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Abstract. Given a set of points in the plane, we show that the θ-
graph with 5 cones is a geometric spanner with spanning ratio at most√

50 + 22
√

5 ≈ 9.960. This is the first constant upper bound on the
spanning ratio of this graph. The upper bound uses a constructive argu-
ment, giving a, possibly self-intersecting, path between any two vertices,

whose length is at most
√

50 + 22
√

5 times the Euclidean distance be-
tween the vertices. We also give a lower bound on the spanning ratio of
1
2
(11
√

5− 17) ≈ 3.798.
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1 Introduction

A t-spanner (t ≥ 1) of a weighted graph G is a spanning subgraph H with the
property that for all pairs of vertices, the weight of the shortest path between
the vertices in H is at most t times the weight of the shortest path in G. The
spanning ratio of H is the smallest t for which it is a t-spanner. The graph G
is referred to as the underlying graph. In this paper, the underlying graph is the
complete graph on a finite set of n points in the plane and the weight of an edge
is the Euclidean distance between its endpoints. A spanner of such a graph is
called a geometric spanner. We focus on a specific class of geometric spanners,
called θ-graphs. For a more comprehensive overview of geometric spanners, we
refer the reader to the book by Narasimhan and Smid [1].

u

u

(a)

(b)

v

C0

C1

C2C3

C4

Fig. 1. (a) The cones around a
vertex u. (b) The construction
of the θ5-graph.

Introduced independently by Clarkson [2] and
Keil [3], θ-graphs form an important class of ge-
ometric spanners. Given a set P of points in the
plane, we consider each point u ∈ P and partition
the plane into m cones (regions in the plane be-
tween two rays originating from the same point)
with apex u, each defined by two rays at consecu-
tive multiples of θ = 2π/m radians from the nega-
tive y-axis. We label the cones C0 through Cm−1,
in clockwise order around u, starting from the top
(see Figure 1a). If the apex is not clear from the
context, we use Cui to denote cone Ci with apex
u. We refer to the θ-graph with m cones as the
θm-graph.

To build the θ-graph, we consider each ver-
tex u and add an edge to the ‘closest’ vertex in
each of its cones. However, instead of using the
Euclidean distance, we measure distance by pro-
jecting each vertex onto the bisector of that cone
(see Figure 1b). We use this definition of closest
in the remainder of the paper. For simplicity, we
assume that no two points lie on a line parallel or
perpendicular to a cone boundary, guaranteeing
that each vertex connects to at most one vertex
in each cone. Thus, the graph has at most m · n
edges.

Ruppert and Seidel [4] showed that for m ≥ 7, the spanning ratio of these
graphs is at most 1/(1 − 2 sin(θ/2)), but until recently little was known about
θ-graphs with fewer cones. The only results so far are a matching upper and
lower bound of 2 on the spanning ratio of the θ6-graph by Bonichon et al. [5],
and negative results showing that there is no constant t for which the θ2- and
θ3-graphs are t-spanners (shown by El Molla [6] for Yao-graphs, but the proof
translates to θ-graphs). Very recently, the θ4-graph was shown to be a spanner



as well [7], leaving the θ5-graph as the only θ-graph for which it is not known
whether the graph is a spanner or not. We answer this question affirmatively.

Choosing a θm-graph with smallest possible value of m is important for many
practical applications where the cost of a network is mostly determined by the
number of edges. One such example is point-to-point wireless networks. These
networks use narrow directional wireless transceivers that can transmit over long
distances (up to 50km [8,9]). The cost of an edge in such a network is therefore
equal to the cost of the two transceivers that are used at each endpoint of that
edge. If the transceivers are distributed uniformly at random, the cost of building
a θ6-graph is approximately 29% higher than the cost of building a θ5-graph [10].

