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Abstract. Let P be a set of points in the plane and S a set of non-
crossing line segments with endpoints in P . The visibility graph of P
with respect to S, denoted Vis(P, S), has vertex set P and an edge for
each pair of vertices u, v in P for which no line segment of S properly
intersects uv. We show that the constrained half-θ6-graph (which is iden-
tical to the constrained Delaunay graph whose empty visible region is
an equilateral triangle) is a plane 2-spanner of Vis(P, S). We then show
how to construct a plane 6-spanner of Vis(P, S) with maximum degree
6+ c, where c is the maximum number of segments adjacent to a vertex.

1 Introduction

A Euclidean geometric graph G is a graph whose vertices are points in the plane
and whose edges are line segments between pairs of points. Edges are weighted by
their Euclidean length. The distance between two vertices u and v in G, denoted
by dG(u, v) or simply d(u, v), is defined as the length of the shortest path between
u and v in G. A subgraph H of G is a t-spanner of G (for t ≥ 1) if for each pair of
vertices u and v, dH(u, v) ≤ t·dG(u, v). The value t is the spanning ratio or stretch
factor. The graph G is referred to as the underlying graph of the t-spanner H. The
spanning properties of various geometric graphs have been studied extensively
in the literature (see [6] for a comprehensive overview of the topic). However,
most of the research has focused on constructing spanners where the underlying
graph is the complete Euclidean geometric graph. We study this problem in a
more general setting with the introduction of line segment constraints.

Specifically, let P be a set of points in the plane and let S be a set of
constraints such that each constraint is a line segment between two vertices in
P . The set of constraints is planar, i.e. no two constraints intersect properly. Two
vertices u and v can see each other if and only if either the line segment uv does
not properly intersect any constraint or uv is itself a constraint. If two vertices
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u and v can see each other, the line segment uv is a visibility edge. The visibility
graph of P with respect to a set of constraints S, denoted Vis(P, S), has P as
vertex set and all visibility edges as edge set. In other words, it is the complete
graph on P minus all edges that properly intersect one or more constraints in S.

This setting has been studied extensively within the context of motion plan-
ning amid obstacles. Clarkson [4] was one of the first to study this setting in this
context and showed how to construct a linear-sized (1 + ε)-spanner of Vis(P, S).
Subsequently, Das [5] showed how to construct a spanner of Vis(P, S) with con-
stant spanning ratio and constant degree. Bose and Keil [3] showed that the
Constrained Delaunay Triangulation is a 2.42-spanner of Vis(P, S). In this ar-
ticle, we show that the constrained half-θ6-graph (which is identical to the con-
strained Delaunay graph whose empty visible region is an equilateral triangle)
is a plane 2-spanner of Vis(P, S). A difficulty in proving the latter stems from
the fact that the constrained Delaunay graph is not necessarily a triangulation.
We then generalize the elegant construction of Bonichon et al. [2] to show how
to construct a plane 6-spanner of Vis(P, S) with maximum degree 6 + c, where
c = max{c(v)|v ∈ P} and c(v) is the number of constraints incident to v.

2 Preliminaries
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Fig. 1. The cones
having apex u

We define a cone C to be the region in the plane between
two rays originating from a vertex referred to as the apex
of the cone. We let six rays originate from each vertex, with
angles to the positive x-axis being multiples of π/3 (see
Fig. 1). Each pair of consecutive rays defines a cone. For
ease of exposition, we only consider point sets in general
position: no two points define a line parallel to one of the
rays that define the cones and no three points are collinear.
These assumptions imply that we can consider the cones to
be open.
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Fig. 2. The subcones having apex
u. Constraints are shown as thick
line segments.

Let (C1, C0, C2, C1, C0, C2) be the se-
quence of cones in counterclockwise order
starting from the positive x-axis. The cones
C0, C1, and C2 are called positive cones and
C0, C1, and C2 are called negative cones. By
using addition and subtraction modulo 3 on
the indices, positive cone Ci has negative cone
Ci+1 as clockwise next cone and negative cone
Ci−1 as counterclockwise next cone. A simi-
lar statement holds for negative cones. We use
Cu

i and C
u

j to denote cones Ci and Cj with
apex u. Note that for any two vertices u and
v, v ∈ Cu

i if and only if u ∈ Cv

i .
Let vertex u be an endpoint of a constraint c and let the other endpoint v

lie in cone Cu
i . The lines through all such constraints c split Cu

i into several
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parts. We call these parts subcones and denote the j-th subcone of Cu
i by Cu

i,j ,
numbered in counterclockwise order. When a constraint c = (u, v) splits a cone
of u into two subcones, we define v to lie in both of these subcones. We call a
subcone of a positive cone a positive subcone and a subcone of a negative cone a
negative subcone. We consider a cone that is not split as its own single subcone.

