Constrained Routing Between Non-Visible
Vertices*

Prosenjit Bose!, Matias Korman?, André van Renssen®#, and
Sander Verdonschot!

1 School of Computer Science, Carleton University, Ottawa, Canada.
jit@scs.carleton.ca, sander@cg.scs.carleton.ca
2 Tohoku University, Sendai, Japan. mati@dais.is.tohoku.ac.jp
3 National Institute of Informatics, Tokyo, Japan. andre@nii.ac.jp
4 JST, ERATO, Kawarabayashi Large Graph Project.

Abstract. Routing is an important problem in networks. We look at
routing in the presence of line segment constraints (i.e., obstacles that
our edges are not allowed to cross). Let P be a set of n vertices in the
plane and let S be a set of line segments between the vertices in P,
with no two line segments intersecting properly. We present the first
1-local O(1)-memory routing algorithm on the wisibility graph of P with
respect to a set of constraints S (i.e., it never looks beyond the direct
neighbours of the current location and does not need to store more than
O(1)-information to reach the target). We also show that when routing on
any triangulation 7" of P such that S C T, no o(n)-competitive routing
algorithm exists when only considering the triangles intersected by the
line segment from the source to the target (a technique commonly used
in the unconstrained setting). Finally, we provide an O(n)-competitive
1-local O(1)-memory routing algorithm on any such 7', which is optimal
in the worst case, given the lower bound.

1 Introduction

Routing is a fundamental problem in graph theory and networking. What makes
this problem challenging is that often in a network the routing strategy must be
local, i.e. the routing algorithm must decide which vertex to forward a message
to based solely on knowledge of the current vertex, its neighbors and a constant
amount of additional information (such as the source and destination vertex).
Routing algorithms are considered geometric when the graph that is routed on
is embedded in the plane, with edges being straight line segments connecting
pairs of vertices and weighted by the Euclidean distance between their end-
points. Geometric routing algorithms are important in wireless sensor networks

* P. B. is supported in part by NSERC. M. K. was partially supported by MEXT
KAKENHI Nos. 12H00855, 15H02665, and 17K12635. A. v. R. was supported by
JST ERATO Grant Number JPMJER1305, Japan. S. V. is supported in part by
NSERC, the Ontario Ministry of Research and Innovation, and the Carleton-Fields
Postdoctoral Award.

(see [11] and [12] for surveys of the area) since they offer routing strategies that
use the coordinates of the vertices to guide the search, instead of the more
traditional routing tables.

Most of the research on this problem has focused on the situation where
the network is constructed by taking a subgraph of the complete Euclidean
graph, i.e. the graph that contains an edge between every pair of vertices and the
length of this edge is the Euclidean distance between the two vertices. We study
this problem in a more general setting with the introduction of line segment
constraints S. Specifically, let P be a set of n vertices in the plane and let S
be a set of line segments between the vertices in P, with no two line segments
properly intersecting (i.e., anywhere except at the endpoints). Two vertices u and
v can see each other if and only if either the line segment uv does not properly
intersect any constraint or wwv is itself a constraint. If two vertices v and v can see
each other, the line segment uv is a visibility edge. The wvisibility graph of P with
respect to a set of constraints S, denoted Vis(P,S), has P as vertex set and all
visibility edges as edge set. In other words, it is the complete graph on P minus
all non-constraint edges that properly intersect one or more constraints in S.

This setting has been studied extensively in the context of motion planning
amid obstacles. Clarkson [8] was one of the first to study this problem. He
showed how to construct a (1 + €)-spanner of Vis(P,S) with a linear number
of edges. A subgraph H of G is called a t-spanner of G (for ¢ > 1) if for each
pair of vertices v and v, the shortest path in H between u and v has length at
most ¢ times the shortest path between v and v in G. The smallest value t for
which H is a t-spanner is the spanning ratio or stretch factor of H. Following
Clarkson’s result, Das [9] showed how to construct a spanner of Vis(P,S) with
constant spanning ratio and constant degree. Bose and Keil [4] showed that the
Constrained Delaunay Triangulation is a 2.42-spanner of Vis(P,S). Recently, the
constrained half-Og-graph (which is identical to the constrained Delaunay graph
whose empty visible region is an equilateral triangle) was shown to be a plane
2-spanner of Vis(P,S) [2] and all constrained ©-graphs with at least 6 cones
were shown to be spanners as well [7].