We present the first constant upper bound on the spanning ratio of the θ5-
graph, proving that it is a geometric spanner. Since the proof is constructive,
it gives us a path between any two vertices, u and w, with length at most√

50 + 22
√

5 ≈ 9.960 times |uw|. Surprisingly, this path can cross itself, a prop-
erty we observed for the shortest path as well. We also prove a lower bound on
the spanning ratio of 1

2 (11
√

5− 17) ≈ 3.798.

2 Connectivity

To introduce the structure of the spanning proof, we first show that the θ5-graph
is connected.

Given two vertices u and v, we define their canonical triangle Tuv to be
the triangle bounded by the cone of u that contains v and the line through v
perpendicular to the bisector of that cone. For example, the shaded region in
Figure 1b is the canonical triangle Tuv. Note that for any pair of vertices u and
v, there are two canonical triangles: Tuv and Tvu. We equate the size |Tuv| of
a canonical triangle to the length of one of the sides incident to the apex u.
This gives us the useful property that any line between u and a point inside the
triangle has length at most |Tuv|.

Theorem 1. The θ5-graph is connected.

Proof. We prove that there is a path between any (ordered) pair of vertices in
the θ5-graph, using induction on the size of their canonical triangle. Formally,
given two vertices u and w, we perform induction on the rank of Tuw among
the canonical triangles of all pairs of vertices, when ordered by size. For ease of
description, we assume that w lies in the right half of Cu0 . The other cases are
analogous.

If Tuw has rank 1, it is the smallest canonical triangle. Therefore there can
be no point closer to u in Cu0 , so the θ5-graph must contain the edge (u,w). This
proves the base case.

If Tuw has a larger rank, our inductive hypothesis is that there exists a path
between any pair of vertices with a smaller canonical triangle. Let a and b be
the left and right corners of Tuw. Let m be the midpoint of ab and let x be the
intersection of ab and the bisector of ∠mub (see Figure 2a).
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Fig. 2. (a) The canonical triangle Tuw. (b) If w lies between m and x, Twu is smaller
than Tuw.

If w lies to the left of x, consider the canonical triangle Twu. Let m′ be the
midpoint of the side of Twu opposite w and let α = ∠muw (see Figure 2b). We
can express the size of Twu as follows.

|Twu| =
|wm′|
cos π5

=
cos∠uwm′ · |uw|

cos π5
=

cos
(
π
5 − α

)
· |um|cosα

cos π5
=

cos
(
π
5 − α

)
cosα

· |Tuw|

Since w lies to the left of x, the angle α is less than π/10, which means that
cos(π5 −α)/ cosα is less than 1. Hence Twu is smaller than Tuw and by induction,
there is a path between w and u. Since the θ5-graph is undirected, we are done
in this case. The rest of the proof deals with the case where w lies on or to the
right of x.

If Twu is empty, there is an edge between u and w and we are done, so assume
that this is not the case. Then there is a vertex vw that is closest to w in Cw3
(the cone of w that contains u). This gives rise to four cases, depending on the
location of vw (see Figure 3a). In each case, we will show that Tuvw is smaller
than Tuw and hence we can apply induction to obtain a path between u and vw.
Since vw is the closest vertex to w in C3, there is an edge between vw and w,
completing the path between u and w.

Case 1. vw lies in Cu2 . In this case, the size of Tuvw is maximized when vw lies
in the bottom right corner of Twu and w lies on b. Let y be the rightmost corner
of Tuvw (see Figure 3b). Using the law of sines, we can express the size of Tuvw
as follows.

|Tuvw | = |uy| =
sin∠uvwy
sin∠uyvw

· |uvw| =
sin 3π

5

sin 3π
10

· tan
π

5
· |Tuw| < |Tuw|

Case 2. vw lies in Cu1 . In this case, the size of Tuvw is maximized when w lies
on b and vw lies almost on w. By symmetry, this gives |Tuvw | = |Tuw|. However,
vw cannot lie precisely on w and must therefore lie a little closer to u, giving us
that |Tuvw | < |Tuw|.
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Fig. 3. (a) The four cases for vw. (b) Case 1: The situation that maximizes |Tuvw |
when vw lies in Cu

2 . (c) Case 4: The situation that maximizes |Tuvw | when vw lies in
Cu

4 .