We now introduce the constrained half-θ6-graph, a generalized version of the
half-θ6-graph as described by Bonichon et al. [1]: for each positive subcone of
each vertex u, add an edge from u to the closest vertex in that subcone that
can see u, where distance is measured along the bisector of the original cone
(not the subcone). More formally, we add an edge between two vertices u and
v if v can see u, v ∈ Cu

i,j , and for all points w ∈ Cu
i,j that can see u (v 6= w),

|uv′| ≤ |uw′|, where v′ and w′ denote the projection of v and w on the bisector
of Cu

i , respectively, and |xy| denotes the length of the line segment between two
points x and y. Note that our assumption of general position implies that each
vertex adds at most one edge to the graph for each of its positive subcones.

Given a vertex w in a positive cone Cu
i of vertex u, we define the canonical

triangle Tuw to be the triangle defined by the borders of Cu
i and the line through

w perpendicular to the bisector of Cu
i . Note that for each pair of vertices there

exists a unique canonical triangle. We say that a region is empty if it does not
contain any vertices of P .

3 Spanning Ratio of the Constrained Half-θ6-Graph

In this section we show that the constrained half-θ6-graph is a plane 2-spanner of
the visibility graph. To do this, we first mention a property of visibility graphs.

Lemma 1. Let u, v, and w be three arbitrary points in the plane such that uw
and vw are visibility edges and w is not the endpoint of a constraint intersecting
the interior of triangle uvw. Then there exists a convex chain of visibility edges
from u to v in triangle uvw, such that the polygon defined by uw, wv and the
convex chain is empty.

Theorem 1. The constrained half-θ6-graph is a 2-spanner of the visibility graph.

Proof. Given two vertices u and w such that uw is a visibility edge, we assume
w.l.o.g. that w ∈ Cu

0,j . We prove that δ(u,w) ≤ 2 · |uw|, where δ(x, y) denotes
the length of the shortest path from x to y inside Txy in the constrained half-θ6-
graph. We prove this by induction on the area of Tuw (formally, induction on the
rank, when ordered by area, of the triangles Txy for all pairs of vertices x and y
that can see each other). Let a and b be the upper left and right corner of Tuw,
and let A and B be the triangles uaw and ubw, respectively (see Fig. 3). Our
inductive hypothesis is the following: If A is empty, then δ(u,w) ≤ |ub| + |bw|.
If B is empty, then δ(u,w) ≤ |ua| + |aw|. If neither A nor B is empty, then
δ(u,w) ≤ max{|ua|+ |aw|, |ub|+ |bw|}.

We first note that this induction hypothesis implies the theorem: using the
side of Tuw as the unit of length, we have that δ(u,w) ≤ (

√
3 ·cosα+sinα) · |uw|,
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where α is the unsigned angle between uw and the bisector of Cu
0 . This expression

is increasing for α ∈ [0, π/6]. Inserting the extreme value π/6 yields a spanning
ratio of 2.

Base case: Triangle Tuw has minimal area. Since the triangle is a smallest
canonical triangle, w is the closest vertex to u in its positive subcone. Hence the
edge (u,w) must be in the constrained half-θ6-graph, and δ(u,w) = |uw|. From
the triangle inequality, we have that |uw| ≤ min{|ua|+ |aw|, |ub|+ |bw|}, so the
induction hypothesis holds.

