convex regions, one can construct a C-fault340

tolerant spanner of size O(n log n) in O(n log2 n) time.341

In this section, we show that the continuous Yao graph cY (θ), with 0 < θ <342

π/3, is a C-fault-tolerant geometric t-spanner for t ⩾ 1
1−2 sin(θ/2) , where C is the343

family of all convex regions in the plane. Furthermore, we show that for every344

θ ⩽ π and every convex region C, cY (θ) ⊖ C is connected if and only if the345

complete graph KS ⊖ C is connected. Our proof relies on the following lemma346

by Abam et al. [1].347

Lemma 5 ([1]). A geometric graph G on S is a C-fault-tolerant t-spanner if348

and only if it is an H-fault-tolerant t-spanner, where C is the family of all convex349

regions in the plane and H is the family of all half-planes.350

Now, we prove the following theorem:351

Theorem 6. Let θ and t be real numbers, with 0 < θ < π/3 and t ⩾ 1
1−2 sin(θ/2) .352

For any point set S, the continuous Yao graph cY (θ) is a C-fault-tolerant geo-353

metric t-spanner, where C is the family of all convex regions in the plane.354

Proof. By Lemma 5, it is sufficient to prove that cY (θ) is an H-fault-tolerant355

geometric t-spanner, where H is the family of all half-planes. Let h be an arbi-356

trary half-plane in H. We must show that for each pair of points p, q ∈ S outside357

h, there is a t-path between p and q in cY (θ)⊖ h. The proof is by induction on358

the rank of the distance |pq|. For the base case, p and q form the closest pair359

in S ⊖ h, so pq must be in cY (θ) ⊖ h (because no other vertex is closer to p or360

equally close to p, by our assumption that distances from a vertex to all other361

vertices are unique).362

For the inductive step, suppose that cY (θ)⊖ h contains a t-path connecting363

each pair u, v ∈ S outside h with |uv| < |pq|. Assume without loss of generality364

that p is closer to h than q. Since p and q are outside h, there is a θ-cone Cp365

with apex at p such that q ∈ Cp and Cp does not intersect h (See Fig. 7).366
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p

r

qQ

C

h

Fig. 7. Illustrating of the proof of Theorem 6.

Let r be the closest point to p inside the cone Cp. Since θ < π/3, 1 −
2 sin(θ/2) > 0, and also since |pr| ⩽ |pq|, by Lemma 1 we have |rq| < |pq|.
Therefore, by the induction hypothesis, there is a t-path Q between r and q in
cY (θ)⊖h. Now consider the path P := {(p, r)}∪Q. Clearly the path P connects
p and q, and P is in cY (θ) ⊖ h. By Lemma 1, there is an upper bound on the
length of the path P , denoted by |P |, as follows:

|P | = |pr|+ |Q|
⩽ |pr|+ t|rq|
⩽ |pr|+ t (|pq| − (1− 2 sin(θ/2))|pr|)
= t|pq|+ (1− t(1− 2 sin(θ/2))) |pr|
⩽ t|pq|.

The last inequality follows since t ⩾ 1
1−2 sin(θ/2) . Thus, P is a t-path in cY (θ)⊖h367

between p and q. This completes the proof.368

369

In the remainder of this section, we study the connectivity of cY (θ) subject to370

convex region faults, which eliminate all vertices that fall within the region, and371

all edges that intersect the region. Since cY (θ) is a fault-tolerant spanner for372

θ < π/3, after a fault C, cY (θ)⊖ C is connected if the complete graph KS ⊖ C373

is connected. Here we show that, even though cY (θ) may no longer be a fault-374

tolerant spanner for π/3 ⩽ θ ⩽ π, it satisfies the connectivity property. We first375

prove the property for half-plane faults.376

Lemma 6. For any half-plane h and any 0 < θ ⩽ π, the graph cY (θ) ⊖ h is377

connected.378

Proof. Let t be a vertex outside h that is furthest from h. We show that every379

vertex outside h has a path to t. By concatenating the paths from different380

vertices, this gives a path between every pair of vertices outside h, proving the381