Case 3. vw lies in Cu0 . As in the previous case, the size of Tuvw is maximized
when vw lies almost on w, but since vw must lie closer to u, we have that
|Tuvw | < |Tuw|.

Case 4. vw lies in Cu4 . In this case, the size of Tuvw is maximized when vw lies
in the left corner of Twu and w lies on x. Let y be the bottom corner of Tuvw
(see Figure 3c). Since x is the point where |Tuw| = |Twu|, and vwyuw forms a
parallelogram, |Tuvw | = |Tuw|. However, by general position, vw cannot lie on the
boundary of Twu, so it must lie a little closer to u, giving us that |Tuvw | < |Tuw|.
�

3 Spanning ratio

In this section, we prove an upper bound on the spanning ratio of the θ5-graph.

Lemma 1. Between any pair of vertices u and w of a θ5-graph, there is a path
of length at most c · |Tuw|, where c = 2

(
2 +
√

5
)
≈ 8.472.

Proof. We begin in a way similar to the proof of Theorem 1. Given an ordered
pair of vertices u and w, we perform induction on the size of their canonical
triangle. If |Tuw| is minimal, there must be a direct edge between them. Since
c > 1 and any edge inside Tuw with endpoint u has length at most |Tuw|, this
proves the base case. The rest of the proof deals with the inductive step, where
we assume that there exists a path with length at most c · |T | between every pair
of vertices whose canonical triangle T is smaller than Tuw. As in the proof of
Theorem 1, we assume that w lies in the right half of Cu0 . If w lies to the left of
x, we have seen that Twu is smaller than Tuw. Therefore we can apply induction
to obtain a path of length at most c · |Twu| < c · |Tuw| between u and w. Hence



we need to concern ourselves only with the case where w lies on or to the right
of x.

If u is the vertex closest to w in Cw3 or w is the closest vertex to u in Cu0 ,
there is a direct edge between them and we are done by the same reasoning as
in the base case. Therefore assume that this is not the case and let vw be the
vertex closest to w in Cw3 . We distinguish the same four cases for the location of
vw (see Figure 3a). We already showed that we can apply induction on Tuvw in
each case. This is a crucial part of the proof for the first three cases.

Most of the cases come down to finding a path between u and w of length
at most (g + h · c) · |Tuw|, for constants g and h with h < 1. The smallest
value of c for which this is bounded by c · |Tuw| is g/(1 − h). If this is at most
2
(
2 +
√

5
)
≈ 8.472, we are done.

Case 1. vw lies in Cu2 . By induction, there exists a path between u and vw of
length at most c · |Tuvw |. Since vw is the closest vertex to w in Cw3 , there is a
direct edge between them, giving a path between u and w of length at most
|wvw|+ c · |Tuvw |.

Given any initial position of vw in Cu2 , we can increase |wvw| by moving w
to the right. Since this does not change |Tuvw |, the worst case occurs when w
lies on b. Then we can increase both |wvw| and |Tuvw | by moving vw into the
bottom corner of Twu. This gives rise to the same worst-case configuration as in
the proof of Theorem 1, depicted in Figure 3b. Building on the analysis there,
we can bound the worst-case length of the path as follows.

|wvw|+ c · |Tuvw | =
|Tuw|
cos π5

+ c ·
sin 3π

5

sin 3π
10

· tan
π

5
· |Tuw|

This is at most c · |Tuw| for c ≥ 2
(
2 +
√

5
)
. Since we picked c = 2

(
2 +
√

5
)
, the

theorem holds in this case. Note that this is one of the cases that determines the
value of c.
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Fig. 4. (a) Case 2: Vertex vw lies on the boundary of Cu
1 after moving it down along

the side of Tuvw . (b) Case 3: Vertex vw lies on the boundary of Cu
0 after moving it left

along the side of Tuvw . (c) Case 4: Vertex vw lies in Cu
4 ∩ Cb

3.



