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Abstract

A regular edge labeling of an irreducible triangulation G uniquely defines a rectangular dual
of G. Rectangular duals find applications in various areas: as floor plans of electronic chips, in
architectural designs, as rectangular cartograms, or as treemaps. An irreducible triangulation
can have many regular edge labelings and hence many rectangular duals. Depending on the
specific application different duals might be desirable. In this thesis we consider optimization
problems on regular edge labelings and show how to find optimal or near-optimal ones for
various quality criteria. We evaluate our optimization methods by applying them to generate
high quality rectangular cartograms. Furthermore, we show how to efficiently enumerate
the regular edge labelings of an irreducible triangulation. Since the running time of the
enumeration algorithm depends on the number of regular edge labelings, we also consider the
maximal number of regular edge labelings an irreducible triangulation can have. We show
that every irreducible triangulation with n vertices has less than O(4.6807n) regular edge
labelings and that there are irreducible triangulations with Ω(3.0426n) regular edge labelings.
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Chapter 1

Introduction
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Figure 1.1: An area
cartogram of the
Netherlands.

Rectangular cartograms were introduced in 1937 by Raisz [23] as a
new kind of thematic maps. They represent each region (a country
or state for example) as a rectangle, whose area corresponds to a
geographic variable like population or gross domestic product. As an
example, a rectangular cartogram depicting the area of the provinces
of the Netherlands is shown to the right. These cartograms are
usually constructed by hand, although recent work by van Kreveld
and Speckmann [25] has automated a large part of the construction
process. One step that has not been automated yet is finding the
right layout, which consists of determining for each pair of adjacent
regions whether they should share a horizontal or vertical boundary.
The number of options for this assignment is surprisingly large, with
maps with as little as 60 regions, such as Europe or the United States,
having billions of possibilities. This makes it very hard to find a good
layout by hand.

In this thesis, we provide algorithms to find optimal or near-optimal layouts and give bounds
on the number of layouts one map can have. We evaluate our algorithms by using them to
generate high quality rectangular cartograms.

1.1 Rectangular partitions

A rectangular partition of a rectangle R is a partition of R into a set R of non-overlapping
rectangles such that no four rectangles in R meet at one common point. A rectangular dual of
a plane graphG is a rectangular partitionR, such that (i) there is a one-to-one correspondence
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Figure 1.2: A subdivision and its augmented dual graph G, a regular edge labeling of G, and
a corresponding rectangular dual.
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2 Chapter 1. Introduction

between the rectangles in R and the nodes in G; (ii) two rectangles in R share a common
boundary if and only if the corresponding nodes in G are connected. Rectangular duals find
applications in various areas: from floor plans of electronic chips or architectural designs, to
rectangular cartograms and treemaps.

Not every plane graph has a rectangular dual. A plane graph G has a rectangular dual
R with four rectangles on the boundary of R if G is an irreducible triangulation: (i) G is
triangulated and the exterior face is a quadrangle; (ii) G has no separating triangles (a 3-cycle
with vertices both inside and outside the cycle) [6, 20]. A plane triangulated graph G has a
rectangular dual if and only if we can augment G with four external vertices such that the
augmented graph is an irreducible triangulation.

Figure 1.3: The lo-
cal conditions on a
regular edge label-
ing.

The equivalence classes of the rectangular duals of an irreducible tri-
angulation G correspond one-to-one to the regular edge labelings of G.
A regular edge labeling of an irreducible triangulation G is a partition
of the interior edges of G into two subsets of red and blue directed edges
such that: (i) around each inner vertex in clockwise order we have four
contiguous sets of incoming blue edges, outgoing red edges, outgoing
blue edges, and incoming red edges; (ii) the left exterior vertex has
only outgoing blue edges, the top exterior vertex has only incoming
red edges, the right exterior vertex has only incoming blue edges, and
the bottom exterior vertex has only outgoing red edges (see Fig. 1.1,
red edges are dashed). Kant and He [18] show how to find a regu-
lar edge labeling and construct the corresponding rectangular dual in
linear time. Regular edge labelings are also studied by Fusy [16] who
calls them transversal pairs of bipolar orientations. The process from
subdivision to rectangular dual is illustrated in Fig. 1.2.

An irreducible triangulation can have many regular edge labelings and hence many rect-
angular duals. Depending on the specific application different duals might be desirable. For
example, sliceable duals—which can be obtained by recursively slicing a rectangle by horizon-
tal and vertical lines—are popular in VLSI design. Not every irreducible triangulation has
a sliceable dual. A full characterization of the graphs that do is lacking, but Yeap and Sar-
rafzadeh [26] prove that irreducible triangulations without separating 4-cycles have a sliceable
dual. Area-universal duals have the nice property that any assignment of areas to rectangles
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Figure 1.4: A simplified map of Europe with two different rectangular duals of its dual graph.
Luxembourg and Moldavia have been removed and “sea regions” have been added to ensure
that the dual graph is an irreducible triangulation.



1.2. Results and organization 3

can be realized by a combinatorially equivalent rectangular dual. Again, not every irreducible
triangulation has an area-universal dual, but Eppstein et al. [13] show how to find such a dual
if it exists.

We are particularly interested in the application of rectangular duals to rectangular car-
tograms. In this context it is desirable that the direction of adjacency between the rectangles
of the dual follows the spatial relation of the regions of the underlying map as closely as
possible. Consider the two rectangular duals of the dual graph of a map of Europe shown in
Fig. 1.4. The left dual will lead to a recognizable cartogram, whereas the right dual (with
France east of Germany and Hungary north of Austria) is useless as basis for a cartogram.
Both rectangular duals stem from the same graph G and correspond to two different valid
regular edge labelings of G.

