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Rectangle-of-influence triangulations

Therese Biedl* Anna Lubiw*

1 Background

The concept of rectangle-of-influence (RI) drawings is
old and well-studied in the area of graph drawing. A
graph has such a drawing if we can assign points to its
vertices such that for every edge (v,w) the supporting
rectangle (i.e., the minimal closed axis-aligned rectangle
R(v,w) containing v and w) contains no other points.
In the original setup, the graph had to have an edge for
every pair of points with an empty supporting rectangle
(the strong model, see e.g. [8]). Later papers focus on
weak RI-drawings, where for every edge the supporting
rectangle must be empty, but not all such edges must ex-
ist. Of particular interest are planar weak RI-drawings
of planar graphs, since these can always be deformed to
reside on an n x n-integer grid. See e.g. [9, 1].

Our Results: In this paper, we take two com-
putational geometry problems—how to triangulate a
point set and how to flip between two geomet-
ric triangulations—and apply them in the setting of
rectangle-of-influence drawings. In particular, we show
that any point set can be triangulated (with some ex-
ceptions near the convex hull edges, which we show to
be necessary) such that the resulting planar straight-
line graph (PSLG) is an RI-drawing. Next, we turn
to the problem of flipping among geometric triangu-
lations, i.e., converting one triangulation into another
through the operation of flipping the diagonal of one
quadrangle. We show that any RI-triangulation can
be converted into any other RI-triangulation by O(n?)
such flipping-operations (and Q(n?) flips are required
for some RI-triangulations). Moreover, all intermedi-
ate triangulations are also RI-triangulations. The main
idea is that the L>°-Delaunay-triangulation (defined be-
low) is an RI-triangulation; it hence suffices to find one
flip-operation that gets the RlI-triangulation “closer”
to the L°°-Delaunay-triangulation in some sense. We
also study how to flip from any triangulation to an RI-
triangulation while getting “closer”.

Existing literature: Triangulating point sets and
polygons is one of the standard problems in compu-
tational geometry. Any set of m points can be tri-
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angulated in O(nlogn) time (e.g. by computing the
Delaunay triangulation), and the interior of a poly-
gon can be triangulated in O(n) time [4]. The Delau-
nay triangulation has been generalized to other “unit
discs”. In particular, for any convex compact shape
C, the C-Delaunay-triangulation is a triangulation such
that for every edge (v, w) there exists a homothet of C
that contains v and w and no other points [5]. Au-
renhammer and Paulini [2] studied a number of their
properties. If C is a unit square (i.e., the unit-circle
in the L°°-metric), then this triangulation is called
the L°°-Delaunay-triangulation. The L°°-Delaunay-
triangulation can be computed in O(nlogn) time [5].
Observe that the L°°-Delaunay-triangulation is an RI-
triangulation, but an Rl-triangulation need not be a
C-Delaunay-triangulation for any C' because the sup-
porting rectangles are not necessarily homothets of each
other or expandable into such.

Flipping among triangulations is also a well-studied
problem; see [3] for an overview of many variants and
existing results. It is very easy to see that any (geo-
metric) triangulation T can be flipped into any other
triangulation 75 via the intermediary of the Delaunay
triangulation Tp: We can always find a flip that gets
us closer to the Delaunay triangulation (in the sense
that some angle-sum increases), so keep flipping from
T1 until we reach Tp. Also compute the flips from 75
to Tp, and reversing these flips and combining the two
flip-sequences then gives the result. For C-Delaunay-
triangulations, a similar result holds: we can always flip
to get “closer” to the C-Delaunay-triangulation [2].

Notation: Let P be a set of n points that we assume
to be in general position in the sense that no two points
are on a horizontal or vertical line, and no 4 points are
on a square. For any two points p, g € P, define the sup-
porting rectangle R(p,q) to be the minimal axis-aligned
rectangle containing p and q. Define a supporting square
S(p, q) to be a minimal axis-aligned square containing p
and ¢; S(p, ¢) is not unique. For any two points p, g € P,
we call a supporting rectangle/square of (p,q) empty if
it contains no points of P other than p and q.