Case 2. vw lies in Cu1 . By the same reasoning as in the previous case, we have a
path of length at most |wvw|+ c · |Tuvw | between u and w and we need to bound
this length by c · |Tuw|.

Given any initial position of vw in Cu1 , we can increase |wvw| by moving w
to the right. Since this does not change |Tuvw |, the worst case occurs when w
lies on b. We can further increase |wvw| by moving vw down along the side of
Tuvw opposite u until it hits the boundary of Cu1 or Cw3 , whichever comes first
(see Figure 4a).

Now consider what happens when we move vw along these boundaries. If vw
lies on the boundary of Cu1 and we move it away from u by ∆, |Tuvw | increases
by ∆. At the same time, |wvw| might decrease, but not by more than ∆. Since
c > 1, the total path length is maximized by moving vw as far from u as possible,
until it hits the boundary of Cw3 . Once vw lies on the boundary of Cw3 , we have
that |Tuvw | = |Tuw| − |wvw| ·

(
3−
√

5
)
/2. Since c > 2/

(
3−
√

5
)
≈ 2.618, this

gives |wvw|+ c · |Tuvw | = c · |Tuw| − (c ·
(
3−
√

5
)
/2− 1) · |wvw| < c · |Tuw|.

Case 3. vw lies in Cu0 . Again, we have a path of length at most |wvw|+ c · |Tuvw |
between u and w and we need to bound this length by c · |Tuw|.

Given any initial position of vw in Cu0 , moving vw to the left increases |wvw|
while leaving |Tuvw | unchanged. Therefore the path length is maximized when vw
lies on the boundary of either Cu0 or Cw3 , whichever it hits first (see Figure 4b).

Again, consider what happens when we move vw along these boundaries.
Similar to the previous case, if vw lies on the boundary of Cu0 and we move it
away from u by ∆, |Tuvw | increases by ∆, while |wvw| might decrease by at most
∆. Since c > 1, the total path length is maximized by moving vw as far from u as
possible, until it hits the boundary of Cw3 . Once there, the situation is symmetric
to the previous case, with |Tuvw | = |Tuw| − |wvw| ·

(
3−
√

5
)
/2. Therefore the

theorem holds in this case as well.

Case 4. vw lies in Cu4 . This is the hardest case. Similar to the previous two cases,
the size of Tuvw can be arbitrarily close to that of Tuw, but in this case |wvw|
does not approach 0. This means that simply invoking the inductive hypothesis
on Tuvw does not work, so another strategy is required. We first look at a subcase
where we can apply induction directly, before considering four subcases for the
position of vu, the closest vertex to u in C0.

Case 4a. vw lies in Cu4 ∩ Cb3. This situation is illustrated in Figure 4c. Given
any initial position of vw, moving w to the right onto b increases the total path
length by increasing |wvw| while not affecting |Tuvw |. Here we use the fact that
vw already lies in Cb3, otherwise we would not be able to move w onto b while
keeping vw in Cw3 . Now the total path length is maximized by placing vw on the
left corner of Twu. Since this situation is symmetrical to the worst-case situation
in Case 1, the theorem holds by the same analysis.

Next, we distinguish four cases for the position of vu (the closest vertex to u in
C0), illustrated in Figure 5a. We can solve the first two by applying our inductive
hypothesis to Tvuw.
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Fig. 5. (a) Four different cases for the position of vu. (b) The worst-case configuration
with w in Cvu

4 . (c) A configuration with w in Cvu
0 , after moving vu onto the right side

of Cu
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Case 4b. w lies in Cvu4 . To apply our inductive hypothesis, we need to show that
|Tvuw| < |Tuw|. If that is the case, we obtain a path between vu and w of length
at most c · |Tvuw|. Since vu is the closest vertex to u, there is a direct edge from
u to vu, resulting in a path between u and w of length at most |uvu|+ c · |Tvuw|.

