
Noname manuscript No.
(will be inserted by the editor)

Constrained Routing Between Non-Visible Vertices1

Prosenjit Bose · Matias Korman ·2

André van Renssen · Sander Verdonschot3

4

Received: date / Accepted: date5

Abstract In this paper we study local routing strategies on geometric graphs.6

Such strategies use geometric properties of the graph like the coordinates of7

the current and target nodes to route. Specifically, we study routing strategies8

in the presence of constraints which are obstacles that edges of the graph are9

not allowed to cross. Let P be a set of n points in the plane and let S be10

a set of line segments whose endpoints are in P , with no two line segments11

intersecting properly. We present the first deterministic 1-local O(1)-memory12

routing algorithm that is guaranteed to find a path between two vertices in13

the visibility graph of P with respect to a set of constraints S. The strategy14

never looks beyond the direct neighbors of the current node and does not store15

more than O(1)-information to reach the target.16

We then turn our attention to finding competitive routing strategies. We17

show that when routing on any triangulation T of P such that S ⊆ T , no18

o(n)-competitive routing algorithm exists when the routing strategy restricts19

its attention to the triangles intersected by the line segment from the source to20

An extended abstract of this paper appeared in the proceedings of the 23rd Annual Interna-
tional Computing and Combinatorics Conference (COCOON 2017) [5]. P. B. is supported
in part by NSERC. M. K. was partially supported by MEXT KAKENHI Nos. 12H00855,
15H02665, and 17K12635. A. v. R. was supported by JST ERATO Grant Number JPM-
JER1201, Japan. S. V. was supported in part by NSERC and the Carleton-Fields Postdoctoral
Award.

P. Bose, S. Verdonschot
School of Computer Science, Carleton University, Ottawa, Canada.
E-mail: jit@scs.carleton.ca, sander@cg.scs.carleton.ca

M. Korman
Tohoku University, Sendai, Japan.
E-mail: mati@dais.is.tohoku.ac.jp

A. van Renssen
JST, ERATO, Kawarabayashi Large Graph Project.
National Institute of Informatics, Tokyo, Japan.
E-mail: andre@nii.ac.jp

2 P. Bose, M. Korman, A. v. Renssen, S. Verdonschot

the target (a technique commonly used in the unconstrained setting). Finally,21

we provide an O(n)-competitive deterministic 1-local O(1)-memory routing22

algorithm on any such T , which is optimal in the worst case, given the lower23

bound.24

Keywords Routing · Constraints · Visibility graph · Θ-graph · Triangulation25

1 Introduction26

A routing strategy is an algorithm that that determines at a vertex v to which27

of its neighbors to forward a message in order for the message to reach its28

destination. A routing strategy is local when that decision is based solely on29

knowledge of the location of the current vertex v, the location of its neighbors30

and a constant amount of additional information (such as the location of the31

source vertex and destination vertex). A traditional approach to this routing32

problem is to build a routing table at each node, explicitly storing for each33

destination vertex, which neighbor of the current vertex to send the message.34

In this paper, we study routing algorithms on geometric graphs and try to35

circumvent the use of routing tables by leveraging geometric information. A36

routing algorithm is considered geometric when the graph that is routed on37

is embedded in the plane, with edges being straight line segments connecting38

pairs of vertices. Edges are usually weighted by the Euclidean distance between39

their endpoints. Geometric routing algorithms are particularly useful in wireless40

sensor networks (see [14] and [15] for surveys on the topic), since nodes often41

connect only to nearby nodes. Thus, by exploiting geometric properties (such42

as distance, or the coordinates of the vertices) we can devise algorithms to43

guide the search and remove the need for routing tables.44

We consider the following setting: let P be a set of n points in the plane45

and let S be a set of line segments whose endpoints are in P , with no two line46

segments of S properly intersecting (i.e., intersections only occur at endpoints).47

Two vertices u and v are visible if and only if either the line segment uv does48

not properly intersect any constraint or the segment uv is itself a constraint. If49

two vertices u and v are visible, then the line segment uv is a visibility edge. The50

visibility graph of P with respect to a set of constraints S, denoted Vis(P, S),51

has P as vertex set and all visibility edges as edge set. In other words, it is52

the complete graph on P minus all edges that properly intersect one or more53

constraints in S.54

This model has been studied extensively in the context of motion planning.55

Clarkson [10] was one of the first to study this problem. He showed how to56

construct a (1 + ε)-spanner of Vis(P, S) with a linear number of edges. A57

subgraph H of G is called a t-spanner of G (for t ≥ 1) if for each pair of58

vertices u and v, the shortest path in H between u and v has length at most59

t times the shortest path between u and v in G. The smallest value t for60

which H is a t-spanner is the spanning ratio or stretch factor of H. Following61

Clarkson’s result, Das [11] showed how to construct a spanner of Vis(P, S)62

with constant spanning ratio and constant degree. Bose and Keil [4] showed63

Constrained Routing Between Non-Visible Vertices 3

that the Constrained Delaunay Triangulation is a 2.42-spanner of Vis(P, S).64

Recently, the constrained half-Θ6-graph (which is identical to the constrained65

Delaunay graph whose empty visible region is an equilateral triangle) was66

shown to be a plane 2-spanner of Vis(P, S) [2] and all constrained Θ-graphs67

with at least 6 cones were shown to be spanners as well [9].68

Spanners of Vis(P, S) are desirable because they can be sparse and the69

bounded stretch factor certifies that paths do not make large detours compared70

to the shortest path in Vis(P, S). Thus, by using a spanner we can compact71

a potentially large network using a small number of edges at the cost of a72

small detour when sending the messages. Unfortunately, little is known on73

how to route once the network has been built. Bose et al. [3] showed that it is74