lemma.382
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Let v be a vertex outside h. If v is not furthest from h, consider a line L383

parallel to the boundary of h through v. Since there are vertices further from h384

than v, the half-plane bounded by L and not including h is non-empty, therefore385

it includes a non-empty θ-cone with apex v. The vertex u closest to v in this386

θ-cone is a neighbor of v in cY (θ) ⊖ h. By stepping to u and iterating this387

procedure, we get further and further away from h until we are at a vertex v′388

that is furthest from h.389

At this point, note that all vertices that are furthest from h must lie on a390

line ℓ parallel to h. If v′ ̸= t, consider the cone with apex v′ and one boundary391

alongside ℓ extending in the direction of t, that does not intersect h. Now rotate392

this cone very slightly to include t, but no vertex not on ℓ. The closest vertex393

in this cone is the next vertex on ℓ, in the direction of t. By stepping to this394

neighbour and iterating this procedure, we must eventually end up at t. This395

shows that cY (θ)⊖ h is connected.396

397

Theorem 7. For any convex region C and any θ ⩽ π, the graph cY (θ) ⊖ C is398

connected if and only if KS ⊖ C is connected, where KS is the complete graph399

on S.400

Proof. Let C be an arbitrary convex region. Since cY (θ) is a subgraph of KS ,401

cY (θ)⊖C is a subgraph of KS ⊖C. Therefore one direction is easy: connectivity402

of cY (θ) ⊖ C immediately implies connectivity of KS ⊖ C. We prove the other403

direction by showing that there exists a path in cY (θ)⊖C between every pair of404

vertices connected by an edge in KS ⊖ C. A concatenation of these paths then405

gives a path between every pair of vertices joined by a path in KS ⊖ C.406

Consider an edge uv in KS ⊖ C. Recall that a convex region fault removes407

all edges that intersect it, so the line segment uv does not intersect C. Since408

any two non-intersecting convex shapes can be separated by a line, there exists409

a half-plane h that contains C, but not u and v. By Lemma 6, cY (θ)⊖ h is con-410

nected, so there exists a path from u to v in cY (θ) that lies completely outside411

of h. Since C is contained in h, this path remains in cY (θ) ⊖ C. Thus, there412

is a path connecting any pair of endpoints of an edge in KS ⊖ C, proving the413

theorem.414

415

6 Continuous Yao graphs are not self-approaching416

In 2013, Alamdari et al. [2] introduced the concept of self-approaching and417

increasing-chord graph drawings. A geometric graph is self-approaching if there418

exists a self-approaching path from every vertex to every other vertex. A path419

from s to t is self-approaching if, for every point q on the path (not necessarily a420

vertex), a point moving along the path from s to q never gets further away from421

q. A path is increasing-chord if it is self-approaching in both directions, and a422

graph is increasing-chord if there is an increasing-chord path between every pair423

of vertices.424
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There has been significant interest in finding sparse self-approaching graphs425

for a given set of points in the plane [2, 9, 14]. One reason for this interest is426

that this automatically guarantees a good spanning ratio: the spanning ratio427

of any self-approaching graph is at most 5.3332 [12] and the spanning ratio of428

any increasing-chord graph is at most 2.094 [16]. Proximity graphs, such as Yao429

graphs, intuitively seem like natural candidates, but counter-examples have been430

found for most. In this light, it is natural to ask if there is any value of θ for which431

the continuous Yao graph is guaranteed to be self-approaching or increasing-432

chord. Figure 8 shows an example of a point set with four points {p, q, r, s} for433

which the Yao graph Y4 (with cones of aperture θ = π/2) is not self-approaching,434

but cY (θ) is self-approaching: the four points are vertices of a rhombus, slightly435

perturbed so that no two distances are equal. All four rhombus edges belong to436

both cY (π/2) and Y4; however, the shorter diagonal (pq in Figure 8) belongs to437

cY (π/2), but not to Y4. In the absence of the edge pq, a point moving along the438

edge pr on the way to q gets further away from q once it passes the midpoint439

of pr (and similarly for ps). This shows that Y4 is not self-approaching, and it440

can be easily verified that cY (π/2) is self-approaching for this point set. Next441

we show that this property does not always hold.442

p q

r

s

Fig. 8. A set of points where Y4 (the Yao graph with cones of aperture π/2) is not
self-approaching, but cY (π/2) is. The dashed edge is required for a self-approaching
path between p and q, but it is only part of cY (π/2).