Given any intial positions for vu and w, moving w to the left increases |Tvuw|
while leaving |uvu| unchanged. Moving vu closer to b increases both. Therefore
the path length is maximal when w lies on x and vu lies on b (see Figure 5b).
We can express |Tvuw| as follows.

|Tvuw| =
sin 3π

5

sin 3π
10

· |wvu| =
sin 3π

5

sin 3π
10

·
sin π

10

sin 3π
5

· |Tuw| =
1

2

(
3−
√

5
)
· |Tuw|

Since |uvu| = |Tuw|, the complete path has length at most c · |Tuw| for

c ≥ 1

1− 1
2

(
3−
√

5
) =

1

2

(
1 +
√

5
)
≈ 1.618.

Case 4c. w lies in Cvu0 . Since vu lies in Cu0 , it is clear that |Tvuw| < |Tuw|, which
allows us to apply our inductive hypothesis. This gives us a path between u
and w of length at most |uvu|+ c · |Tvuw|. For any initial location of vu, we can
increase the total path length by moving vu to the right until it hits the side of
Cu0 (see Figure 5c), since |Tvuw| stays the same and |uvu| increases. Once there,
we have that |uvu|+ |Tvuw| = |Tuw|. Since c > 1, this immediately implies that
|uvu|+ c · |Tvuw| ≤ c · |Tuw|, proving the theorem for this case.

To solve the last two cases, we need to consider the positions of both vu and vw.

Case 4d. w lies in Cvu1 and vu lies in Cw3 . We would like to apply our inductive
hypothesis to Tvuvw , resulting in a path between vu and vw of length at most
c · |Tvuvw |. The edges (w, vw) and (u, vu) complete this to a path between u and
w, giving a total length of at most |uvu|+ c · |Tvuvw |+ |vww|.
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Fig. 6. (a) The regions where vu (light) and vw (dark) can lie. (b) The worst case when
vu lies on a given line `. (c) The worst case for a fixed position of w.

First, note that vu cannot lie in Twvw , as this region is empty by definition.
This means that vw must lie in Cvu4 . We first show that Tvuvw is always smaller
than Tuw, which means that we are allowed to use induction. Given any initial
position for vu, consider the line ` through vu, perpendicular to the bisector of
C3 (see Figure 6a). Since vw cannot be further from w than vu, the size of Tvuvw
is maximized when vw lies on the intersection of ` and the top boundary of Twu.
We can increase |Tvuvw | further by moving vu along ` until it reaches the bisector
of Cw3 (see Figure 6b). Since the top boundary of Twu and the bisector of Cw3
approach each other as they get closer to w, the size of Tvuvw is maximized when
vu lies on the bottom boundary of Twu (ignoring for now that this would move vu
out of Tuw). Now it is clear that |Tvuvw | < |Tuvw |. Since we already established
that Tuvw is smaller than Tuw in the proof of Theorem 1, this holds for Tvuvw as
well and we can use induction.

All that is left is to bound the total length of the path. Given any initial
position of vu, the path length is maximized when we place vw at the intersection
of ` and the top boundary of Twu, as this maximizes both |Tvuvw | and |wvw|.
When we move vu away from vw along ` by∆, |uvu| decreases by at most∆, while
|Tvuvw | increases by sin 3π

5 / sin 3π
10 ·∆ > ∆. Since c > 1, this increases the total

path length. Therefore the worst case again occurs when vu lies on the bisector
of Cw3 , as depicted in Figure 6b. Moving vu down along the bisector of Twu by
∆ decreases |uvu| by at most ∆, while increasing |wvw| by 1/ sin 3π

10 ·∆ > ∆ and
increasing |Tvuvw |. Therefore this increases the total path length and the worst
case occurs when vu lies on the left boundary of Tuw (see Figure 6c).