Spanners of Vis(P,S) are desirable because they are sparse and the bounded
stretch factor certifies that paths do not make large detours. However, it is
not known how to route locally on them. To address this issue, we look at
local routing algorithms in the constrained setting, i.e. routing algorithms that
must decide which vertex to forward a message to based solely on knowledge of
the source and destination vertex, the current vertex, all vertices that can be
seen from the current vertex and a constant amount of memory. We define this
model formally in the next section. Furthermore, we study competitiveness of
our routing algorithms, i.e. the ratio of the length of the path followed by the
routing algorithm and the length of the shortest path in the graph.

In the constrained setting, routing has not been studied much. Bose et al. [3]
showed that it is possible to route locally and 2-competitively between any two
visible vertices in the constrained ©Gg-graph. Additionally, an 18-competitive
routing algorithm between any two visible vertices in the constrained half-Og-

graph was provided. While it seems like a serious shortcoming that these routing
algorithms only route between pairs of visible vertices, in the same paper the
authors also showed that no deterministic local routing algorithm is o(y/n)-
competitive between all pairs of vertices of the constrained Og-graph, regardless
of the amount of memory it is allowed to use.

In this paper, we develop routing algorithms that work between any pair
of vertices in the constrained setting. We provide a non-competitive 1-local
routing algorithm on the visibility graph of P with respect to a set of constraints
S. We also show that when routing on any triangulation 7" of P such that
S C T, no o(n)-competitive routing algorithm exists when only considering
the triangles intersected by the line segment from the source to the target (a
technique commonly used in the unconstrained setting). Finally, we provide an
O(n)-competitive 1-local routing algorithm on T', which is optimal in the worst
case, given the lower bound. Prior to this work, no local routing algorithms were
known to work between any pair of vertices in the constrained setting.

2 Preliminaries

The O,,-graph plays an important role in our routing strategy. We begin with
their definitions. Define a cone C to be the region in the plane between two rays
originating from a vertex referred to as the apex of the cone. When constructing
a (constrained) ©,,-graph, for each vertex u consider the rays originating from u
with the angle between consecutive rays being 27 /m. Each pair of consecutive
rays defines a cone. The cones are oriented such that the bisector of some cone
coincides with the vertical halfline through u that lies above u. Let this cone
be Cy of v and number the cones in clockwise order around u (see Fig. 1). The
cones around the other vertices have the same orientation as the ones around wu.
We write C}* to indicate the i-th cone of a vertex u, or Cj if u is clear from the
context. For ease of exposition, we only consider point sets in general position:
no two points lie on a line parallel to one of the rays that define the cones, no
two points lie on a line perpendicular to the bisector of a cone, and no three
points are collinear.

Let vertex u be an endpoint of a constraint ¢ and let the other endpoint v
that lies in cone C¥ (if any). The lines through all such constraints ¢ split C*
into several subcones (see Fig. 2). We use C}!; to denote the j-th subcone of C}'
(again, numbered in clockwise order). When a constraint ¢ = (u, v) splits a cone
of u into two subcones, we define v to lie in both of these subcones. We consider
a cone that is not split to be a single subcone.

We now introduce the constrained ©,,-graph: for each subcone C; ; of each
vertex u, add an edge from u to the closest vertex in that subcone that can see
u, where distance is measured along the bisector of the original cone (not the
subcone). More formally, we add an edge between two vertices u and v if v can
see u, v € C}';, and for all points w € C}'; that can see u, [uv'| < [uw'|, where v’

(VA
and w’ denote the projection of v and w on the bisector of C¥* and |zy| denotes

Y

Fig.1l. The cones whit Fig. 2. The subcones with Fig. 3. If we consider the

apex u in the Og-graph. apex w in the constrained half-©¢-graph instead, we

All points of S have ex- Og-graph (constraints de- have the same amount of

actly six cones. noted as red thick seg- cones, but different nota-
ments). tion.

the length of the line segment between two points and y. Note that our general
position assumption implies that each vertex adds at most one edge per subcone.