Induction step: We assume that the induction hypothesis holds for all pairs
of vertices that can see each other and have a canonical triangle whose area is
smaller than the area of Tuw. If (u,w) is an edge in the constrained half-θ6-graph,
the induction hypothesis follows by the same argument as in the base case. If
there is no edge between u and w, let v0 be the vertex closest to u in the positive
subcone containing w, and let a0 and b0 be the upper left and right corner of
Tuv0 , respectively (see Fig. 3). By definition, δ(u,w) ≤ |uv0| + δ(v0, w), and by
the triangle inequality, |uv0| ≤ min{|ua0| + |a0v0|, |ub0| + |b0v0|}. We assume
w.l.o.g. that v0 lies to the left of uw, which means that A is not empty.

u

w ba

v0

v1

v2

a0 b0x

Fig. 3. A convex chain from
v0 to w

Let x be the intersection of uw and a0b0. By def-
inition x can see u and w. Since v0 is the closest
visible vertex to u, v0 can see x as well. Otherwise
Lemma 1 would give us a convex chain of vertices
connecting v0 to x, all of which would be closer and
able to see u. By applying Lemma 1 to triangle v0xw,
a convex chain v0, ..., vk = w of visibility edges con-
necting v0 and w exists (see Fig. 3).

When looking at two consecutive vertices vi−1
and vi along the convex chain, there are three types
of configurations: (i) vi−1 ∈ Cvi

1 , (ii) vi ∈ Cvi−1

0 and
vi lies to the right of vi−1, (iii) vi ∈ Cvi−1

0 and vi lies
to the left of vi−1. Let Ai = vi−1aivi and Bi = vi−1bivi, the vertices ai and bi
will be defined for each case. By convexity, the direction of −−−→vivi+1 is rotating
counterclockwise for increasing i. Thus, these configurations occur in the order
Type (i), Type (ii), and Type (iii) along the convex chain from v0 to w. We
bound δ(vi−1, vi) as follows:

Type (i): If vi−1 ∈ Cvi
1 , let ai and bi be the upper left and lower corner

of Tvivi−1
, respectively. Triangle Bi lies between the convex chain and uw, so it

must be empty. Since vi can see vi−1 and Tvivi−1
has smaller area than Tuw, the

induction hypothesis gives that δ(vi−1, vi) is at most |vi−1ai|+ |aivi|.
Type (ii): If vi ∈ Cvi−1

0 , let ai and bi be the left and right corner of Tvi−1vi ,
respectively. Since vi can see vi−1 and Tvi−1vi has smaller area than Tuw, the
induction hypothesis applies. Whether Ai and Bi are empty or not, δ(vi−1, vi) is
at most max{|vi−1ai|+|aivi|, |vi−1bi|+|bivi|}. Since vi lies to the right of vi−1, we
know |vi−1ai|+ |aivi| > |vi−1bi|+ |bivi|, so δ(vi−1, vi) is at most |vi−1ai|+ |aivi|.

Type (iii): If vi ∈ Cvi−1

0 and vi lies to the left of vi−1, let ai and bi be the
left and right corner of Tvi−1vi , respectively. Since vi can see vi−1 and Tvi−1vi
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has smaller area than Tuw, we can apply the induction hypothesis. Thus, if Bi

is empty, δ(vi−1, vi) is at most |vi−1ai|+ |aivi| and if Bi is not empty, δ(vi−1, vi)
is at most |vi−1bi|+ |bivi|.

To complete the proof, we consider three cases: (a) ∠awu ≤ π/2, (b) ∠awu >
π/2 and B is empty, (c) ∠awu > π/2 and B is not empty.

Case (a): If ∠awu ≤ π/2, the convex chain cannot contain any Type (iii)
configurations. We can now bound δ(u,w) by using these bounds (see Fig. 4):

δ(u,w) ≤ |uv0|+
∑k

i=1 δ(vi−1, vi) ≤ |ua0|+ |a0v0|+
∑k

i=1(|vi−1ai|+ |aivi|). We
see that the latter is equal to |ua|+ |aw| as required.

u

w

vi

u

w

vi
ai

u

wa

Fig. 4. Visualization of the paths (thick lines) in the inequalities of case (a)

Case (b): If ∠awu > π/2 and B is empty, the convex chain can contain Type
(iii) configurations. However, since B is empty and the area between the convex
chain and uw is empty (by Lemma 1), all Bi are also empty. Using the computed
bounds on the lengths of the paths between the points along the convex chain,
we can bound δ(u,w) as in the previous case.