Finally, consider what happens when we move vu ∆ towards u, while moving
w and vw such that the construction stays intact. This causes w to move to
the right. Since vu, w and the left corner of Tuw form an isosceles triangle with
apex vu, this also moves vu ∆ further from w. We saw before that moving
vu away from w increases the size of Tvuvw . Finally, it also increases |wvw| by
1/ sin 3π

10 ·∆ > ∆. Thus, the increase in |wvw| cancels the decrease in |uvu| and
the total path length increases. Therefore the worst case occurs when vu lies
on u and vw lies in the corner of Twu, which is symmetric to the worst case of
Case 1. Thus the theorem holds by the same analysis.



Case 4e. vu lies in Cw4 . We split this case into three final subcases, based on the
position of vu. These cases are illustrated in Figure 7a.

Case 4e-1. |Twvu | ≤ c−1
c · |Tuw|. If Twvu is small enough, we can apply our

inductive hypothesis to obtain a path between vu and w of length at most c ·
|Twvu |. Since there is a direct edge between u and vu, we obtain a path between
u and w with length at most |uvu|+ c · |Twvu |. Any edge from u to a point inside
Tuw has length at most |Tuw|, so we can bound the length of the path as follows.

|uvu|+c · |Twvu | ≤ |Tuw|+c ·
c− 1

c
· |Tuw| = |Tuw|+(c−1) · |Tuw| = c · |Tuw|

In the other two cases, we use induction on Tvwvu to obtain a path between vw
and vu of length at most c · |Tvwvu |. The edges (u, vu) and (w, vw) complete this
to a (self-intersecting) path between u and w. We can bound the length of these
edges by the size of the canonical triangle that contains them, as follows.

|uvu|+ |wvw| ≤ |Tuw|+ |Twu| ≤ |Tuw|+
1

cos π5
· |Tuw| =

√
5 · |Tuw|

All that is left now is to bound the size of Tvwvu and express it in terms of Tuw.
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Fig. 7. (a) The three subcases for the position of vu. (b) The situation that maximizes
Tvwvu when vu lies in Cvw

0 . (c) The worst case when vu lies in Cvw
1 .

Case 4e-2. vu lies in Cvw0 . In this case, the size of Tvwvu is maximal when vu lies
on the top boundary of Tuw and vw lies at the lowest point in its possible region:
the left corner of Tbu (see Figure 7b). Now we can express |Tvwvu | as follows.

|Tvwvu | =
sin π

10

sin 7π
10

· |bvw| =
sin π

10

sin 7π
10

· 1

cos π5
· |Tuw| = 2

(√
5− 2

)
· |Tuw|



Since 2
(√

5− 2
)
< 1, we can use induction. The total path length is bounded

by c · |Tuw| for

c ≥
√

5

1− 2
(√

5− 2
) = 2 +

√
5 ≈ 4.236.

Case 4e-3. vu lies in Cvw1 . Since |Twvu | > c−1
c · |Tuw|, Tvwvu is maximal when vw

lies on the left corner of Twu and vu lies on the top boundary of Tuw, such that
|Twvu | = c−1

c · |Tuw| (see Figure 7c). Let y be the intersection of Tvwvu and Twu.
Note that since vw lies on the corner of Twu, y is also the midpoint of the side
of Tvwvu opposite vw. We can express the size of Tvwvu as follows.

|Tvwvu | =
|vwy|
cos π5

=
|wvw| − |wy|

cos π5
=

|Tuw|
cos π5

− cos π
10 · |wvu|

cos π5

=

|Tuw|
cos π5

− cos π
10 ·

sin 3π
10

sin 3π
5

· |Twvu |

cos π5
=

|Tuw|
cos π5

− cos π
10 ·

sin 3π
10

sin 3π
5

· c− 1

c
· |Tuw|

cos π5

=

(
1

c
+ 5− 2

√
5

)
· |Tuw|

Thus we can use induction for c > 1/
(
2
√

5− 4
)
≈ 2.118 and the total path

length can be bounded by c · |Tuw| for

c ≥
√

5 + 1

2
√

5− 4
=

1

2

(
7 + 3

√
5
)
≈ 6.854.

�

Using this result, we can compute the exact spanning ratio.