Next, we define the constrained half-Gg-graph. This is a generalized version
of the half-Og-graph as described by Bonichon et al. [1]. The constrained half-
Og-graph is similar to the constrained Gg-graph with one major difference: edges
are only added in every second cone. More formally, its cones are categorized
as positive and negative. Let (Cy, Co,C1,Cp, Ca, C1) be the sequence of cones
in counterclockwise order starting from the positive y-axis. The cones Cy, C1,
and Cs are called positive cones and Cy, C1, and Cs are called negative cones.
Note that the positive cones coincide with the even cones of the constrained
BOg-graph and the negative cones coincide with the odd ones. We add edges only
in the positive cones (and their subcones). We use C}* and C} to denote cones
C; and C; with apex u. Note that, by the way in which cones are labeled, for any
two vertices u and v, it holds that v € C}* if and only if u € C?. Analogous to
the subcones defined for the Gg-graph, constraints split cones into subcones. We
call a subcone of a positive cone a positive subcone and a subcone of a negative
cone a negative subcone (see Fig. 3). We look at the undirected version of these
graphs, i.e. when an edge is added, both vertices are allowed to use it. This is
consistent with previous work on @-graphs.

Finally, we define the constrained Delaunay triangulation. Given any two
visible vertices p and ¢, the constrained Delaunay triangulation contains an edge
between p and ¢ if and only if pg is a constraint or there exists a circle O with p
and ¢ on its boundary such that there are no vertices of P in the interior of O is
visible to both p and ¢. For simplicity, we assume that no four vertices lie on the
boundary of any circle.

There are two notions of competitiveness of a routing algorithm. One is to
look at the Euclidean shortest path between the two vertices, i.e. the shortest
path in Vis(P,S), and the other is to compare the routing path to the shortest
path in the subgraph of Vis(P,S). A routing algorithm is c-competitive with
respect to the Euclidean shortest path (resp. shortest path in the graph) provided
that the total distance traveled by the message is not more than ¢ times the

Euclidean shortest path length (resp. shortest path length) between the source
and the destination. The routing ratio of an algorithm is the smallest ¢ for which
it is c-competitive. Since the shortest path in the graph between two vertices is
at least as long as the Euclidean shortest path between them, an algorithm that
is c-competitive with respect to the Euclidean shortest path is also c-competitive
with respect to the shortest path in the graph. We use competitiveness with
respect to the Euclidean shortest path when proving upper bounds and with
respect to the shortest path in the graph when proving lower bounds.

We now define our routing model. Formally, a routing algorithm A is a
deterministic k-local, m-memory routing algorithm, if the vertex to which a
message is forwarded from the current vertex s is a function of s, t, Ni(s), and
M, where t is the destination vertex, N(s) is the k-neighborhood of s and M is
a memory of size m, stored with the message. The k-neighborhood of a vertex s
is the set of vertices in the graph that can be reached from s by following at most
k edges. For our purposes, we consider a unit of memory to consist of a log, n
bit integer or a point in R?. Our model also assumes that the only information
stored at each vertex of the graph is Ng(s). Unless stated otherwise, when we say
“local”, we will assume that k = 1 and that |M| € O(1), i.e. our algorithms are
1-local and use a constant amount of memory. Since our graphs are geometric,
we identify each vertex by its coordinates in the plane.

We say that a region R contains a vertex v if v lies in the interior or on the
boundary of R. We call a region empty if it does not contain any vertex of P.

Lemma 2.1. [2] Let u, v, and w be three arbitrary points in the plane such
that vw and vw are visibility edges and w is not the endpoint of a constraint
intersecting the interior of triangle uvw. Then there ezists a convex chain of
visibility edges from u to v in triangle uvw, such that the polygon defined by uw,
wv and the convex chain is empty and does not contain any constraints.

3 Local Routing on the Visibility Graph

In the unconstrained setting, local routing algorithms have focused on subgraphs
of the complete Euclidean graph such as ©-graphs. There exists a very simple
local routing algorithm that works on all @-graphs with at least 4 cones and is
competitive when the graph uses at least 7 cones. This routing algorithm (often
called the ©-routing) always follows the edge to the closest vertex in the cone
that contains the destination. In the constrained setting, however, a problem
arises if we try to apply this strategy: even though a cone contains the destination
it need not contain any visible vertices, since a constraint may block its visibility.
Hence, the ©-routing algorithm will often get stuck since it cannot follow any
edge in that cone. In fact, given a set P of points in the plane and a set S of
disjoint segments, no local routing algorithm is known for routing on Vis(P,S).