An edge (p,q) between points of P is called an RI-
edge (L*°-edge) if R(p,q) is empty (resp., some sup-
porting square S(p,q) is empty). Note that an L°°-
edge is an Rl-edge. An RI-polygon is a polygon for
which every edge is an Rl-edge. A planar straight-line
graph (PSLG) is a triangulation if every interior face
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Figure 1: (Left) A triangulation. (v,w) is not locally
RI. (u,v) is locally L* (therefore locally RI), but not
globally L. (Right) A polygon (solid) with its trape-
zoidation (thin dashed). Edge (b, f) would be added
with the first method, edge (¢, e) with the second.

of the PSLG is a triangle. An RI-triangulation (L*°-
triangulation) is a triangulation for which every edge
is an Rl-edge (L°°-edge). We sometimes use “unre-
stricted” triangulation for a triangulation that need not
be an Rl-triangulation. A triangulation is mazimal if it
contains as many edges as possible while staying within
the additional requirements that we impose. Thus, a
mazximal RI-triangulation is an RI-triangulation with as
many edges as possible while having only RI-edges, and
similarly for maximal L*>-triangulations.

For an edge (u,v) in a triangulation, vertex w is fac-
ing (u,v) if there exists an interior face {u,v,w}. Ev-
ery interior edge has exactly two vertices facing it. We
say that (u,v) is locally RI (resp. locally L*>°) if R(u,v)
(resp.. some supporting square S(u,v)) contains none
of the vertices facing (u,v). Sometimes we say that an
RI-edge (L°°-edge) is globally RI (globally L™).

2 Rl-triangulating an Rl-polygon

We first show that any Rl-polygon P can be RI-
triangulated, i.e., made into a triangulation by adding
only Rl-edges in its interior (presuming no extra points
are inside P). To do so, first find a trapezoidation of P,
i.e., extend vertical subdivision lines from all vertices.
This can be done in linear time [4].

We add Rl-edges in two ways. First, check whether
there is any trapezoid that has vertical subdivision lines
on both its left and right sides, and for which the two
vertices v, w that caused these lines are on opposite sides
(top/bottom) of the trapezoid. If so, add the diagonal
(v,w). This is an Rl-edge since R(v,w) is contained
within the supporting rectangles of the top and bottom
edge of T' and the interior of P, all of which are empty.
See edge (b, f) in Fig. 1.

Secondly, if no such trapezoid exists, then any re-
maining face is z-monotone, i.e., it consists of two x-
monotone chains from left to right. Since the first
method does not apply, one of the two chains is a single
edge. Consider one such piece with (say) the bottom
chain a single edge (v, w). All vertices in the top chain
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Figure 2: The maximal-hull of a set of points, and how
to add corner-points and edges to them.

are outside R(v,w) and hence have larger z-coordinate
than v, w. Let u be a local maximum in the top chain,
and connect the neighbors of u. The new edge is an
RI-edge, because its supporting rectangle is contained
in the union of the ones of the edges incident to u as
well as R(v,w) and the interior of P. See edge (¢, e) in
Fig. 1 (with v=f, w=e, u=d).

So we add Rl-edges until all interior faces are trian-
gles. This takes linear time (once the trapezoidation is
found), since finding the local minimum/maximum for
the second rule can be done in O(1) amortized time.

Theorem 1 FEvery RI-polygon can be triangulated us-
ing only RI-edges in linear time.

3 Outer face considerations

The remaining sections deal with triangulations of point
sets, rather than polygons. Here there arise some com-
plications at the outer face. For any maximal (unre-
stricted) triangulation of P, the outer face consists of
the convex hull CH(P). If some edge of CH(P) is
not an Rl-edge, then it obviously cannot be in an RI-
triangulation. We begin by characterizing the outer face
of any RI-triangulation.