Previous work on finding regular edge labelings that lead to cartograms with geographically
suitable adjacency directions has focused on regular edge labelings that satisfy user-specified
constraints on a subset of the edges of the input graph. Eppstein and Mumford [12] show
how to find regular edge labelings that satisfy user-specified orientation constraints, if such
labelings exist for the given set of constraints. Van Kreveld and Speckmann [25] search
through a user-specified subset of the regular edge labelings. Every labeling in this subset is
considered acceptable with respect to adjacency directions. In contrast, we consider quality
measures that take all edges of G into account and do not concentrate on a fixed, user-specified
subset.

1.2 Results and organization

In this thesis we consider optimization problems on regular edge labelings and show how to
find optimal or near-optimal ones for various quality criteria. We evaluate our optimization
methods by applying them to generate high quality rectangular cartograms. We also give
upper and lower bounds on the number of regular edge labelings.

We first recap some previous results and matrix theory in Chapter 2. In Chapter 3, we
show how to use reverse search to enumerate all regular edge labelings of an irreducible
triangulation G and thus find optimal regular edge labelings for any given quality measure.
Since the running time and hence the feasibility of our enumeration algorithm depends on the
number of regular edge labelings, we bound the number of regular edge labelings G can have
in Chapter 4. The number of regular edge labelings of G can be exponential in the number of
vertices n; we first show simple upper and lower bounds of 8n and 2n−O(

√
n). We then prove

much tighter bounds, showing that G has less than O(4.6807n) regular edge labelings and
that there are irreducible triangulations with Ω(3.0426n) regular edge labelings.

In Chapter 5 we show how to find optimal or near-optimal regular edge labelings for rect-
angular cartogram construction. This step of the construction pipeline has been performed
essentially manually in previous work and can now finally be fully automated. We consider
two general quality criteria: (i) the relative position of the rectangles, which we compute in
three different ways and (ii) the cartographic error of the resulting cartogram. Our opti-
mization focuses on finding labelings that perform well on both aspects. For smaller maps
(the provinces of the Netherlands) enumeration of all regular edge labelings is feasible and we
hence can find optimal solutions. For larger maps (the countries of Europe or the contiguous
states of the US) enumeration is infeasible. Fortunately the diameter of the distributive lat-
tice of regular edge labelings is comparatively small and hence simulated annealing (described
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in Chapter 3) performs well. We present extensive experimental results that show that our
method can find regular edge labelings which result in visually pleasing and recognizable
cartograms with small cartographic error.



Chapter 2

Preliminaries

In this chapter, we summarize some earlier findings on regular edge labelings and matrix
theory that we use in the remainder of the thesis.

2.1 Regular edge labelings

left alternating

right alternating

We use several definitions and properties of regular edge labelings that were
introduced or proven by Fusy [16]. A regular edge coloring is a regular edge
labeling, with the directions of the edges omitted. An alternating 4-cycle is
an undirected 4-cycle in which the colors of the edges alternate between red
and blue. There are two kinds of alternating 4-cycles, depending on the color
of the interior edges incident to the cycle. If these are the same color as the
next clockwise cycle edge, the cycle is right alternating, otherwise it is left
alternating.

Lemma 1 (Fusy [16], Proposition 2, Lemma 1 and Theorem 2)

(a) A regular edge coloring uniquely determines a regular edge labeling.

(b) A regular edge labeling (of an irreducible triangulation) induces no monochromatic tri-
angles.

(c) The set of regular edge labelings of a fixed irreducible triangulation is a distributive
lattice. The flip operation consists of switching the edge-colors inside a right alternating
4-cycle and updating the directions, turning it into a left alternating 4-cycle.

A lattice is a partially ordered set in which each pair of elements has a unique least upper
bound (also called the supremum) and greatest lower bound (called the infimum). Given
two elements a and b of the lattice, the join operation, written as a ∨ b, gives the supremum
of a and b, while the meet operation, written as a ∧ b, gives the infimum of a and b. A
distributive lattice is a lattice in which the join and meet operations distribute over each
other: a ∨ (b ∧ c) = (a ∨ b) ∧ (a ∨ c) and a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c). The most common
example of a distributive lattice is formed by the subsets of a finite set, with one subset being
below another if the first is a subset of the second. In this case, join and meet correspond
to union and intersection, respectively. The distributive lattice formed by all regular edge
labelings of a small graph is shown in Fig. 2.1.

5



6 Chapter 2. Preliminaries

Figure 2.1: The distributive lattice formed by all regular edge labelings of a simple graph.
If two labelings are connected by an arrow, switching the colors of all edges inside a right
alternating 4-cycle of the originating labeling results in the destination labeling.

Its existence has several consequences. First of all, there is a unique minimal and maximal
labeling, respectively the regular edge labeling with no right alternating 4-cycles and the
labeling with no left alternating 4-cycles. Any labeling can be transformed into the minimal
labeling by repeatedly applying the flip operation until there are no right alternating 4-cycles
left. This can be seen as moving “down” the lattice. Further, it allows us to use Birkhoff’s
representation theorem [7], which states that any element of a finite distributive lattice can
be represented by a downward-closed subset of the join-irreducible elements of the lattice.
A subset is downward-closed if for any element in the subset, all smaller elements are also
included. An element is join-irreducible if it is neither the minimal element, nor the join
of two smaller elements. A regular edge labeling is join-irreducible if (and only if) it has
exactly one right alternating 4-cycle. Thus, the theorem allows us to represent each labeling
by a downward-closed subset of labelings that only have a single right alternating 4-cycle.
Recently, Eppstein and Mumford [12] used this theorem to find regular edge labelings that
satisfy a set of user-specified orientation constraints.

A move up the lattice now corresponds to adding a single join-irreducible labeling to the
representing subset. This implies that all upward paths between two given elements of the
lattice have the same length, as this length equals the difference in size between the subsets
representing the two labelings. This, in turn, implies that the diameter of the graph (the
maximum length of any shortest path between two vertices) equals the distance between the
minimal and the maximal labeling. Moreover, to find this distance, we only have to find a
single path between them. This can easily be done by starting at the maximal labeling and
counting the number of times we need to apply the flip operation to end up at the minimal
labeling.