possible to route locally and 2-competitively between any two visible vertices75

in the constrained Θ6-graph. Additionally, an 18-competitive routing algorithm76

between any two visible vertices in the constrained half-Θ6-graph was provided77

(the definition of these two graphs as well as formal definitions of local and78

competitiveness ratio are given in Section 2). While it seems like a serious79

shortcoming that these routing algorithms only route between pairs of visible80

vertices, in the same paper the authors also showed that no deterministic local81

routing algorithm can be o(
√
n)-competitive between all pairs of vertices of the82

constrained Θ6-graph, regardless of the amount of memory one is allowed to83

use. As such, the best one can hope for in this setting is an O(
√
n) competitive84

routing ratio.85

In this paper, we develop routing algorithms that work between any pair86

of vertices in the constrained setting. This is, to the best of our knowledge,87

the only deterministic 1-local routing strategy that works for vertices that88

cannot see each other in the constrained setting. We provide a non-competitive89

1-local routing algorithm on the visibility graph of P with respect to a set90

of constraints S. Our algorithm locally computes a sparse subgraph of the91

visibility graph and routes on it.1 We also show that when routing on any92

triangulation T of P such that S ⊆ T , no o(n)-competitive routing algorithm93

exists when only considering the triangles intersected by the line segment from94

the source to the target, a technique commonly used in the unconstrained95

setting. Finally, we provide an O(n)-competitive 1-local routing algorithm on96

T , which is optimal in the worst case, given the lower bound.97

2 Preliminaries98

2.1 Routing Model99

Given a graph G = (V,E), the k-neighborhood of a vertex u ∈ V is the set of100

vertices in the graph that can be reached from u by following at most k edges101

1 Parallel to this work, we designed a routing strategy that specifically works in the
visibility graph directly (without having to compute a subgraph). The details of this routing
strategy are quite lengthy, so they are given in a companion paper [6]. Similar to Theorem 1
presented in this paper, the algorithm is 1-local and non-competitive.

4 P. Bose, M. Korman, A. v. Renssen, S. Verdonschot

(and is denoted by Nk(u)). We assume that the only information stored at102

each vertex of the graph is Nk(u) for some fixed constant k. Since our graphs103

are geometric, vertices are points in the plane. We label each vertex by its104

coordinates in the plane.105

We are interested in deterministic k-local, m-memory routing algorithms.106

That is, the vertex to which the message is forwarded is determined by a107

deterministic function that only depends on s (the source vertex), u (the108

current vertex), t (the destination vertex), Nk(u) and a string M of at most m109

words. This string M is stored within the message and can be modified before110

forwarding the message to the next node. For our purposes, we consider a word111

(or unit of memory) to consist of a log2 n bit integer or a point in R2.112

We focus on algorithms that guarantee that the message will arrive at its113

destination (i.e., for any graph G and source vertex s, by repeatedly applying114

the routing strategy we will reach the destination vertex in a finite number115

of steps). We will focus on the case where k = 1 and |M | ∈ O(1). Thus, for116

brevity, by local routing algorithm we mean the algorithm is 1-local, uses a117

constant amount of memory, and arrival of the message at the destination is118

guaranteed.119

2.2 Competitiveness120

Intuitively speaking, we can evaluate how good a routing algorithm is by121

looking at the detour it makes (i.e., how long are the paths compared to the122

shortest possible). We say that a routing algorithm is c-competitive with respect123

to a graph G if, for any pair of vertices u, v ∈ V , the total distance traveled124

by the message is not more than c times the shortest path length between u125

and v in G. The routing ratio of an algorithm is the smallest c for which it is126

c-competitive.127

2.3 Graph Definitions128

In this section we introduce the Θm-graph, a graph that plays an important129

role in our routing strategy. We begin by defining this graph and some known130

variations. Define a cone C to be the region in the plane between two rays131

originating from a vertex (the vertex itself is referred to as the apex of the132

cone). When constructing a (constrained) Θm-graph of a set P of n vertices we133

proceed as follows: for each vertex u ∈ S consider m rays originating from u so134

that the angle between two consecutive rays is 2π/m. Each pair of consecutive135

rays defines a cone. We orient the rays in a way that the bisector of one of the136

cones is the vertical halfline through u that lies above u. Let this cone be C0 of137

u. We number the other cones C1, . . . , Cm−1 in clockwise order around u (see138

Fig. 1). We apply the same partition and numbering for the other vertices of P .139

We write Cu
i to indicate the i-th cone of a vertex u, or Ci if u is clear from the140

context. For ease of exposition, we only consider point sets in general position:141