The maxima-hull: We need some definitions that
are closely related to the rectilinear convex hull (see
e.g. [10]) and the maxima of a set of vectors (see
e.g. [7]). Define a first quadrant of a point p to be the set
{(z,y) : = > x(p),y > y(p)}. Define the first-quadrant-
chain Cf to be all those points p in P for which the first
quadrant relative to p contains no other points of P;
we sort these points by increasing z-coordinate (hence
by decreasing y-coordinate), and connect them with
straight-line segments in this order. Similarly define
three other chains Cyy, Cyrr, Cry using the three other
types of quadrants. Note that C; and Cj; share one
endpoint (the one with maximum z-coordinate), and
similarly for the other chains, so we can combine the
four polygonal chains into one closed polygonal chain
that we call the mazima-hull MH(P). Note that some
chains may have edges in common, but no two edges
cross, so MH(P) may self-overlap but it has a well-
defined interior region. See Fig. 2.
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In the appendix, we prove the following.

Lemma 2 For any point set P, the maxima-hull con-
sists of L>°-edges (hence RI-edges).

Lemma 3 For any point set P, any Rl-edge (u,v) is
within the region bounded by MH (P).

Combining them gives:

Corollary 1 An RlI-triangulation is maximal if and
only if its outer face consists of the mazima-hull.

Adding corner-points: It will be cumbersome to deal
directly with edges that are on the convex hull but not
RI-edges. To simplify our life, we add points as fol-
lows. For any point set P, let Pt be the set obtained
by adding four corner-points uy,wsr, urr, ury that form
an axis-aligned rectangle (we rotate it slightly to be in
general position) and are outside the bounding box of
P, with u; in the 7th quadrant relative to all points of P.
See Fig. 2. Notice that the convex hull of P consists
of L*°-edges.

Lemma 4 Let TV be a mazimal RI-triangulation of
Pt and let T := T — {uy,ur,upr,ury}y. Then T
18 a mazimal RI-triangulation of T.

Proof. Clearly any edge of T is an Rl-edge, so we only
need to argue maximality. Assume (p,us) is an edge
in TT for some p # wujr,urr,ury. Then R(p,ur) con-
tains no other point, and is to the right and/or above
wyr, ug, ury. So expanding R(p, ur) into the first quad-
rant of p does not add points of P, hence p is on the
maxima-hull. So removing {u,wyr,usr,ury } from T'F
leaves an RI-triangulation where the outer face is the
maxima-hull. By Corollary 1 this is maximal. 0

4 Rl-triangulating a point set

In this section, we study how to find a maximal RI-
triangulation of a given point set. It is obvious that
this exists (for example the L>°-Delaunay triangulation
will do), but our algorithm is especially simple.

Theorem 5 A mazximal Rl-triangulation of a point set
P can be computed in O(nlogn) time, or O(n) time if
P is sorted by x-coordinate.

Proof. As before, add corner-points wy, usr, ursr, ury
to obtain point set PT.  Sort the points by z-
coordinates, and add an edge between any two consec-
utive points; these are clearly RI-edges. Also add the
cycle ur,urr,urrr, ury; these are also Rl-edges. Now
we have a PSLG whose faces consist of RI-polygons.
Triangulate each polygon with Theorem 1. We obtain
an RI-triangulation 7% of P, and it is clearly maxi-
mal since all convex-hull edges are in it. By Lemma 4,
deleting the four corner-points gives the result. 0

5 Flipping and Rl-triangulations

In this section, we investigate flipping while maintain-
ing RI-triangulations or (if we start with an unrestricted
one) getting closer to an RI-triangulation. The natural
“intermediary” here is the L°°-Delaunay triangulation,
which is an RI-triangulation. So we show that any tri-
angulation can be flipped to an RI-triangulation while
getting “closer”, and then that any RI-triangulation can
be flipped to the L*°-Delaunay triangulation while re-
maining an RI-triangulation throughout.