2.2. Perron-Frobenius theory 7

2.2 Perron-Frobenius theory

In the following we summarize the matrix theory needed for our our lower bound computation
in Chapter 4. For details we refer to textbooks on matrices [17, 21].

We assume from now on that A is a nonnegative n × n matrix. A matrix is nonnegative
if all its elements are nonnegative. The matrix A is irreducible if for each (i, j) there is a
k > 0 such that (Ak)ij > 0. Consider the directed graph with adjacency matrix A, where we
interpret every non-zero element as an adjacency. The matrix A is irreducible if and only if
the associated graph is strongly connected. The matrix A is primitive if there is a k > 0 such
that all elements of Ak are positive. An irreducible matrix with a positive diagonal entry is
primitive.

Theorem 2 ([17, 21]) Let A be a primitive non-negative matrix with maximal eigenvalue λ.

(a) The eigenvalue λ is positive and it is the unique eigenvalue of largest absolute value. It
has a positive eigenvector, and it is the only eigenvalue with nonnegative eigenvector.

(b) Let fA(x) = minxi 6=0
(Ax)i
xi

and gA(x) = maxxi 6=0
(Ax)i
xi

. Then fA(x) 6 λ for all nonnegative
non-zero vectors x, and gA(x) > λ for all positive vectors x. If fA(x0) = λ then x0 is an
eigenvector of A corresponding to λ.

(c) Let x be a nonnegative non-zero vector. Then Atx/‖Atx‖ converges to an eigenvector
with eigenvalue λ. Consequently,

lim
t→∞

fA(Atx) = lim
t→∞

gA(Atx) = λ.





Chapter 3

Traversing the lattice

Many optimization problems can be solved using a linear search through all candidate solu-
tions. The advantages of this method are that it is very straight-forward and guaranteed to
find an optimal solution. For this purpose, we present an algorithm to enumerate all label-
ings of a given graph that is based on the reverse search algorithm developed by Avis and
Fukuda [5]. The largest disadvantage of a linear search is that there can be a huge number
of candidate solutions, making the running time prohibitively high. To avoid this, other op-
timization techniques have been developed that aim to reduce the time required while still
finding a good solution by directing the search towards promising solutions. We describe
how to apply one such technique, simulated annealing [19], to regular edge labelings. Both
algorithms search by traversing the distributive lattice formed by all regular edge labelings
of a graph.

3.1 Reverse search

Reverse search, proposed by Avis and Fukuda [5], is a general method for enumerating struc-
tures that fulfill two criteria: (i) there must be a concept of “neighboring” structures such
that the structures form a graph; (ii) there must be a local search operation that moves
through this graph in a deterministic way and ends up at a local optimum. The local search
defines a forest on the graph, of which each tree is rooted at a local optimum. If the local
optima are known and we have a way of enumerating all neighbors of a structure, then we
can traverse these trees by starting at a local optimum and testing for each neighbor if the
local search ends up at our current structure when applied to that neighbor. If it does, we
traverse the edge and recurse.

Regular edge labelings match these criteria: the distributive lattice provides a natural
underlying graph structure, while the flip operation is a good choice for our local search,
since we know that we will reach the minimal labeling if we apply it often enough. This
provides an excellent starting point for our enumeration. There is one last detail we need
to take care of: the local search needs to be deterministic, but a labeling can have multiple
right alternating 4-cycles. We can fix this by imposing an ordering on the 4-cycles of the
graph and taking the first one. One possible ordering is to sort the vertices lexicographically
by their x- and y-coordinates, using this ordering to sort the edges lexicographically by their
lower endpoint and higher endpoint and finally using this order on the edges to sort the cycles
lexicographically by their lowest edge and the non-adjacent edge.

9



10 Chapter 3. Traversing the lattice

Avis and Fukuda give an implementation of their algorithm if an upper bound δ on the
number of neighbors a structure can have is known and the graph is given by an adjacency
oracle. Given an integer 0 6 k < δ, this adjacency oracle should return the k-th neighbor of
the current structure, or ⊥ if that neighbor does not exist. The algorithm then performs a
depth-first search through the graph, by checking for each 0 6 k < δ if that neighbor exists
and if it does, if the local search traverses this edge. After handling all neighbors of this
neighbor, it returns to the previous structure by using the local search on the neighbor and
finding the right value for k where it left off, which is the k for which the adjacency oracle
returns the neighbor we just handled.

In order to use this implementation, we need an upper bound δ on the number of neighbors
a labeling can have. In our case, we can use the number of 4-cycles in the graph for this.
Using our ordering on the 4-cycles of the input graph, we let the oracle return the resulting
labeling after flipping the colors of all edges inside the k-th 4-cycle, or ⊥ if this 4-cycle is not
alternating.

The running time of the enumeration is O(δt(oracle)Λ + t(local search)δΛ), where Λ is the
number of regular edge labelings of the graph. In our case δ = O(n2), since a 4-cycle can be
defined by its two non-adjacent edges and there are a linear number of edges. The oracle takes
linear time, as it might have to switch the color of linearly many edges and the local search
takes quadratic time, as it might have to evaluate all 4-cycles to find the first right-alternating
one. This gives a total running time of O(n4Λ). If the 4-cycles are precomputed and stored,
the algorithm requires O(n2) space. Finding the 4-cycles on the fly would reduce the space
requirement to O(n), but would significantly increase the running time in practice.