Constrained Routing Between Non-Visible Vertices 5

no two vertices lie on a line parallel to one of the rays that define the cones,142

no two vertices lie on a line perpendicular to the bisector of a cone, no three143

vertices are collinear, and no four vertices lie on the boundary of any circle.144

All these assumptions can be removed using classic symbolic perturbation145

techniques.146

The Θm-graph is constructed by adding an edge from u to the closest vertex147

in each cone Ci of each vertex u, where distance is measured along the bisector148

of the cone. More formally, we add an edge between two vertices u and v ∈ Cu
i149

if for all vertices w ∈ Cu
i it holds that |uv′| ≤ |uw′| (where v′ and w′ denote150

the projection of v and w on the bisector of Cu
i and |xy| denotes the length of151

the line segment between two points x and y). Note that our general position152

assumption implies that each vertex adds at most one edge per cone.153

C0

C1C5

C4

C3

C2

u

Fig. 1 Vertex u and the six cones that
are generated in the Θ6-graph. All vertices
of P have a similar construction with six
cones and the same orientation.

C0,0

C5,0

C4,0

C3,0

C2,0

u

C0,1
C1,0

C1,1

C1,2

C4,1

Fig. 2 When u is the endpoint of one
or more constraints (denoted as red thick
segments in the figure), some cones may
be partitioned into subcones.

The Θm-graph has been adapted to the case where constraints are present;154

for every constraint whose endpoint is u, consider the ray from u to the other155

endpoint of the constraint. These rays split the cones into several subcones156

(see Fig. 2). We use Cu
i,j to denote the j-th subcone of Cu

i (also numbered in157

clockwise order). Note that if some cone Ci is not subdivided with this process,158

we simply have Ci = Ci,0 (i.e., Ci is a single subcone). Further note that we159

treat the subcones as closed sets (i.e., contain their boundary). Thus, when a160

constraint c = (u, v) splits a cone of u into two subcones, vertex v lies in both161

subcones. Due to the general position assumption, this is the only case where162

a vertex can be in two subcones of u.163

With the subcone partition we can define the constrained Θm-graph: for164

each subcone Ci,j of each vertex u, add an edge from u to the closest vertex165

that is in that subcone and can see u (if any exist). Note that distance is166

measured along the bisector of the original cone (not the subcone, see Fig. 3).167

More formally, we add an edge between two vertices u and v ∈ Cu
i,j if v can168

see u, and for all vertices w ∈ Cu
i,j that can see u it holds that |uv′| ≤ |uw′|169

(where v′ and w′ denote the projection of v and w on the bisector of Cu
i and170

|xy| denotes the length of the line segment between two points x and y). Note171

6 P. Bose, M. Korman, A. v. Renssen, S. Verdonschot

that our general position assumption implies that each vertex adds at most172

one edge per subcone.173

u

v1 v3
v2

C0,0 C0,1

Fig. 3 The constraint (u, v2) partitions
Cu

0 into two subcones. Subcone C0,0 con-
tains two visible vertices, out of which
v1 is closest to u. Subcone C0,1 only con-
tains one visible vertex: v2 (note that v3
is closer to u than v2, but it is not visible).

C0,0

C2,0

C1,0

C0,0

C2,0

u

C0,1
C1,0

C1,1

C1,2

C1,1

Fig. 4 The constrained half-Θ6-graph
uses a construction similar to that of
Fig. 2. Notice that we have the same num-
ber of cones, but different notation is used.

Although constrained Θm-graphs are quite sparse, sometimes it is useful to174

have even fewer edges. Thus, we introduce the constrained half-Θ6-graph. This175

is the natural generalization of the half-Θ6-graph as described by Bonichon176

et al. [1], who considered the case where no constraints are present. This graph177

is defined for any even m, but in this paper we will consider only the case178

where m = 6. Thus, for simplicity in notation we define only the constrained179

half-Θ6-graph.180

The main change with respect to the constrained Θ6-graph is that edges181

are added only in every second cone. More formally, we rename the cones of a182

vertex u to (C0, C1, C2, C0, C1, C2) (as usual, we use clockwise order starting183

from the cone containing the positive y-axis). The cones C0, C1, and C2 are184

called positive cones and C0, C1, and C2 are called negative cones.185

We use Cu
i and Cu

i to denote cones Ci and Ci with apex u. Note that, by186

the way the cones are labeled, for any two vertices u and v, it holds that v ∈ Cu
i187

if and only if u ∈ Cv
i . Analogous to the subcones defined for the constrained188

Θ6-graph, constraints split cones into subcones. We call a subcone of a positive189

cone a positive subcone and a subcone of a negative cone a negative subcone190

(see Fig. 4).191

In the constrained half-Θ6-graph we add edges like in the constrained-Θ6-192

graph, but only in the positive cones (and their subcones). We look at the193

undirected version of these graphs, i.e. when an edge is added, both vertices194

are allowed to use it. This is consistent with previous work on Θ-graphs.195

Finally, we define the constrained Delaunay triangulation [4]. Given any196

two visible vertices p and q, the constrained Delaunay triangulation contains197

an edge between p and q if and only if pq is a constraint or there exists a circle198