5.1 Flipping to an RI-triangulation

Let P* be a point set for which any convex hull edge is
an Rl-edge (we will argue later how to remove this as-
sumption). Let T be an arbitrary triangulation of PT.
A bad triangle {u,v,w} in T is a face {u, v, w} such that
v € R(u,w). After possible rotation, assume that  is in
the 2nd quadrant and w is in the 4th quadrant relative
to v, with edge (u, w) routed above v. Define the special
region of bad triangle {u,v,w} to be all points p above
(u,w) with z(u) < z(p) < z(v) (including w) and all
points p to the right of (u,w) with y(v) < z(p) < y(w)
(including w). See Fig. 3(a). The definition is sym-
metric for the other three possible rotations of a bad
triangle. Now define for any triangulation 7" the poten-
tial function ®(T") to be the sum, over all bad triangles
{u,v,w}, of the number of points in the special region
of {u,v,w}.

Lemma 6 Let T be any triangulation of Pt with
O(T) > 0. Then there exists an edge in T that we
can flip so that the resulting triangulation T’ satisfies
O(T") < O(T).

Proof. Since ®(7T") > 0, it must have at least one bad
triangle, and hence edges that are not locally RI. Of all
those edges, let (u,w) be the one that maximizes the
L;-distance between its endpoints, thus |z(u) —z(w)| +
ly(u) — y(w)| is maximum among all edges that are not
locally RI. Since convex hull edges are Rl-edges, we
know that (u,w) is an interior edge and has two fac-
ing vertices. Let v be a vertex facing (u,w) that is in
R(u,w), and assume again that (after possible rotation)
the bad triangle {u, v, w} has u (or w) in the 2nd (4th)
quadrant of v with (u,w) above v.

Let z be the other vertex facing (u,w). We claim that
z(z) > x(u). We know that z is above the line through
(u,w) since {z,u,w} is a face. If we had z(z) < z(u),
then u € R(z,w), and so (z,w) is not locally RI but its
L,-distance is longer than the one of (u,w), contradict-
ing our choice of edge (u,w).

Therefore we know x(z) > z(u), and symmetrically
one argues y(z) > y(w). Notice that therefore quadrilat-
eral {u,v,w, z} is convex and so edge (u, w) is flippable.
We claim that regardless of the position of z, doing this
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Figure 3: (a) The special region (shaded) of bad triangle
{u,v,w}. (b-d) Possible positions of the other facing
vertex z. Light gray regions were in the special region
of the bad triangle {u, z, w}.

flip improves the potential function. To show this, we
distinguish where z is located
o z(z) > z(v),y(z) > y(v) (see Fig. 3(b)): In this
case, neither of the two new triangles {u, z,v} and
{v, z,w} is bad. Since triangle {u,v,w} used to be
bad, ® decreases by at least 2.
o z(z) > xz(w),y(z) < y(v) (see Fig. 3(c)): In this
case, the new triangle {u, z,v} is bad, but {v, z, w}
is not. The special region of triangle {u, v, z} is a
strict subset of the one for triangle {u,v,w}, and
in particular, excludes w. Hence ® decreases.

o z € R(v,w) (see Fig. 3(d)): In this case, both new
triangles {u,v,z} and {v,w, z} are bad. But both
triangles {u,v,w} and {u, z, w} that were removed
were bad, and the special regions of the new trian-
gles are strict subsets of the special regions of the
old triangles that, in particular, contain u and w
only once, instead of twice. So again ® decreases.

The cases for z(z) < z(v),y(z) > y(u) and for z €
R(u,v) are symmetric. O

Note in particular that if ®(T") = 0, then it has no
bad triangles (because any bad triangle has at least two
points in its special region); therefore it has no edge
that is not locally RI.

Lemma 7 Let T be a triangulation such that all edges
are locally RI and all outer face edges are globally RI.
Then all edges are globally RI.