Theorem 2. The θ5-graph is a spanner with spanning ratio at most√
50 + 22

√
5 ≈ 9.960.

Proof. Given two vertices u and w, we know from Lemma 1 that there is
a path between them with length at most c · min (|Tuw|, |Twu|), where c =
2
(
2 +
√

5
)
≈ 8.472. This gives an upper bound on the spanning ratio of c ·

min (|Tuw|, |Twu|) /|uw|. We assume without loss of generality that w lies in the
right half of Cu0 . Let α be the angle between the bisector of Cu0 and the line uw
(see Figure 2b). Using some expressions derived in the proof of Theorem 1, we
can express the spanning ratio in terms of α.

c ·min

(
|Tuw|,

cos(π5−α)
cosα · |Tuw|

)
cos π5
cosα · |Tuw|

=
c

cos π5
·min

(
cosα, cos

(
π
5 − α

))



To get an upper bound on the spanning ratio, we need to maximize the minimum
of cosα and cos

(
π
5 − α

)
. Since for α ∈ [0, π/5], one is increasing and the other

is decreasing, this maximum occurs at α = π/10, where they are equal. Thus,
our upper bound becomes

c

cos π5
· cos π

10 =

√
50 + 22

√
5 ≈ 9.960.

�
4 Lower bound

u

w

v1

v2

v3

v4

Fig. 8. A path with a large spanning ratio.

In this section, we derive a lower
bound on the spanning ratio of the θ5-
graph.

Theorem 3. The θ5-graph has span-
ning ratio at least 1

2 (11
√

5 − 17) ≈
3.798.

Proof. For the lower bound, we
present and analyze a path between
two vertices that has a large span-
ning ratio. The path has the following
structure (illustrated in Figure 8).

The path can be thought of as be-
ing directed from w to u. First, we
place w in the right corner of Tuw.
Then we add a vertex v1 in the bot-
tom corner of Twu. We repeat this two
more times, each time adding a new
vertex in the corner of Tviu furthest away from u. The final vertex v4 is placed
on the top boundary of Cv31 , such that u lies in Cv41 . Since we know all the angles
involved, we can compute the length of each edge, taking |uw| = 1 as baseline.

|wv1| =
1

cos π5
|v1v2| = |v2v3| = 2 sin π

5 tan π
5

|v3v4| =
sin π

10

sin 3π
5

tan π
5 |v4u| =

sin 3π
10

sin 3π
5

tan π
5

Since we set |uw| = 1, the spanning ratio is simply |wv1| + |v1v2| + |v2v3| +
|v3v4| + |v4u| = 1

2 (11
√

5 − 17) ≈ 3.798. Note that the θ5-graph with just these
5 vertices would have a far smaller spanning ratio, as there would be a lot of
shortcut edges. However, a graph where this path is the shortest path between
two vertices can be found in Appendix A. �



5 Conclusions

We showed that there is a path between every pair of vertices in the θ5-graph,

with length at most
√

50 + 22
√

5 ≈ 9.960 times the straight-line distance be-
tween them. This is the first constant upper bound on the spanning ratio of the
θ5-graph, proving that it is a geometric spanner. We also presented a θ5-graph
with spanning ratio arbitrarily close to 1

2 (11
√

5− 17) ≈ 3.798, thereby giving a
lower bound on the spanning ratio. There is still a significant gap between these
bounds, which is caused by the upper bound proof mostly ignoring the main
obstacle to improving the lower bound: that every edge requires at least one
of its canonical triangles to be empty. Hence we believe that the true spanning
ratio is closer to the lower bound.