Constrained Routing Between Non-Visible Vertices 7

O with p and q on its boundary such that there is no vertex of P in the interior199

of O that is visible to both p and q.200

3 Local Routing on the Visibility Graph201

In the unconstrained setting there is a very simple simple local routing algorithm202

for Θm-graphs. The algorithm (often called Θ-routing) greedily follows the edge203

to the closest vertex in the cone that contains the destination. This strategy is204

guaranteed to work for m ≥ 4, and is competitive when m ≥ 7.205

This strategy does not easily extend to the case where constraints are206

present: it is possible that the cone containing the destination does not have207

any visible vertices, since a constraint blocks its visibility (see Fig. 5). Having208

no edge in that cone, it is unclear how to reach the destination that lies beyond209

the constraint. In fact, given a set P of vertices in the plane and a set S of210

disjoint segments, no deterministic local routing algorithm is known for routing211

on Vis(P, S) that guarantees delivery of the message.212

u

t

v
w

Q
z

Fig. 5 The classic Θ-routing algorithm can get stuck in the presence of constraints. In the
example, u does not have any edge in the cone that contains the destination t, because it is
behind a constraint.

When the destination t is visible to the source s, it is possible to route213

locally by essentially “following the line segment st”, since no constraint can214

intersect st. This approach was used to give a 2-competitive 1-local routing215

algorithm on the constrained half-Θ6-graph, provided that t is in a positive216

cone of s [3]. In the case where t is in a negative cone of s, the algorithm is217

much more involved and the competitive ratio jumps to 18.218

The stumbling block of all known approaches is the presence of constraints.219

In a nutshell, the problem is to determine how to “go around” a constraint in220

such a way as to reach the destination and prevent cycling. This gives rise to the221

following question: does there exist a deterministic 1-local routing algorithm222

that always reaches the destination when routing on the visibility graph? In223

this section, we answer this question in the affirmative. We provide a 1-local224

algorithm that is guaranteed to route from a given source to a destination, in225

8 P. Bose, M. Korman, A. v. Renssen, S. Verdonschot

the presence of constraints. The main idea is to route on a planar subgraph of226

Vis(P, S) that can be computed locally.227

In [13] it was shown how to route locally on a plane geometric graph.228

Subsequently, in [8], a modified algorithm was presented that seemed to work229

better in practice. Both algorithms are described in detail in [8], where the230

latter algorithm is called FACE-2 and the former is called FACE-1. Neither of231

the algorithms is competitive. FACE-1 reaches the destination after traversing232

at most Θ(n) edges in the worst case and FACE-2 traverses Θ(n2) edges in233

the worst case. Although FACE-1 performs better in the worst case, FACE-2234

performs better on average in random graphs generated by vertices uniformly235

distributed in the unit square.236

Coming back to our problem of routing locally from a source s to a destina-237

tion t in Vis(P, S), the main difficulty for using the above strategies is that the238

visibility graph is not plane. Its seems counter-intuitive that having more edges239

makes the problem of finding a path more difficult. Indeed, almost all local240

routing algorithms in the literature that guarantee delivery do so by routing on241

a plane subgraph that is computed locally. For example, in [8], a local routing242

algorithm is presented for routing on a unit disk graph and the algorithm243

actually routes on a planar subgraph known as the Gabriel graph. However,244

none of these algorithms guarantee delivery in the presence of constraints. In245

this section, we adapt the approach from [8] by showing how to locally identify246

the edges of a planar spanning subgraph of Vis(P, S), which then allows us to247

use FACE-1 or FACE-2 to route locally on Vis(P, S).248

Our aim is to route on the constrained half-Θ6-graph. This graph was shown249

to be a plane 2-spanner of Vis(P, S) [2]. The authors also showed a partial250

routing result (only between visible vertices) on this graph [3].251

Lemma 1 (Lemma 1 of [2]) Let u, v, and w be three arbitrary points in the252

plane such that uw and vw are visibility edges and w is not the endpoint of a253

constraint intersecting the interior of triangle uvw. Then there exists a convex254

chain of visibility edges from u to v in triangle uvw, such that the polygon255

defined by uw, wv and the convex chain does not contain any constraint or256

vertex of P .257

We now show how to locally identify the edges of the constrained half-Θ6-258

graph and distinguish them from other edges of Vis(P, S).259

Lemma 2 Let u and v be vertices such that u ∈ Cv
0 . Then uv is an edge of260

the constrained half-Θ6-graph if and only if v is the vertex whose projection on261

the bisector of Cu
0 is closest to u, among all vertices in Cu

0 visible to v and not262

blocked from u by constraints incident on v.263

Proof We will prove the claim by contradiction. First, suppose that v is not264

closest to u among the vertices in Cu
0 visible to v and not blocked by constraints265

incident on v (see Fig. 6a). Then there are one or more vertices whose projection266

on the bisector is closer to u. Among those vertices, let x be the one that267

minimizes the angle between vx and vu. Note that v cannot be the endpoint of268

Constrained Routing Between Non-Visible Vertices 9

a constraint intersecting the interior of triangle uvx, since the endpoint of that269

constraint would lie inside the triangle, contradicting our choice of x. Since270

both uv and vx are visibility edges, Lemma 1 tells us that there is a convex271

chain of visibility edges connecting u and x inside triangle uvx. In particular,272

the first vertex y from u on this chain is visible from both u and v and is closer273

to u than v is (in fact, y must be x by our choice of x). Moreover, v must be274

in the same subcone of u as y, since the region between v and the chain is275

completely empty of both vertices and constraints. Thus, uv cannot be an edge276

of the half-Θ6-graph.277

v

x

u

y

v

x

u

y

(a) (b)

Fig. 6 (a) If v is not closest to u among the vertices visible to v, then uv is not in the
half-Θ6-graph. (b) If v is closest to u among the vertices visible to v, then uv must be in the
half-Θ6-graph.