Theorem 8. For every θ > 0, there is a set of points such that cY (θ) is not443

self-approaching.444

Proof. We prove the theorem for 0 < θ ⩽ 2π
3 . Since cY (α) ⊆ cY (β) when α ⩾ β,445

this suffices to prove the theorem for every θ > 0.446

To construct the point set, consider two points p = (0, 0) and q = (1, 0). Let447

C be a circle centered at the midpoint of the segment pq, with radius 1
2 . Let Dp448

and Dq be circles centered at p and q, respectively, with radius one (see Fig. 9).449

Let x and y be two points outside C and inside the lune Dp ∩ Dq, such that450

∠xpq < θ
2 and ∠ypq < θ

2 . Let x
′ and y′ be the mirror images of x and y with451

respect to the perpendicular bisector of pq.452
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Fig. 9. Illustrating of the proof of Theorem 8.

Now consider cY (θ) on this point set. Since ∠xpy = ∠x′qy′ < θ, cY (θ) does453

not contain the edge pq, because any θ-cone with apex p that contains pq must454

contain at least one of x and y, which are closer to p than q; and similarly, any455

θ-cone with apex q that contains pq must contain at least one of x′ and y′, which456

are closer to q than p. Moreover, according to the Thales’ theorem, none of the457

edges px, py, px′, or py′ can be part of a self-approaching path from p to q, since458

these edges all intersect the circle C at their closest point to q before leaving C,459

thereby moving further away from q. Since these are the only available edges in460

cY (θ), there is no self-approaching path between p and q in cY (θ). This implies461

that cY (θ) is not self-approaching.462

463

7 Conclusions464

We introduced a new class of proximity graphs, called continuous Yao graphs,465

and studied their spanning, fault-tolerance and self-approaching properties. We466

showed that, for any angle 0 < θ ≤ 2π/3, the continuous Yao graph cY (θ) is467

a spanner, whereas for π ⩽ θ ⩽ 2π, it is not. Furthermore, we showed that468

cY (θ) is connected for 0 < θ ≤ π, and possibly disconnected for θ > π. We also469

studied these properties in the region-fault-tolerance model, and showed that470

cY (θ) remains a spanner for convex fault regions when θ < π/3 and remains471

connected for all θ ≤ π.472

The question whether cY (θ) is a spanner for 2π/3 < θ < π remains open.473

While the construction in the proof of Theorem 5 does give a lower bound on474

the spanning ratio of the continuous Yao graphs in this range, this bound seems475

hard to express in terms of θ. For the upper bound, the proof from Section 3476

appears to extend beyond 2π/3, but we have not yet determined where the477

breaking point lies. In addition, the question whether cY (θ) is a C-fault-tolerant478

geometric spanner with constant spanning ratio remains open for π
3 ⩽ θ ⩽ π.479

Another alternative to the standard Yao graph that maintains a linear num-480

ber of edges in the output graph is one that permits each point to select an481
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initial orientation of the entire cone wheel (as opposed to sweeping one cone482

continuously around the apex point), or even of each cone individually. From483

Theorem 5 we obtain as a corollary that there are point sets for which the Yao484

graph Y2 is not a spanner, regardless of the orientation of the cones. However,485

Theorem 2 leaves open the possibility that Y3 and above are spanners under486

these conditions.487
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3. I. Althöfer, G. Das, D. Dobkin, D. Joseph, and J. Soares. On sparse spanners of498

weighted graphs. Discrete & Computational Geometry, 9(1):81–100, 1993.499

4. L. Barba, P. Bose, M. Damian, R. Fagerberg, W. L. Keng, J. O’Rourke, A. van500

Renssen, P. Taslakian, S. Verdonschot, and G. Xia. New and improved spanning501

ratios for Yao graphs. Journal of computational geometry, 6(2):19–53, 2015.502
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