3.2 Simulated annealing

Simulated annealing [19] is a well-known global optimization technique for discrete problems
with an underlying graph structure. It starts as a random walk through the graph and increas-
ingly favors moving to better solutions, ending up as a greedy hill-climber. This gradually
changing behavior is caused by a control parameter, called the temperature, which starts out
high and decreases with time. Most versions always accept moves to better solutions, but use
an acceptance probability function to determine if they should move to a worse solution or
not. This probability depends on two factors: the difference in quality between the current
solution and the one under consideration, and the current temperature. The probability of
moving to a worse solution decreases as the quality difference becomes bigger, so it favors
solutions that are close in quality to the current solution. The higher the temperature, the
higher the probability that a bad move is taken.

There are many good choices for both the temperature and acceptance probability func-
tions. We use a typical static cooling schedule and acceptance probability function [1] for our
experiments. Specifically, given two labelings with qualities q1 and q2, the probability that
our algorithm moves to the worse labeling is e|q1−q2|/T , where T is the current temperature.
We assume that all qualities lie between 0 and 1. We let the temperature decrease exponen-
tially as T = 0.002t, where t is the current time, varying from 0 initially to 1 at the end of
the process. The base factor of 0.002 can be increased to produce more random behavior,
or decreased to produce more greedy behavior. During the process, we maintain the best
solution found so far, which is returned at the end.



Chapter 4

Counting regular edge labelings

Here we prove that every irreducible triangulation with n vertices has less than O(4.6807n)
regular edge labelings and that there are irreducible triangulations with Ω(3.0426n) regular
edge labelings. Before we present our bounds, we review some additional related work.

A bipolar orientation of a graph is an acyclic orientation of the edges such that there is
exactly one vertex without any incoming edges (called the source) and exactly one without
any outgoing edges (called the sink). A regular edge labeling gives two bipolar orientations,
one on the red edges and one on the blue edges. One might therefore expect that the number
of regular edge labelings is related to the number of bipolar orientations, which Felsner and
Zickfeld [14] showed to be in O(3.97n), while also showing that there are planar graphs
with Ω(2.91n) bipolar orientations. Any regular edge labeling can be turned into a bipolar
orientation by adding a source and a sink vertex and connecting the new source to the red and
the blue sources and connecting the red and the blue sinks to the new sink. However, in this
way many regular edge labelings can be mapped to the same bipolar orientation. Conversely,
although Kant and He [18] developed an algorithm that produces a regular edge labeling
from the directions of the edges, not every bipolar orientation can be turned into a regular
edge labeling this way. This is caused by the fact that bipolar orientations only require each
(non-source and non-sink) vertex to have an in- and outdegree of at least one, whereas regular
edge labelings require an in- and outdegree of at least two, one blue and one red.

Counting all regular edge labelings of all n-vertex irreducible triangulations yields the
number of combinatorially different rectangular partitions with n rectangles which is in
Ω(11.56n) [4] and less than or equal to 13.5n−1 [15]. If we consider partitions to be iden-
tical when the incidence structure between rectangles and maximal line segments is the same,
then the number of different partitions is in Θ(8n/n4) [2].

Many other interesting substructures have been counted in planar graphs. Aichholzer
et al. [3] list the known upper bounds for other subgraphs contained in a triangulation:
Hamiltonian cycles, cycles, perfect matchings, spanning trees, connected graphs and so on.
Several of these bounds have been improved recently [9, 10]. Some of the techniques used to
count other substructures can be used to count regular edge labelings, but the upper bounds
we obtained by applying these techniques were far from the bound we will present in this
thesis. Some of these bounds are discussed at the end of this section.

Our upper bound relies on Shearer’s entropy lemma [11]. Björklund et al. [8] recently used
this lemma to obtain (2− ε)n algorithms for the TSP problem. In contrast to our application
of the lemma, they count vertex sets with certain properties and crucially rely on bounded
maximum degree.

11



12 Chapter 4. Counting regular edge labelings

4.1 Upper bound

Let G = (V,E) be an irreducible triangulation on n vertices. By Lemma 1(a), a regular edge
labeling is uniquely determined by the colors (red and blue) of the edges. Thus, the number of
regular edge labelings of G is bounded by the number of edge colorings with two colors. Since
G has less than 3n edges by Euler’s formula, a simple upper bound is 23n = 8n. Most of the
colorings that we obtain by coloring the edges independently red or blue do not correspond
to a valid regular edge labeling. In the following we refine our bound using Shearer’s entropy
lemma.

Lemma 3 (Shearer’s entropy lemma [11]) Let S be a finite set and let A1, . . . , Am be
subsets of S such that every element of S is contained in at least k of the A1, . . . , Am. Let F
be a collection of subsets of S and let Fi = {F ∩Ai : F ∈ F} for 1 6 i 6 m. Then we have

|F|k 6
m∏
i=1

|Fi|.

Shearer’s entropy lemma allows us to use the local conditions on regular edge colorings to
bound the number of regular edge labelings.

Theorem 4 The number of regular edge labelings of an irreducible triangulations is in
O(4.6807n).

Proof. Let G = (V,E) be an irreducible triangulation on n vertices. Let S be E with the
four edges on the exterior face excluded. For a regular edge labeling L of G let E(L) be the
set of blue edges in L. Let

F := {E(L) | L is a regular edge labeling of G}.

Since E(L) determines L, the number of regular edge labelings is |F|.

vi

Ai ∩ E(L)

vi

Ai

e

Figure 4.1: A vertex vi with the corresponding set of edges Ai, a locally consistent choice of
blue edges, and an edge e with the four vertices that include e in their Ai.

For the vertices vi of G (i = 1, 2, . . . , n) let Ai be the set of edges in S of the triangles
adjacent to vi (see Figure 4.1). Every edge e ∈ S is in four of the sets Ai, namely in the four
sets corresponding to the vertices of the two triangles with e as edge. Let Fi be the set of
intersections of the set Ai with the sets E(L), i.e., Fi contains all possible ways to choose blue
edges around vi consistent with a regular edge labeling. By Lemma 3 the number of regular
edge labelings is bounded by

∏n
i=1 |Fi|1/4.