Case (c): If ∠awu > π/2 and B is not empty, the convex chain can contain
Type (iii) configurations and since B is not empty, the triangles Bi need not be
empty. Recall that v0 lies in A, hence neither A nor B are empty. Therefore,
it suffices to prove that δ(u,w) ≤ max{|ua| + |aw|, |ub| + |bw|} = |ub| + |bw|.
Let Tvjvj+1 be the first Type (iii) configuration along the convex chain (if it has
any), let a′ and b′ be the upper left and right corner of Tuvj , and let b′′ be the
upper right corner of Tvjw (see Fig. 5).

δ(u,w) ≤ |uv0|+
k∑

i=1

δ(vi−1, vi) (1)

≤ |ua0|+ |a0v0|+
j∑

i=1

(|vi−1ai|+ |aivi|) +

k∑
i=j+1

(|vi−1bi|+ |bivi|) (2)

= |ua′|+ |a′vj |+ |vjb′′|+ |b′′w| (3)

≤ |ub′|+ |b′vj |+ |vjb′′|+ |b′′w| (4)

= |ub|+ |bw| (5)
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u

w

u

w

vj

u

w

vj

b′′

a′

u

w

vj

b′′

b′

u
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Fig. 5. Visualization of the paths (thick lines) in the inequalities of case (c)

�

Next, we prove that the constrained half-θ6-graph is plane.

Lemma 2. Let u, v, x, and y be four distinct vertices such that the two canonical
triangles Tuv and Txy intersect. Then at least one of the corners of one triangle
is contained in the other triangle.

Lemma 3. The constrained half-θ6-graph is plane.

Proof. Assume that two edges uv and xy cross at a point p. Since the two edges
are contained in their canonical triangles, these must intersect. By Lemma 2 we
know that at least one of the corners of one triangle lies inside the other. Assume
w.l.o.g. that the upper right corner of Txy lies inside Tuv. Since uv and xy cross,
this also means that either x or y must lie in Tuv.

Assume w.l.o.g. that v ∈ Cu
0,j and y ∈ Tuv. If y ∈ Cu

0,j , we look at triangle
upy. Using that both u and y can see p, we get by Lemma 1 that either u can
see y or upy contains a vertex. In both cases, u can see a vertex in this subcone
that is closer than v, contradicting the existence of the edge uv.

If y /∈ Cu
0,j , there exists a constraint uz such that v lies to one side of the line

through uz and y lies on the other side. Since this constraint cannot cross yp, z
lies inside upy and is therefore closer to u than v. Since by definition z can see
u, this also contradicts the existence of uv. �
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4 Bounding the Maximum Degree
u

v1
v2
v3v4

Fig. 6. The edges that are
added to G9(P ) for a neg-
ative subcone of a vertex
u with canonical sequence
v1, v2, v3 and v4

In this section, we show how to construct a bounded
degree subgraph G9(P ) of the constrained half-θ6-
graph that is a 6-spanner of the visibility graph.
Given a vertex u and one of its negative subcones,
we define the canonical sequence of this subcone as
the counterclockwise order of the vertices in this sub-
cone that are neighbors of u in the constrained half-
θ6-graph (see Fig. 6). The canonical path is defined
by connecting consecutive vertices in the canonical
sequence. This definition differs slightly from the one
used by Bonichon et al. [2].

To construct G9(P ), we start with a graph with
vertex set P and no edges. Then for each negative subcone of each vertex u ∈ P ,
we add the canonical path and an edge between u and the closest vertex along
this path, where distance is measured using the projections of the vertices along
the bisector of the cone containing the subcone. This construction is similar
to the construction of the unconstrained degree-9 half-θ6-graph described by
Bonichon et al. [2]. Note that since every edge of the canonical path is part of
the constrained half-θ6-graph, G9(P ) is a subgraph of the constrained half-θ6-
graph. We proceed to prove thatG9(P ) is a spanning subgraph of the constrained
half-θ6-graph with spanning ratio 3.

Theorem 2. G9(P ) is a 3-spanner of the constrained half-θ6-graph.

Proof. We prove the lemma by showing that for each edge uw of the constrained
half-θ6-graph H that is not part of G9(P ), dG9(P )(u,w) ≤ 3 · dH(u,w).