When the destination ¢ is visible to the source s, it is possible to route locally
by essentially “following the segment st”, since no constraint can intersect st.
This approach was used to give a 2-competitive 1-local routing algorithm on the

constrained half-Og-graph, provided that ¢ is in a positive cone of s [3]. In the
case where ¢ is in a negative cone of s, the algorithm is much more involved and
the competitive ratio jumps to 18.

The stumbling block of all known approaches is the presence of constraints. In
a nutshell, the problem is to determine how to “go around” a constraint in such
a way as to reach the destination and not cycle. This poses the following natural
question: does there exist a deterministic 1-local routing algorithm that always
reaches the destination when routing on the visibility graph? In this section, we
answer this question in the affirmative and provide such a 1-local algorithm. The
main idea is to route on a planar subgraph of Vis(P,S) that can be computed
locally.

In [10] it was shown how to route locally on a plane geometric graph. Subse-
quently, in [6], a modified algorithm was presented that seemed to work better in
practice. Both algorithms are described in detail in [6], where the latter algorithm
is called FACE-2 and the former is called FACE-1. Neither of the algorithms is
competitive. FACE-1 reaches the destination after traversing at most ©(n) edges
in the worst case and FACE-2 traverses ©(n?) edges in the worst case. Although
FACE-1 performs better in the worst case, FACE-2 performs better on average
in random graphs generated by points uniformly distributed in the unit square.

Coming back to our problem of routing locally from a source s to a destination
tin Vis(P,S), the main difficulty for using the above strategies is that the visibility
graph is not plane. Its seems counter-intuitive that having more edges renders
the problem of finding a path more difficult. Indeed, almost all local routing
algorithms in the literature that guarantee delivery do so by routing on a plane
subgraph that is computed locally. For example, in [6], a local routing algorithm
is presented for routing on a unit disk graph and the algorithm actually routes
on a planar subgraph known as the Gabriel graph. However, none of these
algorithms guarantee delivery in the presence of constraints. In this section, we
adapt the approach from [6] by showing how to locally identify the edges of a
planar spanning subgraph of Vis(P,.S), which then allows us to use FACE-1 or
FACE-2 to route locally on Vis(P,5).

The graph in question is the constrained half-Og-graph, which was shown to
be a plane 2-spanner of Vis(P,S) [2]. Therefore, if we can show how to locally
identify the edges of this graph, we can apply FACE-1 or FACE-2. If we are at a
vertex v and we know all visibility edges incident to v, then identifying the edges
in v’s positive cones is easy: they connect v to the endpoints in this cone whose
projection on the bisector is closest. Thus, the hard part is deciding which of the
visibility edges in v’s negative cone are added by their endpoints. Next, we show
that v has enough information to find these edges locally.

Lemma 3.1. Let u and v be vertices such that uw € C§. Then uv is an edge of
the constrained half-Og-graph if and only if v is the vertex whose projection on
the bisector of C§ is closest to u, among all vertices in C§ visible to v and not
blocked from u by constraints incident on v.

Proof. First, suppose that v is not closest to u among the vertices in Cjj visible to
v and not blocked by constraints incident on v (see Fig. 4a). Then there are such

vertices whose projection on the bisector is closer to u. Among those vertices,
let = be the one that minimizes the angle between vx and vu. Now v cannot be
the endpoint of a constraint intersecting the interior of triangle uvx, since the
endpoint of that constraint would lie inside the triangle, contradicting our choice
of x. Since both uv and vz are visibility edges, Lemma 2.1 tells us that there
is a convex chain of visibility edges connecting u and « inside triangle uvz. In
particular, the first vertex y from u on this chain is visible from both v and v
and is closer to w than v is (in fact, y = by our choice of). Moreover, v must
be in the same subcone of u as y, since the region between v and the chain is
completely empty of both vertices and constraints. Thus, uv cannot be an edge
of the half-©¢-graph.

(a)

Fig. 4. (a) If v is not closest to u among the vertices visible to v, then wv is not in the
half-Og-graph. (b) If v is closest to u among the vertices visible to v, then wv must be
in the half-©¢-graph.