Next, suppose that v is closest to u among the vertices visible to v and not
blocked by constraints incident on v, but uv is not an edge of the half-Θ6-graph.
Then there is a vertex x ∈ Cu

0 in the same subcone as v, who is visible to u,
but not to v, and whose projection on the bisector is closer to u (see Fig. 6b).
Since x and v are in the same subcone, u is not incident to any constraints that
intersect the interior of triangle uvx. We now apply Lemma 1 to the triangle
formed by visibility edges uv and ux; this gives us that there is a convex chain
of visibility edges connecting v and x, inside triangle uvx. In particular, the
first vertex y from v on this chain must be visible to both u and v. And since
y lies in triangle uvx, it lies in Cu

0 and its projection is closer to u. But this
contradicts our assumption that v was the closest vertex. Thus, if v is the
closest vertex, and uv must be an edge of the half-Θ6-graph. ut

Lemma 2 allows us to compute 1-locally which of the edges of Vis(P, S)278

incident on v are also edges of the constrained half-Θ6-graph. Recall that this279

graph is plane [2], thus we can apply FACE-1 or FACE-2 to route on Vis(P, S).280

Theorem 1 For any set P of n vertices and set S of constraints on P , there281

exists a 1-local non-competitive routing algorithm on Vis(P, S) that visits only282

the edges of the constrained half-Θ6-graph.283

This algorithm routes on a subgraph of the constrained Θ6-graph, and284

in [3] it was shown that no deterministic local routing algorithm can be o(
√
n)-285

competitive on this graph. Even worse, the competitive ratio of our approach286

10 P. Bose, M. Korman, A. v. Renssen, S. Verdonschot

cannot be bounded by any function of n. In fact, by applying FACE-1, it is287

possible to visit almost every edge of the graph four times before reaching the288

destination. It is worse with FACE-2, where almost every edge may be visited a289

linear number of times before reaching the destination. In the next section, we290

present a 1-local routing algorithm that is O(n)-competitive in the constrained291

setting and provide a matching worst-case lower bound.292

4 Routing on Constrained Triangulations293

In this section we look at routing on any constrained triangulation, i.e. a graph294

where all constraints are edges and all internal faces are triangles. Hence, we295

do not have to check while routing that the graph is a triangulation and we296

can focus our attention solely on the routing process.297

4.1 Lower Bound298

Given a triangulation G and a source vertex s and a destination vertex t, let299

H be the subgraph of G that contains all edges of G that are part of a triangle300

that is intersected by st. It is very common for routing algorithms to restrict301

themselves to edges of H. In the unconstrained setting, this does not affect302

the quality of the path too much. For example, in the unconstrained Delaunay303

triangulation, H always contains a path between s and t of length at most304

2.42|st| [12]. However, we show that this is no longer true in the constrained305

setting.306

In particular, we show that if G is a constrained Delaunay triangulation307

or a constrained half-Θ6-graph, the shortest path in H can be a factor of n/4308

times longer than that in G. This implies that any local routing algorithm that309

considers only the triangles intersected by st cannot be o(n)-competitive with310

respect to the shortest path in G on every constrained Delaunay triangulation311

or constrained half-Θ6-graph on every pair of vertices. In the remainder of this312

paper, we use πG(u, v) to denote the shortest path from u to v in a graph G.313

Lemma 3 There exists a constrained Delaunay triangulation G with vertices314

s and t such that |πH(s, t)| ≥ n
4 · |πG(s, t)|, where H is the subgraph of G315

consisting of all triangles intersected by the line segment st.316

Proof We construct a constrained Delaunay graph with this property. For ease317

of description and calculation, we assume that the size of the point set is a318

multiple of 4. Note that we can remove this restriction by adding 1, 2, or 3319

vertices “far enough away” from the construction so it does not influence the320

shortest path.321

We start with two columns of n/2− 1 vertices each, aligned on a grid. We322

add a constraint between every horizontal pair of vertices. Next, we shift every323

other row by slightly less than half a unit to the right (let ε > 0 be the small324

amount that we did not shift). We also add a vertex s below the lowest row and325

Constrained Routing Between Non-Visible Vertices 11

a vertex t above the highest row, centered between the two vertices on said row.326

Note that this placement implies that st intersects every constraint. Finally, we327

stretch the point set by an arbitrary factor 2x in the horizontal direction, for328

some arbitrarily large constant x. When we construct the constrained Delaunay329

triangulation on this point set, we get the graph G shown in Fig. 7.330

ε
x x

1

n/2

s

t

Fig. 7 Lower bound construction: the shortest path in H (orange and dash-dotted) is about
n/4 times as long as the shortest path in G (blue and dotted). Constraints are shown in
thick red and the remaining edges of G are shown in solid black.