We assume w.l.o.g. that w ∈ C
u

0 . Let v0 be the vertex closest to u on the
canonical path and let v0, v1, ..., vk = w be the vertices along the canonical path
from v0 to w (see Fig. 7). Let lj and rj denote the rays defining the counter-
clockwise and clockwise boundaries of C

vj
0 for 0 ≤ j ≤ k and let r denote the

ray defining the clockwise boundary of C
u

0 . Let mj be the intersection of lj and
rj−1, for 1 ≤ j ≤ k, and let m0 be the intersection of l0 and r. Let w′ be the
intersection of r and the horizontal line through w and let w′′ be the intersec-
tion of lk and r. The length of the path between u and w in G9(P ) can now be
bounded as follows:

dG9(P )(u,w) ≤ |uv0|+
k∑

j=1

|vj−1vj | (6)

≤ |um0|+
k∑

j=0

|mjvj |+
k−1∑
j=0

|vjmj+1| (7)

= |um0|+ |ww′′|+ |m0w
′′| (8)

≤ |uw′|+ 2 · |ww′| (9)
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Let α be ∠w′uw and let x be the intersection of uw′ and the line through w
perpendicular to uw′. Using some basic trigonometry, we get |uw′| = |uw| ·
cosα+ |uw| · sinα/

√
3 and |ww′| = 2 · |uw| · sinα/

√
3. Thus the spanning ratio

can be expressed as:

dG9(P )(u,w)

|uw|
≤ cosα+ 5 · sinα√

3
(10)

Since this is a non-decreasing function on 0 < α ≤ π/3, its maximum value is
obtained when α = π/3, where the spanning ratio is 3. �

w′′

m0

u

w

v0

v1
w′

m1 m2

Fig. 7. Bounding the length of the
canonical path

It follows from Theorems 1 and 2 that
G9(P ) is a 6-spanner of the visibility graph.

Corollary 1. G9(P ) is a 6-spanner of the
visibility graph.

Now, we bound the maximum degree.

Lemma 4. When a vertex v has at least
two constraints in the same positive cone
Cv

i , the closest vertex u between two consec-
utive constraints has v as the closest vertex
in the subcone of C

u

i that contains v and v
is the only vertex on the canonical path of
this subcone.

Proof. Since u is the closest vertex in this positive subcone Cv
i,j , we know C

u

i ∩Cv
i,j

contains only vertices u and v. Hence v is the only visible vertex in C
u

i ∩ Cv
i,j

and v is the only vertex along the canonical path of C
u

i ∩ Cv
i,j . �

Lemma 5. Every vertex v in G9(P ) has degree at most c(v) + 9.

Proof. To bound the degree of a vertex, we use a charging scheme that charges
the edges added during the construction to the (sub)cones of that vertex. We
prove that each positive cone has charge at most ci(v) + 2 and each negative
cone has charge at most ci(v) + 1, where ci(v) and ci(v) are the number of
constraints in the i-th positive and negative cone, respectively. Since a vertex
has three positive and three negative cones and the ci(v) and ci(v) sum up to
c(v), this implies that the total degree of a vertex is at most c(v) + 9. In fact,
we will show that a positive cone is charged at most max{2, ci(v) + 1}.

We look at the canonical path in C
u

i,j , created by a vertex u. We use v to
indicate an arbitrary vertex along the canonical path. Let v′ be the closest vertex
along the canonical path and let Cv′

i,k be the cone of v that contains u. The edges
of G9(P ) are charged as follows (see Fig. 8):
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– The edge uv′ is charged to C
u

i,j and to Cv′

i,k

– An edge of the canonical path that lies in Cv
i±1 is charged to C

v

i∓1
– An edge of the canonical path that lies in C

v

i±1 is charged to Cv
i,k

Note that each edge is charged once to each of its endpoints.

u

v

Fig. 8. Two edges
of a canonical path
and the associated
charges

We first prove that each positive cone has charge at most
max{2, ci(v) + 1}. If the positive cone does not contain any
constraints, a positive cone of a vertex v containing u is
charged by the edge in that cone if v is the closest visible
vertex to u and it is charged by the two adjacent negative
cones if the edges of the canonical path lie in those cones.
Note that since all charges are shifted one cone towards the
positive cone containing u, other canonical paths cannot
charge this positive cone of v. Also note that the positive
cone is charged at most 2 if v is not the closest vertex to u.

If v is the closest vertex to u, the negative cones adjacent
to this positive cone cannot contain any vertices of the canonical path, since these
vertices would be closer to u than v is. Hence, if v is the closest vertex to u, the
positive cone containing u is charged 1.