For a vertex vi on the outer face there is only one way to choose the colors for the edges
in Ai, since the adjacent edges must all have the same color. Since by Lemma 1(b) a regular
edge labeling has no monochromatic triangle, the remaining edges in Ai need to be of the
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other color. Now let vi be a vertex that is not on the outer face. We first bound the number
of ways in which the edges adjacent to vi can be colored. We color these edges starting with
an arbitrary one and going clockwise from there. For the first edge, we have at most 2 choices
and moving clockwise, we need to switch colors exactly four times by the local conditions on
regular edge colorings. Therefore the number of choices for the edges adjacent to vi is bounded
by 2

(
di
4

)
, where di is the degree of vi. After coloring the adjacent edges, every triangle in Ai

already has two colored edges. We have no choice for the third edge if these two edges have
the same color, so we only have a choice for the (at most) four places where we switched
colors. Therefore, the number of regular edge labelings of G is bounded by

n∏
i=1

(
25
(
di
4

))1/4

=

(
32n

n∏
i=1

(
di
4

))1/4

.

Jensen’s inequality states that given a concave function f and a set of k values xi in its domain,∑
f(xi) 6 kf(

∑
xi/k). Since the function log

(
d
4

)
is concave, this gives us

∑n
i=1 log

(
di
4

)
6

n log
(∑n

i=1 di/n
4

)
. Since by Euler’s formula the average degree

∑n
i=1 di/n is bounded from

above by 6, we get
∏n

i=1

(
di
4

)
6
(
6
4

)n
= 15n. This yields the bound on the number of regular

edge labelings of G of 480n/4 < 4.6807n. �

4.2 Lower bound

Next, we give lower bounds for the number of regular edge labelings in triangulated grids.
We refer to the number of rows of a triangulated grid as its height h and to the number of
columns as its width w. To obtain an irreducible triangulation, we add four vertices to the
outside of the grid, connecting one to every vertex on the top row, one to the bottom row,
one to the left column, and one to the right column. The total number of vertices of the
augmented grid is n = hw + 4.

Figure 4.2: The diagonals in the triangulated grid can be colored arbitrarily if all horizonal
edges are blue, and all vertical edges red.

A simple lower bound on the number of regular edge labelings in a triangulated grid is
2n−h−w−3, which is in 2n−O(

√
n) for h = w. To see this, color all horizontal edges blue and

all vertical edges red as shown in Figure 4.2. Now all vertices already have the required four
intervals of alternating red and blue edges and these intervals cannot be broken up by the
diagonals, as these are all adjacent to intervals of both colors. Therefore all n − h − w − 3
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diagonals can be colored independently blue or red, which yields the lower bound. This
already shows that the number of regular edge labelings is exponential in n, but we expect
that there are many more regular edge labelings in a triangulated grid, because fixing the
color of all horizontal and vertical edges, i.e., two-thirds of the edges, seems very restrictive.

We will show a better lower bound by only prescribing the edges of every h′th row to be
blue, and not prescribing any colors for the edges of columns. (Nonetheless, the edges of
the first and last column will be colored red in any regular edge labeling.) We color the
parts between the blue rows independently. Therefore, we can assume for the moment that
h = h′ + 1. Larger values of h (relative to h′) will not change the analysis, but will improve
the lower bound.

Our bounds require the analysis of large matrices, so part of the proof is by computer. We
first describe all steps for h′ = 1, i.e., the edges of all rows are blue. In this case, we can do
all calculations by hand. Then we show how to generalize the method for larger values of h′.

We color the triangulated grid from left to right. The edges of the first and last column will
need to be colored red, since by Lemma 1(b), a regular edge labeling has no monochromatic
triangles. Assume we have colored the triangulated grid up to the ith column. We call the
edges of the ith column and the diagonals connecting to this column from the left the ith
extended column. Assuming we have no restriction from the right, our options for coloring
the (i+ 1)st extended column are determined by the colors of he ith extended column.

Figure 4.3: The possible labelings of an extended column for the single row case: two options
for red to red and one option each for red to blue, blue to red and blue to blue.

If h′ = 1, the previous column can be either red or blue, while the color of the previous
diagonal does not influence our choices for this column. If the previous column is red, we
can make this column red, too, and choose either color for the diagonal. We can also make
this column blue, but then the diagonal needs to be red to satisfy the constraints around the
top vertex of this column. Likewise, if the previous column was blue, our diagonal needs to
be red to satisfy the constraints around the bottom vertex of the previous column. These
possibilities are depicted in Figure 4.3.

From
To

R

B

R B

2 1

1 1

We can represent these coloring options as a transition matrix M (shown
to the right), using the column colors as state. We can compute the number
of colorings up to the ith extended column by starting in the red state
(represented as (1, 0)) and repeatedly multiplying it with M . The resulting
vector gives us the number of colorings ending in a red or a blue edge.

Since M has only positive elements, it is primitive. By Theorem 2(c) the
ratio between the number of labelings ending in a red column up to the ith extended column
and up to the (i+ 1)th extended column converges towards the largest eigenvalue of M . This
eigenvalue is φ+1 > 2.61803. So for any ε > 0, we obtain more than (φ+1−ε)w labelings for
sufficiently large w. Since we need to add two vertices to add a single column, this yields a
lower bound of (φ+ 1− ε)(n−4)/2 for sufficiently large width w. If we now increase h, we need
to add h vertices to add h− 1 columns, i.e., we get a lower bound of (φ+ 1− ε)(n−4)(h−1)/h,
which for sufficiently large h and w is larger than 2.61803n.
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Next we consider the case where h′ > 1, using h′ = 2 as an example. Since we prescribe the
color of less edges, this will yield a better bound. The largest change from h′ = 1 is that we
need to extend the states with information about the vertices, as just using the colors of the
edges is not sufficient to decide how the coloring can be extended. Therefore we include for
each vertex the number of color switches there should be in the next extended column. With
this information, we can reconstruct the colors of all column edges from a single colored edge,
so we will describe the state by the color of the bottom column edge, followed by the number
of color switches at each vertex, moving upwards. As an example, the states for h′ = 2 are
given in Fig. 4.4.