Proof. Suppose that some edges of T are not globally
RI, hence contain points inside their supporting rectan-
gles. Let e = (u,v) be the edge with the closest such
point, say z. Since e is an interior edge by assumption,
it has two facing vertices; let w be the vertex facing e
that is on the same side of the supporting line of e as z
is. Suppose that z and w lie right of e, and w is the left
endpoint of e; see Fig. 1. Observe that w must lie either
above R(u,v) (within the same z-range) or to the right
of R(u,v) (within the same y-rage), else some edge of
{u,v,w} would not be locally RI or {u, v, w} would not
be a face. Assume w lies strictly above R(u,v), within
the same z-range. Then (v,w) is also not globally RI,
since z lies in R(v,w). But z is closer to (v, w) than to
e, contradicting our choice of e. O

Putting the two lemmas together, we can hence flip
from any triangulation to an RI-triangulation while
steadily improving the potential-function. Initially
there are O(n) bad triangles, each of which defines a
special region containing at most n points, so ®(T) €
O(n?). Each flip improves the function, and we are
done when it is 0, which means that the number of flips
is O(n?). We summarize:

Lemma 8 Any mazimal triangulation of PT can be
converted into an RI-triangulation of Pt using O(n?)

flips.

We argue in the appendix that this bound is some-
times tight.

Lemma 9 There are triangulations that cannot be con-
verted into an RI-triangulation with o(n?) flips.

Proof. Consider a set of points spread evenly over two
opposing convex chains, such that the only possible RI-
edges between the two chains connect point ¢ on the
first chain to point ¢ and i + 1 on the opposing chain
(see Fig. 4). The edges connecting consecutive points
on each chain are not intersected by any other possible
edge, which implies that these edges are present in every
triangulation and can never be flipped. Thus, the region
between the two chains is independent of the outside re-
gions. Further, by construction, this center region has
a unique RI-triangulation (Fig. 4, right). Now consider
a triangulation that includes the long diagonal connect-
ing one end of the first convex chain to the opposite
end of the other chain (Fig. 4, left). Transforming this
triangulation into the unique RlI-triangulation requires
Q(n?) flips, by an argument analogous to the one given
by Hurtado et al. [6, Theorem 3.8] O
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Figure 4: Turning the triangulation on the left into
an Rl-triangulation requires Q(n?) flips for the region
between the chains to become the only possible RI-
triangulation shown on the right.

Arbitrary point sets: It remains to argue how to
handle point sets P where not all convex-hull edges are
RI-edges. Assume we are given a maximal triangulation
T of P, and we would like to flip that to a maximal RI-
triangulation Tr. Add corner-points ujy, usr, U, Uy
as before to obtain point set PT and connect them in a
cycle. Connect u; (for i € {I,II,III,1V}) to all points
p on the convex hull of P for which quadrant ¢ contains
only p and u;. This gives a triangulation T of Pt
because the convex hull is the outer face T'. See Fig. 2.
The convex hull of P* consists of Rl-edges, so there
exists a sequence o of flips that turns 7+ into a maximal
RI-triangulation TI'{ .

Lemma 10 Throughout flip-sequence o, all edges inci-
dent to corner-points are RI-edges. Therefore any edge
being flipped is not incident to a corner-point.

Proof. The first claim implies the second because
flipped edges were not locally RI. We prove the first
claim for u; only. Apart from the edges to uy; and uyy,
vertex u; has an edge only to a point p for which the
first quadrant is empty, so R(us,p) is empty and the
claim holds. We now show that any time we flip an
edge (u,w) such that the new edge is (v,uy) for some
u,v,w, this new edge is an RI edge. Since u; is out-
side the bounding box of P, it is outside R(u,w). Since
(u, w) was not locally RI (by our choice of edges to flip),
therefore v € R(u,w). In the naming of Fig. 3, we have
ur = z and the case of Fig. 3(b) applies since uy is in the
first quadrant of v. We already knew that in this case
(v, 2) is locally RI. But since z = uy, edge (v, z) is glob-
ally RI: R(v,uy) lies within the union of R(u,ur) and
R(w,ur) (both empty, because these edges are incident
to ur and hence Rl-edges), and the interior of triangles
{u,v,w} and {u,ur,w} (which are faces). O

We now create a sequence of flips and edge deletions
for T that leads to a maximal RI-triangulation by mir-
roring the flip-sequence of T7. We maintain the claim
that at any time triangulation T equals T+ with the
corner-points removed. Clearly this holds initially. Say

the next flip for T+ was to flip (u,w) to (v,2). We know
u,w € P. If v,z € P, then (by induction) the 4-cycle
u,v,w, z that exists in 7t also exists in 7', and so we
can do the exact same flip in 7" and the claim holds.
Else, one of v, z is a corner-point. Do an edge-deletion
in T, i.e., remove edge (u,w) without adding a new one.
The claim still holds since one end of (v, z) is not in P.