In order to construct the graph H, we note that all edges that are part of331

H lie on a face that has a constraint as an edge. In particular, H does not332

contain any of the vertical edges on the left and right boundary of G. Hence,333

all that remains is to compare the length of the shortest path in H to that in334

G.335

Ignoring the terms that depend on ε, the shortest path in H uses n/2
edges of length x, hence it has length x · n/2. Graph G on the other hand
contains a path of length 2x + n/2 − 1 (again, ignoring small terms that
depend on ε), by following the path to the leftmost column and following the
vertical path up. Hence, the ratio |πH(s, t)|/|πG(s, t)| approaches n/4, since

limx→∞
x·n2

2x+n
2−1

= n
4 . ut

Note that the above construction is also the constrained half-Θ6-graph of336

the given vertices and constraints.337

Corollary 1 There exist triangulations G such that no local routing algorithm338

that considers only the triangles intersected by st is o(n)-competitive when339

routing from s to t.340

In fact, the construction depicted in Fig. 7 shows that there exist point341

sets and constraints, such that the shortest path between s and t in every342

12 P. Bose, M. Korman, A. v. Renssen, S. Verdonschot

triangulation on this point set (subject to the constraints) has length a linear343

factor shorter than the shortest path in H.344

Lemma 4 There exist point sets P (including vertices s and t) and constraints345

S such that in every constrained triangulation G on P subject to S, the shortest346

path between s and t in H is not an o(n)-approximation of the shortest path in347

G, where H is the subgraph of G consisting of all triangles intersected by the348

line segment st.349

Proof Since any triangulation contains the edges of the convex hull of the350

point set, we observe that the shortest path in Fig. 7 remains part of any351

triangulation. Hence, for H to contain a shortest path of length comparable to352

the shortest path in the full triangulation, it needs to contain some vertical353

edge on the left or right boundary of the graph. We show that H can contain354

no such edge.355

Consider an edge uv on the vertical boundary of the triangulation and let
w be the third vertex of this triangle. Since in the construction the shifted
constraints are shifted less than half a unit, the only vertices visible to both u
and v are endpoints of a constraint whose y-coordinate lies between those of u
and v. Since uvw is part of H, it intersects st, hence w lies on the opposite
side of st compared to u and v. This implies that the other endpoint of the
constraint with endpoint w is contained in uvw and thus uvw is not a triangle
of the triangulation. ut

4.2 Upper Bound356

Next, we provide a simple local routing algorithm that is O(n)-competitive. If357

we are only interested in routing on H, Bose and Morin [7] introduced a routing358

algorithm for this setting. This routing algorithm, called the Find-Short-Path359

routing, is designed precisely to route on the graph created by the union of the360

triangles intersected by the line segment between the source and destination361

(i.e., graph H). The algorithm is 1-local and 9-competitive; that is, it reaches t362

after having travelled at most 9 times the length of the shortest path from s to363

t in H, while considering only the neighbors of the current vertex.364

In the following, we show that this algorithm is also competitive in any365

triangulation.366

Theorem 2 For any triangulation, there exists a 1-local O(n)-competitive367

routing algorithm that visits only triangles intersected by the line segment368

between the source and the destination.369

The remainder of the section is dedicated to showing that in any triangula-370

tion G the shortest path between s and t in H is an O(n)-approximation of371

the shortest path in G. To make the analysis easier, we use an auxiliary graph372

H ′ defined as follows: let H ′ be the graph H, augmented with the edges of the373

convex hull of H and all visibility edges between vertices on the same internal374

Constrained Routing Between Non-Visible Vertices 13

face (after the addition of the convex hull edges). For these visibility edges, we375

only consider constraints with both endpoints in H. The different graphs G, H,376

and H ′ are shown in Fig. 8. We emphasize that H ′ is an auxiliary graph that377

will only be used to bound the spanning ratio between the other two graphs.378

u

v

s

t

s

t

s

t

(a) (b) (c)

u′

v′

Fig. 8 The three different graphs: (a) The original triangulation G, (b) the subgraph H
containing only the edges that intersect the segment st, (c) graph H′ constructed by adding
convex hull edges to H and visibility edges of the newly created faces (gray regions in the
figure). Note that edge uv is not added, since visibility is blocked by a constraint that has
both endpoints in H. Further note that in the right gray region we add “illegal” edges that
cross the constraint u′v′.