If the cone contains constraints, we use Lemma 4 to get a charge of at most
ci(v) − 1 in total for all subcones except the first and last one. We prove that
these subcones can be charged at most 1 each.

We look at the first one. The only way to charge this subcone 2 is if v is the
closest vertex to u in this subcone and the adjacent negative cone contains an
edge to a vertex that is part of the same canonical path. But if v is the closest
vertex to u, the negative cones adjacent to this positive cone cannot contain
any vertices of the canonical path, since these would be closer to u than v is.
Hence, if v is the closest vertex to u, the positive cone containing u is charged
1. Therefore each positive cone has charge at most max{2, ci(v) + 1}.

u

w

v

Fig. 9. If vw is
present, the negative
cone does not con-
tain edges having v
as endpoint.

Next, we prove that each negative cone has charge at
most ci(v) + 1. A negative cone of a vertex v is charged by
the edge to the closest vertex in each of its subcones and it
is charged by the two adjacent positive cones if the edges of
the canonical paths lie in those cones (see Fig. 9). Suppose
that w lies in a positive cone of v and vw is part of the
canonical path of u. Then w lies in a negative cone of u,
which means that u lies in a positive cone of w and cannot
be part of a canonical path for w. Thus every negative cone
can be charged by only one edge in an adjacent positive
cone.

If this negative cone does not contain any constraints,
it remains to show that if one of uv and vw is present, the negative cone does
not have an edge to the closest vertex in that cone. We assume w.l.o.g. that
vw is present, u ∈ Cv

i ∩ Cw
i , and w ∈ Cv

i−1. Since v and w are neighbors on
the canonical path, we know that the triangle uvw is part of the constrained
half-θ6-graph and it is empty. Furthermore, since the constrained half-θ6-graph
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is plane and uw is an edge of the constrained half-θ6-graph, v cannot have an
edge to the closest vertex beyond uw. Hence the negative cone does not have an
edge to the closest vertex in that cone.

Using a similar argument it can be shown that if one of uv and vw is present,
the negative cone does not contain any constraints. Thus the charge of a negative
cone is at most ci(v) + 1. �

Corollary 2. If a positive cone has charge ci(v) + 2, it is charged for two edges
in the adjacent negative cones and does not contain any constraints having v as
an endpoint.

4.1 Bounding the Maximum Degree Further

v

u

x
y

Fig. 10. A positive
cone having charge 2

Using Corollary 2, we know that the only situation we need
to modify to get the degree bound down to c(v) + 6 is
the case where a positive cone is charged for two edges
in the adjacent negative cones and does not contain any
constraints (see Fig. 10).

If neither x nor y is the vertex closest to v in their
respective cone, we do the following transformation on
G9(P ). First, we add an edge between x and y. Next, we
look at the sequence of vertices between v and the closest vertex along the
canonical path. If this sequence includes x, we remove vy. Otherwise we remove
vx.

v

u

x
y

w
v

u

x
y

w

Fig. 11. Constructing G6(P ) (right) from G9(P ) (left)

We assume w.l.o.g. that vy is removed. We look at vertex w, the neighbor
of vertex x on the canonical path of vertex v containing x. Since x is not the
closest vertex to v, this vertex w must exist. The edge xw is removed if w lies in
a negative cone of x and w is not the closest vertex in this cone. The resulting
graph is G6(P ) (see Fig. 11). It can be shown that the newly added edges do not
intersect each other, the constraints and the remaining edges of G9(P ), which
implies that G6(P ) is plane. Before we prove that this construction yields a
graph of maximum degree 6 + c, we first show that the resulting graph is still a
3-spanner of the constrained half-θ6-graph.
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Lemma 6. Let vx be an edge of G9(P ) and let x lie in a negative cone C
v

i of
v. If x is not the vertex closest to v in C

v

i , then the edge vx is used by at most
one canonical path.

Proof. We prove the lemma by contradiction. Given that
x is not the vertex closest to v in C

v

i , assume that edge
vx is part of two canonical paths. This means that there
exist vertices u ∈ Cv

i+1 ∩Cx
i+1 and w ∈ Cv

i−1 ∩Cx
i−1 such

that v and x are neighbors on a canonical path of u and
w. Thus vertices uvx and wvx form two triangles in
the constrained half-θ6-graph. By planarity, this implies
that vx is the only edge of v in C

v

i (see Fig. 12). This
implies that x is the vertex closest to v in C

v

i . �

v

u x w

Fig. 12. Edge vx is
part of two canonical
paths.