R1 R2R0 B0 B1 B2



1 4 1 1 2 5
0 5 2 2 1 4
0 2 2 1 1 1
0 2 2 2 2 1
0 1 2 1 2 2
0 0 0 0 0 1




5 2 2 1
2 2 1 1
2 2 2 2
1 2 1 2



Figure 4.4: The states for h′ = 2, the corresponding transition matrix and reduced transition
matrix.

Some states that can be described in this way cannot in fact be part of a regular edge
labeling. We call such states infeasible. A state is feasible if it can be reached from the
initial all-red state (R1 in the case of h′ = 2) and if the all-red state can be reached from it.
Thus a state is feasible if and only if it is in the strongly connected component of the all-red
state. For example, looking at the transition matrix for h′ = 2 given in Figure 4.4, we can
see that the first state, R0, doesn’t have any incoming transitions from other states and the
last state, B2, doesn’t have any outgoing transitions to other states. Therefore these states
are both infeasible and the matrix can be reduced to include only the feasible states. In our
implementation, we use two depth-first searches through the adjacency graph corresponding
to the transition matrix and starting from the all-red state to determine the feasible states.
The first search traverses the edges in the usual way to mark all states that are reachable
from the all-red state, while the second search traverses each edge backwards, to mark all
states from which the all-red state is reachable. The feasible states are exactly those states
marked by both searches.

The resulting reduced matrix is primitive, since it is irreducible by construction, and there
is always at least one transition from the all-red state to itself by coloring all diagonals and
horizontal edges between the two columns blue. When constructing a regular edge coloring, we
start with the all-red column and color the columns one by one. By Theorem 2(c) the number
of regular edge colorings (and therefore the number of regular edge labelings) increases with
each new column by a factor that converges to the largest eigenvalue of the reduced transition
matrix. Therefore, a strict lower bound on this eigenvalue λh′ of this matrix gives us a strict
lower bound for the growth rate per column (ignoring a constant number of initial columns).

We obtain this strict lower bound on λh′ by taking a nonnegative non-zero state vector x,
multiplying it with the transition matrix and determining the minimum growth rate for the
non-zero elements. If the vector is not an eigenvector of A (i.e., the growth rate is not the
same for all non-zero states) then the minimum growth rate is a strict lower bound on λh′

by Theorem 2(b). Table 4.1 gives minimum and maximum growth rates for h′ = 2, where
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A is the reduced transition matrix and x0 is the vector with a 1 for the all-red state and 0
otherwise. It shows that the growth rates converge quite rapidly to λh′ . We use x = x0A

100

for our lower bounds. Since in all the cases that we consider the vector x is positive, we also
obtain an upper bound on λh′ by the maximum growth factor.

t 1 2 3 4 100

fA(x0A
t) 6.8 7.56 7.80 7.87 7.89167

gA(x0A
t) 13 8.77 8.10 7.94 7.89167

Table 4.1: Minimum and maximum growth rates for h′ = 2. The values for the smaller values
of t are rounded to 2 decimal places, while the values for t = 100 are rounded to 5 decimal
places, although they only start to deviate at the 58th decimal place.

As for the case h′ = 1, we now use several copies of h′ rows beneath each other to obtain

a larger triangulated grid. The growth rate per vertex in this way approaches λ
1/h′

h′ . Our
results are given in Table 4.2. 1

h′ 1 2 3 4 5 6 7

λh′ 2.61803 7.89167 24.5036 76.8353 241.977 763.785 2414.05

λ
1/h′

h′ 2.61803 2.80921 2.90453 2.96067 2.99746 3.0233 3.04263

Table 4.2: Lower bounds on the growth rate per column and per vertex for different values of

h′. Note that these are rounded down, and that our upper bounds on λh′ (and λ
1/h′

h′ ) equal
the (unrounded) lower bounds up to at least 10 significant digits.

Theorem 5 The number of regular edge labelings of the triangulated grid is in Ω(3.04263n).

4.3 Other techniques

Figure 4.5: A planar drawing of
the twisted cylinder with width 6.

The twisted cylinder is sometimes a good alternative for
counting structures that are numerous on the triangu-
lated grid. For example, it has been used to count simple
and hamiltonian cycles on planar graphs by Buchin et
al. [9]. Imagine taking a piece of squared paper and
bending it to make the ends meet and form a cylinder.
Now instead of lining up the rows with each other, shift
everything one square to the right. This produces a sin-
gle line of squares, twisting itself around the cylinder.
This can be drawn as a planar graph, depicted to the
right, as if you are looking through the cylinder. The advantage over the triangulated grid is
that now cells can be added one at a time, leading to a far less complicated transition matrix
than if you would add an entire column at a time.

1Our code for generating the transition matrices and estimating the eigenvalues can be found at
http://www.win.tue.nl/~speckman/demos/LowerBoundREL.zip



4.3. Other techniques 17

Unfortunately, the twisted cylinder has only few regular edge labelings. Although it resem-
bles the triangulated grid in many ways, the transformation used when drawing the graph
in the plane causes the graph to have a very limited number of regular edge labelings. This
is easiest to see when looking at the regular edge labeling for the first simple lower bound
we gave using the triangulated grid, where every vertical edge was colored red and oriented
from bottom to top and every horizontal edge was colored blue and oriented from left to
right. Applying this labeling to the twisted cylinder makes both the red and blue edges move
inwards. This can never lead to a valid regular edge labeling, as this requires that the blue
edges form a bipolar orientation with the west vertex as source and the east vertex as only
sink, both on the outside of the spiral.