We start by comparing the length of the shortest paths in H ′ and G.379

Lemma 5 Any triangulation G satisfies |πH′(s, t)| ≤ |πG(s, t)|.380

Proof First consider the case where every vertex along πG(s, t) is part of H ′.381

In this case, we claim that every edge of πG(s, t) is also part of H ′. Clearly, if382

an edge uv of πG(s, t) is part of a triangle intersected by st, then it is included383

in H (and therefore in H ′). If uv is not part of a triangle intersected by st,384

then u and v must lie on the same face of H ′ before we add the visibility edges385

(since otherwise the edge uv would violate the planarity of G). Since uv is an386

edge of G, u and v can see each other. Hence, the edge uv is added to H ′ when387

the visibility edges are added. Therefore, every edge of πG(s, t) is part of H ′388

and thus |πH′(s, t)| ≤ |πG(s, t)|.389

In the general case not every vertex of πG(s, t) is part of H ′. In this case390

we partition πG(s, t) into smaller subpaths so that each subpath satisfies either391

(i) all vertices are in H ′, or (ii) only the first and last vertex of the subpath392

are in H ′. Using an argument analogous to the previous case, it can be shown393

that subpaths of πG(s, t) that satisfy (i) use only edges that are in H ′.394

14 P. Bose, M. Korman, A. v. Renssen, S. Verdonschot

To complete the proof, it remains to show that given a subpath π′ that395

satisfies (ii), there exists a different path in H ′ that connects the two endpoints396

of H ′ and has length at most |π′|. Let u and v be the first and last vertex of397

π′, and consider first the case where u and v lie on the same face of H ′ before398

the visibility edges are added (see Fig. 9). H ′ contains all visibility edges that399

are not blocked by constraints with both endpoints in H ′. In particular, it will400

contain the geodesic πH′ (i.e., the shortest possible path that avoids these401

constraints) between u and v. On the other hand, path π′ uses only edges of G402

which by definition do not cross any constraints of S. Hence, this implies in403

particular that π′ does not cross any constraint that has both endpoints in H404

and we conclude that the path π′ cannot be shorter than πH′ .405

s

t

u

v

Fig. 9 A subpath of πG(s, t) (dotted
blue) that satisfies condition (ii): no ver-
tex other than its endpoints are in H′.
The two endpoints are connected in H′

(dot dashed orange path) and thus it has
a shorter path in H′.

t

s

v

u

x

x′

Fig. 10 When π′ (dot dashed orange)
does not pass through any vertex of H′

(other than u and v), we walk along the
outer boundary of H′ to get a shorter
path πH′ (thick dashed blue). Note that
we ignore some edges of H′ (dotted in the
figure) in order to have u and v on the
outer boundary.

Finally, it remains to consider the case where u and v do not lie on the406

same face before the visibility edges are added. Let x and x′ be the two vertices407

in the convex hull of the internal face containing u. Consider the shortest path408

in H ′ connecting u with x and x′ and virtually remove all edges from this face409

that do not belong to either path. Note that if u lies on the convex hull, we410

have u = x and no edges are removed. We apply the same procedure to v. After411

this modification both u and v lie on the outer boundary of H ′. We construct412

πH′ by walking from u to v along this outer boundary. Note that there are two413

possible paths, clockwise or counterclockwise along the boundary; the path we414

choose will depend on π′.415

Constrained Routing Between Non-Visible Vertices 15

Without loss of generality, assume that s is at the origin, t = (0, 1), and u416

lies to the right of s and t. We also assume that the clockwise path from u to417

v passes through s (see Fig. 10). We observe that since πG(s, t) is a shortest418

path in G from s to t, π′ is simple (i.e., no vertex is visited more than once).419

Next, consider π′ and recall that it satisfies (ii) and thus no vertex along
π′ other than u and v can be in H ′. This implies that π′ cannot contain any
vertex of the outer boundary of H ′. We count the number times π′ crosses the
downwards ray from s; if the number of crossings is odd, we construct πH′ by
walking clockwise from u to v. Otherwise, we walk counterclockwise instead.
Since we assumed that the clockwise path from u to v passes through s and
π′ is simple, both π′ and πH′ must have the same homotopy (if we virtually
consider the outer boundary of H ′ as an obstacle). Moreover, πH′ is the shortest
possible path having the same homotopy as π′. We conclude that |πH′ | ≤ |π′|
and thus that |πH′(s, t)| ≤ |πG(s, t)|. ut

Next, we show that the length of the shortest path in H has length at most420

n− 1 times the length of the shortest path in H ′.421

Lemma 6 Any triangulation G satisfies |πH(s, t)| ≤ (n− 1) · |πH′(s, t)|.422

Proof It suffices to show that every edge uv on the shortest path in H ′ can be423

replaced by a path in H whose length is at most |πH′(s, t)|. The claim trivially424

holds if uv is also an edge of H, thus we focus on the case where uv is not an425

edge of H. Note that this implies that uv is either an edge of the convex hull426

of H or a visibility edge between two vertices of the same internal face. Instead427

of following uv, we simulate uv by following the path π′ along the pocket of H428

from u to v (the path along the boundary of H that does not visit both sides429

of st; see Fig. 11).430

π′

x

y

u

v

Fig. 11 The edge uv on the shortest path in H′ (dot dashed orange) can be simulated with
a path π′ (dotted blue) by walking along the face of a pocket of H. Any edge on that walk
is contained in the polygon defined by the vertical segment xy and the shortest path in H′.