Second, suppose that v is closest to u among the vertices visible to v and not
blocked by constraints incident on v, but uv is not an edge of the half-Og-graph.
Then there is a vertex z € C§ and in the same subcone as v, who is visible to u,
but not to v, and whose projection on the bisector is closer to u (see Fig. 4b).
Since x and v are in the same subcone, u is not incident to any constraints that
intersect the interior of triangle uvz, so we again apply Lemma 2.1 to the triangle
formed by visibility edges uv and ux. This gives us that there is a convex chain
of visibility edges connecting v and x, inside triangle wvz. In particular, the first
point y from v on this chain must be visible to both u and v. And since y lies in
triangle wox, it lies in C§ and its projection is closer to w. But this contradicts
our assumption that v was the closest vertex. Thus, if v is the closest vertex, uv
must be an edge of the half-Og-graph. a

With Lemma 3.1, we can compute 1-locally which of the edges of Vis(P,S)
incident on v are also edges of the half-Og-graph. Therefore, we can apply FACE-1
or FACE-2 in order to route on Vis(P,S) by routing on the half-@4-graph.

Corollary 3.2. We can I-locally route on Vis(P,S) by routing on the con-
strained half-Og-graph.

Although it was shown in [3] that no deterministic local routing algorithm is
o(y/n)-competitive on all pairs of vertices of the constrained @g-graph, regardless

of the amount of memory it is allowed to use, the caveat to the above local
routing algorithm is that the competitive ratio is not bounded by any function
of n. In fact, by applying FACE-1, it is possible to visit almost every edge of the
graph four times before reaching the destination. It is worse with FACE-2, where
almost every edge may be visited a linear number of times before reaching the
destination. In the next section, we present a 1-local routing algorithm that is
O(n)-competitive and provide a matching worst-case lower bound.

4 Routing on Constrained Triangulations

Next, we look at routing on a given constrained triangulation: a graph in which
all constraints are edges and all faces are triangles. Hence, we do not have to
check that the graph is a triangulation and we can focus on the routing process.

4.1 Lower Bound

Given a triangulation G and a source vertex s and a destination vertex t, let H be
the subgraph of G that contains all edges of G that are part of a triangle that is
intersected by st. We first show that if G is a constrained Delaunay triangulation
or a constrained half-Og-graph, the shortest path in H can be a factor of n/4
times longer than that in G. This implies that any local routing algorithm that
considers only the triangles intersected by st cannot be o(n)-competitive with
respect to the shortest path in G on every constrained Delaunay triangulation
or constrained half-Og-graph on every pair of points. In the remainder of this
paper, we use g (u,v) to denote the shortest path from u to v in a graph G.

Lemma 4.1. There exists a constrained Delaunay triangulation G with vertices
s and t such that |ty (s, t)| > % - |7q(s,t)].

Proof. We construct a constrained Delaunay graph with this property. For ease of
description and calculation, we assume that the size of the point set is a multiple
of 4. Note that we can remove this restriction by adding 1, 2, or 3 vertices “far
enough away” from the construction so it does not influence the shortest path.

We start with two columns of n/2 — 1 points each, aligned on a grid. We
add a constraint between every horizontal pair of points. Next, we shift every
other row by slightly less than half a unit to the right (let € > 0 be the small
amount that we did not shift). We also add a vertex s below the lowest row and
a vertex t above the highest row, centred between the two vertices on said row.
Note that this placement implies that st intersects every constraint. Finally, we
stretch the point set by an arbitrary factor 2z in the horizontal direction, for
some arbitrarily large constant . When we construct the constrained Delaunay
triangulation on this point set, we get the graph G shown in Fig. 5.

In order to construct the graph H, we note that all edges that are part of H
lie on a face that has a constraint as an edge. In particular, H does not contain
any of the vertical edges on the left and right boundary of G. Hence, all that
remains is to compare the length of the shortest path in H to that in G.

Fig. 5. Lower bound construction: the constraints are shown in thick red, the shortest
path in G is shown in blue (dotted), and the shortest path in H is shown in orange
(dash dotted). The remaining edges of G are shown in black (solid).

Ignoring the terms that depend on e, the shortest path in H uses n/2 edges of
length x, hence it has length = - n/2. Graph G on the other hand contains a path
of length 2z +n/2—1 (again, ignoring small terms that depend on ¢), by following
the path to the leftmost column and following the vertical path up. Hence, the

ratio |mg (s, t)|/|ma(s,t)| approaches n/4, since lim, o W =z, O

Note that the above construction is also the constrained half-Og-graph of the
given points and constraints.