We also found another upper bound on the number of regular edge labelings, which we
sketch in the following. Although it is worse than our current bound, the reasoning may still
be interesting.

Let G be an irreducible triangulation with n+ 4 vertices. We call the vertices adjacent to
the exterior face exterior vertices. All other vertices are inner vertices. If we call the aver-
age degree of the inner vertices d, the number of triangles adjacent to the exterior vertices is
(6−d)n+2 by the Euler characteristic. Since by Lemma 1(b) there can be no monochromatic
triangles, the coloring of these triangles is already fixed. Again using the Euler characteristic,
we can see that there are (d − 4)n non-fixed triangles left. We call a corner of a triangle
monochromatic if its two edges have the same color. If they have a different color, we call it
bichromatic. Since no triangle may be monochromatic, each triangle must have one monochro-
matic corner and two bichromatic corners. A regular edge labeling can be defined by its set of
monochromatic corners. By letting each non-fixed triangle choose its monochromatic corner,
we obtain a bound of 3(d−4)n labelings.

Not every assignment of monochromatic corners produces a valid regular edge labeling, as
every inner vertex v must have exactly 4 incident bichromatic corners (one at each switch
between the four sets of colored edges) and dv − 4 incident monochromatic corners, where dv
is the degree of v. If we now look at a random assignment of monochromatic corners, we can
say something about the probability that all vertices will satisfy this condition. Since there
are 4n bichromatic corners in total, asking that all inner vertices have at most four incident
bichromatic corners is the same as asking that they have exactly four. Let Ai denote the
event that vertex i has at most four incident bichromatic corners. Then

P

(⋂
i

Ai

)
= P

(
Ai|
⋂
j 6=i

Aj

)
· P
(⋂

j 6=i

Aj

)
.

The first factor asks for the probability that vertex i has “few” incident bichromatic cor-
ners, given that all other vertices already have “few” incident bichromatic corners. However,
this condition makes it more likely that vertex i has many incident bichromatic corners in-
stead, so this condition only decreases the probability of vertex i having few incident bichro-
matic corners. Therefore this probability is less than or equal to P

(
Ai

)
, which implies that

P
(⋂

iAi

)
6
∏

i P
(
Ai

)
.

Now let p(di) = P
(
Ai

)
. Since ln p(d) is concave for d > 4, we can use Jensen’s inequality

to show that
∏

i P
(
Ai

)
6 p(d)n. Thus the probability that any of those 3(d−4)n labelings is

valid is at most p(d)n. With the average degree being at most 6, this gives us a bound of
p(6)n · 3(6−4)n ≈ 5.84n.





Chapter 5

Application to rectangular cartograms

A rectangular cartogram is a thematic map where every region is depicted as a rectangle.
The area of the rectangles corresponds to a geographic variable, such as total population
or total livestock. In this chapter, we describe how to find good regular edge labelings for
rectangular cartogram construction and present experimental results. We follow the iterative
linear programming method presented by Speckmann et al. [24] to build a cartogram from
a regular edge labeling. We allow false adjacencies between sea regions only, and bound the
maximum aspect ratio of all regions at 12.

5.1 Quality measures

We consider two general quality criteria: the relative position of the rectangles and the
cartographic error of the resulting cartogram.

To make a rectangular cartogram as recognizable as possible, it is important that the
directions of adjacency between the rectangles of the cartogram follow the spatial relation
of the regions of the underlying map as closely as possible. These directions of adjacency
are given by a regular edge labeling, so we can assess the recognizability of a rectangular
cartogram by looking at its regular edge labeling. We use two quality measures to quantify
this. The first measure is based on region centroids [22] and considers the direction between
the centroids of two regions as their “true” direction of adjacency. The quality of a single
adjacency is then expressed in terms of the deviation from this direction, measured as the
smallest angle between the direction suggested by the labeling and the direction between the
centroids (see Fig. 5.1 on the left). We refer to this measure as the angle deviation.

The angle deviation measure tends to perform quite well, although it can lead to counter-
intuitive results in some cases. For example, placing the rightmost region in Fig. 5.1 to the
right of the other region seems preferable to placing it below that region, although both have
roughly the same angle deviation. Hence we also consider a second measure which is based
on the bounding boxes of the regions. The bounding box separation distance (bb sep dist)
measures the distance these bounding boxes would need to be moved to separate them in the
direction indicated by the edge label (see Fig. 5.1 on the right).

Of course we do not have to to consider only the regular edge labeling to determine the
recognizability of a cartogram, we can also look at the cartogram itself. The angle deviation
measure has a natural translation to the cartogram, by comparing the direction between two
centroids in the input map to the actual direction between the centroids of these regions in
the cartogram. This is illustrated in Fig. 5.2. Again, we measure the quality of a single

19
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α
α

α α

d d

d d

Figure 5.1: The angle deviation (left) and bounding box separation distance measures (right).

α

Figure 5.2: Two regions with the direction between their centroids indicated, the correspond-
ing regions in the rectangular cartogram and an overlay of these two, indicating the resulting
angle deviation.

adjacency by the smallest angle between these directions. We refer to this measure as the
resulting angle deviation.

These measure give only the quality for a single adjacency. To compute the quality of an
entire regular edge labeling, we consider both the average and the maximum error over all
edges of the labeling, except for adjacencies between two sea regions. These are ignored, be-
cause they are less relevant for the perception, as the boundaries between them aren’t shown
in the resulting cartogram. When comparing two labelings using the maximum angle devia-
tion or maximum bounding box separation distance, the second largest errors are compared
when the largest are equal, and so on. We also consider a binary version of the first two
measures, which first determines the “correct” color and direction for each edge by taking the
combination that performs best according to the chosen measure and then counts the number
of edges that are labeled correctly.