While our proof for the upper bound on the spanning ratio returns a spanning
path between the two vertices, it requires knowledge of the neighbours of both
the current vertex and the destination vertex. This means that the proof does not
lead to a local routing strategy that can be applied in, say, a wireless setting.
This raises the question whether it is possible to route competitively on this
graph, i.e. to discover a spanning path from one vertex to another by using only
information local to the current vertex at each step.
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A Lower bound construction

# Action Shortest path
1 Start with a vertex v1. -
2 Add v2 in Cu0 , such that v2 is arbitrarily close to the top

right corner of Tv1v2 .
v1v2

3 Remove edge (v1, v2) by adding two vertices, v3 and v4,
arbitrarily close to the counter-clockwise corners of Tv1v2
and Tv2v1 .

v1v4v2

4 Remove edge (v1, v4) by adding two vertices, v5 and v6,
arbitrarily close to the clockwise corner of Tv1v4 and the
counter-clockwise corner of Tv4v1 .

v1v3v2

5 Remove edge (v2, v3) by adding two vertices, v7 and v8,
arbitrarily close to the clockwise corner of Tv2v3 and the
counter-clockwise corner of Tv3v2 .

v1v6v4v2

6 Remove edge (v1, v6) by adding two vertices, v9 and v10,
arbitrarily close to the clockwise corner of Tv1v6 and the
counter-clockwise corner of Tv6v1 .

v1v5v4v2

7 Remove edge (v4, v5) by adding two vertices, v11 and v12,
arbitrarily close to the counter-clockwise corner of Tv4v5
and the clockwise corner of Tv5v4 .

v1v5v6v4v2

8 Remove edge (v5, v6) by adding two vertices, v13 and v14,
arbitrarily close to the counter-clockwise corner of Tv5v6
and the clockwise corner of Tv6v5 .

v1v5v14v6v4v2

9 Remove edge (v5, v14) by adding two vertices, v15 and v16,
arbitrarily close to the counter-clockwise corner of Tv5v14
and the clockwise corner of Tv14v5 .

v1v5v13v6v4v2

10 Remove edge (v6, v13) by adding two vertices, v17 and v18,
arbitrarily close to the clockwise corner of Tv6v13 and the
counter-clockwise corner of Tv13v6 .

v1v3v8v2

11 Remove edge (v2, v8) by adding a vertex v19 in the union
of, and arbitrarily close to the intersection point of Tv2v8
and Tv8v2 .

v1v3v7v2

12 Remove edge (v3, v7) by adding two vertices, v20 and v21,
arbitrarily close to the counter-clockwise corner of Tv3v7
and the clockwise corner of Tv7v3 .

v1v5v12v2

13 Remove edge (v2, v12) by adding a vertex v22 arbitrarily
close to the counter-clockwise corner of Tv2v12 .

v1v10v6v4v2

14 Remove edge (v1, v10) by adding a vertex v23 in the union
of Tv1v10 and Tv10v1 , arbitrarily close to the top boundary
of Cv101 , and such that v1 lies in Cv231 , arbitrarily close to
the bottom boundary.

v1v5v12v4v2

(Continued on the next page.)



# Action Shortest path
15 Remove edge (v4, v12) by adding two vertices, v24 and v25,

arbitrarily close to the counter-clockwise corner of Tv4v12
and the clockwise corner of Tv12v4 .

v1v5v13v14v6v4v2

16 Remove edge (v13, v14) by adding two vertices, v26 and v27,
arbitrarily close to the clockwise corner of Tv13v14 and the
counter-clockwise corner of Tv14v13 .

v1v9v18v6v4v2

17 Remove edge (v9, v18) by adding two vertices, v28 and v29,
arbitrarily close to the clockwise corner of Tv9v18 and the
counter-clockwise corner of Tv18v9 .

v1v5v16v11v4v2

18 Remove edge (v11, v16) by adding two vertices, v30 and v31,
arbitrarily close to the counter-clockwise corner of Tv11v16
and the clockwise corner of Tv16v11 .

v1v23v10v6v4v2

v1

v2v3

v4

v5

v6

v7 v8

v9

v10

v11

v12

v13
v14

v15
v16

v17

v18

v19

v20

v21

v22v23

v24

v25

v26
v27

v28

v29

v30
v31

Fig. 9. A θ5-graph with a spanning ratio that matches the lower bound. The shortest
path between v1 and v2 is indicated in orange.