Corollary 4.2. There exist triangulations G such that no local routing algorithm
that considers only the triangles intersected by st is o(n)-competitive when routing
from s to t.

4.2 Upper Bound

Next, we provide a simple local routing algorithm that is O(n)-competitive. To
make it easier to bound the length of the routing path, we use an auxiliary graph
H’ defined as follows: let H' be the graph H, augmented with the edges of the
convex hull of H and all visibility edges between vertices on the same internal
face (after the addition of the convex hull edges). For these visibility edges, we
only consider constraints with both endpoints in H. The different graphs G, H,
and H' are shown in Fig. 6. Note that the gray region in Fig. 6c¢ is one of the
regions where visibility edges are added and note that edge uv is not added, since
visibility is blocked by a constraint that has both endpoints in H. We first show
that the length of the shortest path in H’ is not longer than that in G.

Lemma 4.3. For any triangulation G, we have |mp (s,t)| < |ma(s,t)].

Proof. If every vertex along mg(s,t) is part of H', we claim that every edge of
(s, t) is also part of H'. Consider an edge uv of wg(s,t). If uv is part of a

10

0

N/

—
&
s

Fig. 6. The three different graphs: (a) The original triangulation G, (b) the subgraph
H, (c) graph H' constructed by adding edges to H.

triangle intersected by st, it is already part of H and therefore of H'. If uv is not
part of a triangle intersected by st, then u and v must lie on the same face of
H' before we add the visibility edges, since otherwise the edge uv would violate
the planarity of G. Furthermore, since uwv is an edge of G, u and v can see each
other. Hence, the edge uv is added to H' when the visibility edges are added.
Therefore, every edge of mg(s,t) is part of H' and thus |7g/ (s, t)] < |7ma(s,t)].

If not every vertex along 7 (s,t) is part of H', we create subsequences of the
edges of m(s,t) such that each subpath satisfies either (7) all vertices are in H',
or (ii) only the first and last vertex of the subpath are in H'. Using an argument
analogous to the previous case, it can be shown that subpaths of wg(s,t) that
satisfy (i) only use edges that are in H'.

To complete the proof, it remains to show that given a subpath 7’ that
satisfies (i), there exists a different path in H’ that connects the two endpoints
of H' and has length at most |7/|. Let u and v be the first and last vertex of this
7’ (see Fig. 7). If u and v lie on the same face of H' before the visibility edges are
added, H' contains the geodesic path g between u and v with respect to the
constraints using only vertices in H'. Note that this path can cross constraints
that have at most 1 endpoint in H’. Path 7’ uses only edges of G which by
definition do not cross any constraints. Hence, 7’ cannot be shorter than .

Finally, we consider the case in which v and v do not lie on the same face
before the visibility edges are added. We construct mg by following the geodesic
paths in the faces of u and v, and using the convex hull edges for the remainder
of the path. Since u and v do not lie on the same face, a convex hull vertex z lies
on this path. Next, we look at 7’. Recall that no vertex along ' (other than u
and v) is in H'. This implies that 7’ cannot cross st and it must cross any ray
originating from x that does not intersect the convex hull. Hence, 7’ goes around
7wy and therefore H' contains a path from w to v of length at most |7/|. O

Lemma 4.4. For any triangulation G, we have | (s,t)] < (n—1) - |mg (s, t)].

11

o

Fig. 7. A subpath of mg(s,t) (dotted Fig. 8. The path 7’ (dotted blue) simu-

blue) that satisfies condition (i7): no lates uv on the shortest path in H' (dot
vertex other than its endpoints are in dashed orange) and lies on the bound-
o' ary of a pocket of H.

Proof. To prove the lemma, we show that for every edge uv on the shortest
path in H', there is a path in H from u to v whose length is at most |7 (s,t)]|.
Consider an edge uv on the shortest path in H’'. If uv is also an edge of H we use it
in our path. Since wv is part of the shortest path in H' we have |uv| < |rg(s,t)].

It remains to consider the case in which wv is not part of H. Note that
this implies that uv is either an edge of the convex hull of H or a visibility
edge between two vertices of the same internal face. Instead of following uv, we
simulate wv by following the path 7" along the pocket of H from u to v (the part
of the boundary that does not visit both sides of st; see Fig. 8).