16 P. Bose, M. Korman, A. v. Renssen, S. Verdonschot

We follow πH′(s, t) from s to t and consider the intersections between431

πH′(s, t) and the segment st (they must cross at least twice: once at s and432

once at t). Let x be the last intersection before u in πH′(s, t) and y be the433

first intersection after v. Let P ′ be the polygon determined by segment xy,434

and the portion of πH′(s, t) that lies between x and y. Since π′ lies on the435

boundary of a pocket, it cannot cross st and therefore it must be contained in436

P ′. In particular, all edges of π′ must lie inside P ′. Since a line segment inside437

a polygon has length at most half the perimeter of that polygon, the length of438

each edge of π′ is at most the length of πH′(s, t) from x to y, which is at most439

|πH′(s, t)|.440

We concatenate all simulated paths and shortcut the resulting path from
s to t such that every vertex is visited at most once. The result is a simple
path which consists of at most n − 1 edges, each one having length at most
|πH′(s, t)|. This completes the proof. ut

By combining Lemmas 5 and 6 we obtain the desired ratio between the441

paths in G and H.442

Theorem 3 Any triangulation G satisfies |πH(s, t)| ≤ (n− 1) · |πG(s, t)|.443

5 Conclusions444

In this paper we presented two routing algorithms. The first one works in the445

natural visibility graph but its competitiveness is not bounded by any function446

of n. The second algorithm is O(n)-competitive (which is worst-case optimal),447

but it requires a triangulated subgraph of Vis(S, P). This naturally leads to the448

following open problem: can one locally compute a triangulation of Vis(S, P)?449

It is known that the constrained Delaunay triangulation cannot be computed450

locally (since it contains non-local information such as convex hull edges) and451

the constrained half-Θ6-graph is not necessarily a triangulation. Thus, we need452

to consider a different triangulation.453

Acknowledgements We thank Luis Barba, Sangsub Kim, and Maria Saumell for fruitful454

discussions.455

References456

1. Bonichon, N., Gavoille, C., Hanusse, N., Ilcinkas, D.: Connections between theta-graphs,457

Delaunay triangulations, and orthogonal surfaces. In: Proceedings of the 36th Interna-458

tional Conference on Graph Theoretic Concepts in Computer Science (WG 2010), pp.459

266–278 (2010)460

2. Bose, P., Fagerberg, R., van Renssen, A., Verdonschot, S.: On plane constrained bounded-461

degree spanners. In: Proceedings of the 10th Latin American Symposium on Theoretical462

Informatics (LATIN 2012), Lecture Notes in Computer Science, vol. 7256, pp. 85–96463

(2012)464

3. Bose, P., Fagerberg, R., van Renssen, A., Verdonschot, S.: Competitive local routing465

with constraints. Journal of Computational Geometry (JoCG) 8(1), 125–152 (2017)466

Constrained Routing Between Non-Visible Vertices 17

4. Bose, P., Keil, J.M.: On the stretch factor of the constrained Delaunay triangulation. In:467

Proceedings of the 3rd International Symposium on Voronoi Diagrams in Science and468

Engineering (ISVD 2006), pp. 25–31 (2006)469

5. Bose, P., Korman, M., van Renssen, A., Verdonschot, S.: Constrained routing between470

non-visible vertices. In: Proceedings of the 23rd Annual International Computing and471

Combinatorics Conference (COCOON 2017), Lecture Notes in Computer Science, vol.472

10392, pp. 62–74 (2017)473

6. Bose, P., Korman, M., van Renssen, A., Verdonschot, S.: Routing on the visibility graph.474

In: To appear in the Proceedings of the 28th International Symposium on Algorithms475

and Computation (ISAAC 2017) (2017)476

7. Bose, P., Morin, P.: Competitive online routing in geometric graphs. Theoretical477

Computer Science 324(2), 273–288 (2004)478

8. Bose, P., Morin, P., Stojmenovic, I., Urrutia, J.: Routing with guaranteed delivery in ad479

hoc wireless networks. Wireless Networks 7(6), 609–616 (2001)480

9. Bose, P., van Renssen, A.: Upper bounds on the spanning ratio of constrained theta-481

graphs. In: Proceedings of the 11th Latin American Symposium on Theoretical In-482

formatics (LATIN 2014), Lecture Notes in Computer Science, vol. 8392, pp. 108–119483

(2014)484

10. Clarkson, K.: Approximation algorithms for shortest path motion planning. In: Proceed-485

ings of the 19th Annual ACM Symposium on Theory of Computing (STOC 1987), pp.486

56–65 (1987)487

11. Das, G.: The visibility graph contains a bounded-degree spanner. In: Proceedings of the488

9th Canadian Conference on Computational Geometry (CCCG 1997), pp. 70–75 (1997)489

12. Keil, J.M., Gutwin, C.A.: Classes of graphs which approximate the complete euclidean490

graph. Discrete & Computational Geometry 7, 13–28 (1992)491

13. Kranakis, E., Singh, H., Urrutia, J.: Compass routing on geometric networks. In:492

Proceedings of the 11th Canadian Conference on Computational Geometry (CCCG493

1999), pp. 51–54 (1999)494

14. Misra, S., Misra, S.C., Woungang, I.: Guide to Wireless Sensor Networks. Springer495

(2009)496

15. Räcke, H.: Survey on oblivious routing strategies. In: Mathematical Theory and Compu-497

tational Practice, Lecture Notes in Computer Science, vol. 5635, pp. 419–429 (2009)498