We end with a triangulation Tk of P that equals TE
with the corner-points removed. By Lemma 4, this is a
maximal RI-triangulation.

Theorem 11 We can convert any mazximal triangula-
tion into an RI-triangulation by doing O(n?) flips and
O(n) edge-deletions.

5.2 Flipping between Rl-triangulations

As explained earlier, to flip between maximal RI-
triangulations while maintaining an RI-triangulation,
it suffices to show that every maximal RI-triangulation
can be flipped into the L*>°-Delaunay-triangulation. To
prove this, we use again a potential-function argument,
but with a different function. We need the following;:

Lemma 12 [2] Let T be a mazimal triangulation where
all edges are locally L°°. Then all edges are globally L*°.

Our potential function depends on having fixed, for
every edge (u,v) of the current triangulation, a particu-
lar supporting square S(u, v), and counting the number
of points of P in it. We define ¥(T) to be the sum,
over all edges (u,v) of the number of points in S(u,v).
When we flip, we are free to choose a supporting square
for the new edge.

Lemma 13 Let T be a maximal RI-triangulation that
s not the L*°-Delaunay triangulation. There exists an
edge e such that flipping e results in an RI-triangulation
T’ and we can assign a supporting square to e such that
U(T) < U(T).

Proof. By Lemma 12 T has some edge (u,w) that is
not locally L*°. Up to symmetry, we may assume that
the height Y of R(u,w) is no smaller than its width. All
supporting squares of (u,w) are then in the horizontal
strip H of height Y between u and w.

Since T is a maximal RI-triangulation, its outer face
is the maxima-hull and consists of L>°-edges. So (u,w)
is an interior edge. Let v and z the two vertices facing
(u,w). We claim that both v and z must be in strip H.
To see this, recall that we have an RI-triangulation, and
hence rectangle R(u,w) is empty. This rectangle bisects
strip H. So if, say, v is not in H, then at most one facing
vertex is in H, which means that to one side of R(u,w)
in H there is no facing vertex of (u,v). We could hence
pick a supporting square S’ of (u,w) that consists of
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Figure 5: Finding a supporting square for (v, z).

R(u,w) extended to that side. Then S’ contains neither
v nor z, and (u, w) would be locally L*, a contradiction.

So both v and z are in strip H. By planarity they
must be on opposite sides of R(u,w), say v is to the
left and z is to the right. Quadrangle {u, v, w, z} hence
is drawn convex and edge (u,v) is flippable. Define R’
be the minimum rectangle containing u, v, w, z, and no-
tice that it is contained in the union of the supporting
rectangles of the edges (u,v), (v, w), (u, w), (u, 2), (z, w).
Since we had an RI-triangulation, therefore R’ contains
no points other than these 4. Also u,v,w, z are all on
the boundary of R’. Therefore R(v, z) is empty and the
new edge (v, z) is an Rl-edge.

Now we explain how to find a supporting square for
(v, z). Let X be the width of R’, and notice that X <Y,
since X =Y would imply four points on a square and
X > Y would mean that some square within R’ sup-
ports (u,w) and does not contain v, z, contradicting
that (u,w) is not locally L>°. Now consider the union
of R’ and the square S(u,w) that was used as support-
ing square for (u,w). Since (u,w) was not locally L,
at least one of {v,z} is in S(u,w), hence S(u,w) U R’
contains at most one more point than S(u,w). Let R”
be the rectangle obtained by shrinking S(u,w) U R’ to
height Y — ¢ in such a way that u,w ¢ R”. We choose
¢ so small that v and 2z remain in R” and such that
Y —e > X. So R” contains at least one fewer points
than S(u,w). Finally shrink R” in width until it is a
square; we can do this and retain v and z in it, since R”
is taller than R’ is wide. Using the resulting square for
S(v, z) decreases ¥ as desired. O

Theorem 14 Any mazimal RI-triangulation T can be
converted into any other maximal RI-triangulation T’
by doing O(n?) flips, and all intermediate triangulations
are mazimal RI-triangulations.