Lemma 7. G6(P ) is a 3-spanner of the half-θ6-graph.

Proof. Since G9(P ) is a 3-spanner of the constrained half-θ6-graph, we need to
look only at the edges that were removed from this graph. Let v be a vertex
such that positive cone Cv

i has charge 2, let u be the vertex whose canonical
path charged 2 to Cv

i , and let x ∈ Cv

i−1 and y ∈ Cv

i+1 be the neighbors of v on
this canonical path. We assume w.l.o.g. that vy is removed. Since this removal
potentially affects the spanning ratio of any path using vy, we need to look at
the spanning path between v and y and the spanning path between u and any
vertex on the canonical path that uses vy. Since y is not the closest vertex to v,
Lemma 6 tells us that no other canonical path is affected.

Since y is not the closest vertex to v, there exists a spanning path between
v and y that does not use vy. Since |xy| ≤ |xv| + |vy|, the length of the span-
ning path between u and any vertex on the canonical path that uses vy is not
increased. Thus removing vy does not affect the spanning ratio.

Next, we look at the other type of edge that is removed. Let w be the neighbor
of vertex x on the canonical path of vertex v containing x. Edge wx is removed
if w lies in C

x

i and w is not the closest vertex in C
x

i . Since x is the last vertex on
the canonical path of v, we need to look only at the spanning path between x
and w and the spanning path between v and x. Since y is not the closest vertex
to v, Lemma 6 tells us that no other canonical path is affected.

Since w is not the closest vertex to x, there exists a spanning path between x
and w that does not use xw. By Lemma 6, vx is part of only one canonical path
and hence it is present in G6(P ). Thus there exists a spanning path between x
and v and removing xw does not affect the spanning ratio. �

Lemma 8. Every vertex v in G6(P ) has degree at most c(v) + 6.

Proof. To bound the degree of a vertex, we look at the charges of the vertices.
We prove that after the transformation each positive cone has charge at most
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ci(v) + 1 and each negative cone has charge at most ci(v) + 1. This implies that
the total degree of a vertex is at most c(v) + 6. Since the charge of the negative
cones is already at most ci(v) + 1, we focus on positive cones having charge 2.

Let v be a vertex such that one of its positive cones Cv
i has charge 2, let

u be the vertex whose canonical path charged 2 to Cv
i , and let x ∈ Cv

i−1 and

y ∈ Cv

i+1 be the neighbors of v on this canonical path (see Fig. 10). If x or y is

the vertex closest to v in C
v

i−1 or C
v

i+1, this edge has been charged to both that
negative cone and Cv

i . Hence we can remove the charge to Cv
i while maintaining

that the charge is an upper bound on the degree of v.
If neither x nor y is the closest vertex in C

v

i−1 or C
v

i+1, edge xy is added. We
assume w.l.o.g. that edge vy is removed. Thus vy need not be charged, decreasing
the charge of Cv

i to 1. Since vy was charged to C
y

i−1 and this charge is removed,

we charge edge xy to C
y

i−1. Thus the charge of y does not change.
It remains to show that we can charge xy to x. We look at vertex w, the

neighbor of x on the canonical path of v in C
v

i−1. Since x is not the closest vertex

to v in C
v

i−1, the canonical path and vertex w exist. Since vertices uvx form a
triangle in the constrained half-θ6-graph, Cx

i−1 has charge at most 1. Vertex w

can be in one of two cones with respect to x: Cx
i+1 and C

x

i . If w ∈ Cx
i+1, xw is

charged to C
x

i . Thus the charge of Cx
i−1 is 0 and we can charge xy to it.

If w ∈ Cx

i and w is the closest vertex to x in C
x

i , xw has been charged to
both Cx

i−1 and C
x

i . We replace the charge of Cx
i−1 by xy and the charge of Cx

i−1
remains 1. If w ∈ Cx

i and w is not the closest vertex to x in C
x

i , xw is removed.
Since this edge was charged to Cx

i−1, we can charge xy to Cx
i−1 and the charge

of Cx
i−1 remains 1. �
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