The path 7 (s,t) must cross the segment st several times (at least once at
s and once at t). Let x be the last intersection before w in mg/(s,t). Similarly,
let y be the first intersection after v. Since 7’ lies on the boundary of a pocket,
it cannot cross st and therefore it is contained in the polygon defined by the
segment zy, and the portion of my/(s,t) that lies between x and y. All edges
of 7’ lie inside this polygon. In particular, each such edge has length at most
the length of g (s,t) from x to y, which is at most |7y (s,t)| (since a segment
inside a polygon has length at most half the perimeter of the polygon).

Concatenate all our simulating paths and shortcut the resulting path from s
to t such that every vertex is visited at most once. The result is a path which
consists of at most n — 1 edges, each of length at most |mp(s,t)]. O

Theorem 4.5. For any triangulation G, we have |wg(s,t)| < (n—1) - |7g(s,t)].

In order to route on the graph H, we apply the Find-Short-Path routing
algorithm by Bose and Morin [5]. This routing algorithm is designed precisely
to route on the graph created by the union of the triangles intersected by the
line segment between the source and destination. The algorithm reaches t after
having travelled at most 9 times the length of the shortest path from s to ¢ in
this union of triangles. Hence, applying Find-Short-Path to graph H yields a
routing path of length at most 9(n — 1) - |7a(s, t)|.

12

Theorem 4.6. For any triangulation, there exists a 1-local O(n)-competitive
routing algorithm that visits only triangles intersected by the line segment between
the source to destination.

5 Conclusions

We presented the first local routing algorithm to route on the visibility graph.
We then showed a local O(n)-competitive routing algorithm for any triangula-
tion and showed that this is optimal when restricted to routing on the set of
triangles intersected by the segment from the source to the destination. The
competitiveness of our routing algorithm on Vis(S, P) is not bounded by any
function of n. On the other hand, our local O(n)-competitive routing algorithms
require a triangulated subgraph of Vis(S, P). Unfortunately, it is not known how
to compute such a triangulation locally, which naturally leads to the following
open problem: Can one locally compute a triangulation of Vis(S, P)? It is known
that the constrained Delaunay triangulation cannot be computed locally and the
constrained half-Gg-graph is not necessarily a triangulation.

Acknowledgements
We thank Luis Barba, Sangsub Kim, and Maria Saumell for fruitful discussions.

References

1. Bonichon, N., Gavoille, C., Hanusse, N., Ilcinkas, D.: Connections between theta-
graphs, Delaunay triangulations, and orthogonal surfaces. In: WG. pp. 266-278
2010

2. 53056,)?, Fagerberg, R., van Renssen, A., Verdonschot, S.: On plane constrained
bounded-degree spanners. In: LATIN. LNCS, vol. 7256, pp. 85-96 (2012)

3. Bose, P., Fagerberg, R., van Renssen, A., Verdonschot, S.: Competitive local routing
with constraints. In: ISAAC. LNCS, vol. 9472, pp. 23-34 (2015)

4. Bose, P., Keil, J.M.: On the stretch factor of the constrained Delaunay triangulation.
In: ISVD. pp. 25-31 (2006)

5. Bose, P., Morin, P.: Competitive online routing in geometric graphs. TCS 324(2),
273-288 (2004)

6. Bose, P., Morin, P., Stojmenovic, I., Urrutia, J.: Routing with guaranteed delivery
in ad hoc wireless networks. Wireless Networks 7(6), 609616 (2001)

7. Bose, P., van Renssen, A.: Upper bounds on the spanning ratio of constrained
theta-graphs. In: LATIN. LNCS, vol. 8392, pp. 108-119 (2014)

8. Clarkson, K.: Approximation algorithms for shortest path motion planning. In:
STOC. pp. 56-65 (1987)

9. Das, G.: The visibility graph contains a bounded-degree spanner. In: CCCG. pp.
70-75 (1997)

10. Kranakis, E., Singh, H., Urrutia, J.: Compass routing on geometric networks. In:
CCCG. pp. 51-54 (1999)

11. Misra, S., Misra, S.C., Woungang, I.: Guide to Wireless Sensor Networks. Springer
(2009)

12. Récke, H.: Survey on oblivious routing strategies. In: Math. Theory Comput. Prac.
LNCS, vol. 5635, pp. 419-429 (2009)