Proof. As before it suffices to argue this if 77 is the
L*-Delaunay triangulation. Compute an arbitrary set
of supporting squares for T. Initially there are O(n)
edges in the triangulation, each of which has at most n
points in its supporting square, so ¥(T) € O(n?). Ap-
plying the above flip means that with O(n?) flips we get

to the L>°-Delaunay-triangulation while maintaining an
RI-triangulation. O

This bound is tight. Fig. 6 shows two RI-
triangulations of a point set that forms two convex
chains. Hurtado et al. [6, Theorem 3.8] showed that
their flip distance is 2(n?) even without the restriction
of using only RI-triangulations.

Figure 6: A pair of RI-triangulations such that Q(n?)
flips are required to transform one into the other.
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A Proof of Lemma 2
We first need a helper-result.

Lemma 15 Let (u,v) be any edge on the first-quadrant
chain Cr, say x(u) < xz(v). Let Q be the first quadrant
of point (x(u),y(v)), i.e., it has u and v on its boundary.
Then no point (other than u,v) is in Q.

Proof. See Figure 2. Assume to the contrary that Q
contained points other than u, v, and let w be the one
that maximizes the z-coordinate. Since the first quad-
rants relative to v and v are empty, w must be in R(u, v).
By general position we have z(u) < z(w) < z(v) and
y(v) < y(w) < y(u). The first quadrant of w cannot
contain any other point, for all such points would be to
the right of w (contradicting the choice of w). So point
w should have been in Cj, contradicting that u,v were
consecutive in C7. O

To complete the proof of Lemma 2, note that for any
edge (u,v) on C7, rectangle R(u,v) is part of this first-
quadrant, so it is empty, and we can expand it into a
square supporting u,v that is empty. So any edge on
Cr is an L°°-edge. Similar arguments hold for the other
three quadrant-chains, which proves Lemma 2.

B Proof of Lemma 3

Proof. We aim to show that any RI-edge (u,v) is on
or below C; U Cyr. Similar proofs in the other three
directions show that (u,v) is either on or enclosed by
the maxima-hull as desired.

Up to renaming and symmetry, we may assume that
u is left of v and higher than v. Consider the maximal
vertical strip S containing (u,v). This strip must inter-
sect C7 U Cyy, since the rightmost point of P is in Cf
and the leftmost of P is in C;. Let C be the part of
CrUC); within S, say its ends are p,, (on a vertical line
with u) and p, (on a vertical line with v). Applying
Lemma 15 (or the equivalent for second quadrants) to
the edge containing p, shows that the vertical ray up-
ward from p, contains no other points of P. So either
Py = U, OT Py is above u. Similarly p, = v or p, is above
v.

In what follows, we use the term “vertex of C” for a
point on C that is also a point of P, while “point of C”
refers to an arbitrary point that belongs to C. If C' has
no vertices, then it is a single line segment p,,p,, and by
the above (u,v) is below that. So assume that C has
vertices.

Since C' (as part of C; U Cyy) consists of an increas-
ing chain followed a decreasing chain, its minima (with
respect to y-coordinate) appear at the ends. Since p,
is above v, therefore all vertices of C' have y-coordinate
at least y(v). Since none of these vertices are inside

R(u,v) (recall that (u,v) is an Rl-edge), they in fact
must have y-coordinate at least y(u), hence be above
R(u,v). In consequence the only edge of C' that can in-
tersect R(u,v) is the edge incident to p,, but this edge
is also above (u,v) since p, is above v. So all of C' is
above (u,v) as desired. O

Figure 7: For the proof of Lemma 3.