Another important quality criterion for cartograms is the cartographic error. This measures
how well the areas of the regions in the cartogram match their prescribed areas. It is defined
as |Ac − As|/As, where Ac is the area of the region in the cartogram and As is the specified
area of that region, given by the geographic variable to be shown. As before, we consider
both the maximum and average cartographic error over all regions of the cartogram.

We strive to construct cartograms with both low cartographic error and high recognizability,
hence we consider various ways to combine the two quality criteria. One possibility is to
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take a weighted average, another possibility is to bound the cartographic error at a certain
percentage, while optimizing one of the recognizability measures, which we call a bounded
measure.

To have simulated annealing produce comparable behavior with the various quality mea-
sures, we scale each measure to produce values between 0 and 1. This is done differently
for each measure. For all angle deviation measures, we divide the resulting quality by π.
For the maximum bounding box separation distance, we divide the result by the maximum
possible distance, while for the average, we divide the sum of the distances as specified by the
labeling by the sum of the maximum distances for each edge. The bounded measures return
the quality of measure that is being optimized divided by 10 if the bound on cartographic
error is met and add 0.9 to this otherwise.

5.2 The Netherlands

The provinces of the Netherlands, shown to the left in Fig. 5.3, form our first test case.
The augmented dual graph of this map has only 408 regular edge labelings, which can be
enumerated in less than a second. The corresponding distributive lattice has a diameter of
17. Despite these small numbers, the map is large enough to show interesting trends.

Fig. 5.3 shows cartograms produced by enumerating all labelings and taking the best one
according to various quality measures. The first data set shows total population on January
1st 2009, the second total livestock in 20091. The color of a region corresponds to its carto-
graphic error, with red indicating that the region is too small and blue indicating that it is
too big. The saturation corresponds to the magnitude of the error, a white region has a car-
tographic error of at most 5%, while a fully saturated region has a cartographic error of over
30%. The bounded measures optimize the maximum error of their respective measures, while
only considering labelings that lead to cartograms with less than 5% maximum cartographic
error.

Several interesting trends are visible here. Firstly, the labelings with the lowest average
angle deviation and maximal angle deviation are the same, just like the labelings with the
lowest average and maximum bounding box separation distance. This is not always the case,
for example for the resulting angle deviation these labelings differ. Secondly, both the average
and maximum measures perform well with regards to the recognizability of the cartograms,
whereas the binary versions perform significantly worse. Although the recognizability mea-
sures perform better in this regard, it is interesting to see that the labelings that solely
optimize the cartographic error are still very recognizable. Finally, it is clear that a com-
bination of both measures leads to cartograms that are both recognizable and have a low
cartographic error, which is exactly what we want to achieve.

Fig. 5.4 shows two scatter plots covering all labelings of the Netherlands. The left plot shows
that the average angle deviation and average bounding box separation distance measures
generally agree on the quality of labelings. They have a squared Pearson correlation coefficient
of 0.76. The right plot shows the average bounding box separation distance and the maximum
cartographic error. The correlation between these two is larger than expected, with a squared
Pearson correlation coefficient of 0.50, but the truly interesting part is that the relation is
mostly one-way. There are several labelings that are considered less recognizable, but still
solve well, whereas all recognizable labelings solve well. This effect varies with the data set

1Source: Centraal Bureau voor de Statistiek, http://www.cbs.nl/
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used. The correlation is strongest for the area of the provinces, which is shown in the scatter
plot, almost as strong (a squared Pearson correlation coefficient of 0.44) for the livestock data,
but negligible for the population data.
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average angle dev maximum angle dev binary angle dev bounded angle dev average carto error

average bb sep dist maximum bb sep dist binary bb sep dist bounded bb sep dist maximum carto error

Total population:

Total livestock:

average angle dev maximum angle dev binary angle dev bounded angle dev average carto error

average bb sep dist maximum bb sep dist binary bb sep dist bounded bb sep dist maximum carto error

average res angle dev maximum res angle dev bounded res angle dev

average res angle dev maximum res angle dev bounded res angle dev

Figure 5.3: Population and livestock cartograms of the provinces of the Netherlands.
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Figure 5.4: Scatter plots of the average bounding box separation distance versus the average
angle deviation on the left and versus the maximum cartographic error on the right. The
areas of the provinces were used as data set for the cartographic error.

5.3 Europe

The countries of Europe form our second test case. In order to compare our results to those
of Speckmann et al. [24], we use the same simplified map of Europe, shown in Fig. 5.5, that
has added sea regions and Luxembourg and Moldavia removed to ensure that the dual graph
is an irreducible triangulation. This is also the reason that the map is slightly out of date (it
still contains Serbia and Montenegro as a single country).

With 59 regions (including sea regions), this map is far larger than the map of the Nether-
lands, which is also reflected in the number of regular edge labelings of its augmented dual.
While all labelings of the Netherlands could be enumerated in less than a second, it takes
more than a month2 to enumerate all labelings for Europe, of which there are at least 10700
million. Despite the large number of labelings, the lattice for Europe has a diameter of only
115. This looks promising for the application of simulated annealing, since it means that any
labeling can be reached in relatively few steps. In this section, we describe our method for
finding good rectangular cartograms of larger maps and present results for Europe.

Because enumeration is infeasible for these larger maps, we use simulated annealing (de-
scribed in Chapter 3.2) to find good labelings for cartogram construction. From earlier ex-
periments, we know that the choice of the initial labeling can have a large influence on the
quality of the resulting cartogram. The magnitude of this influence depends on the number of
steps the simulated annealing search is allowed to take: a larger number of steps allows more
opportunity for exploring regions of the lattice that are further from the initial labeling. Since
the measures that combine recognizability with the cartographic error require the construc-
tion of a cartogram for each evaluation, these measures are relatively slow when compared to
the pure recognizability measures. Ultimately, these combined measures are still the ones we
would like to use as they produce better labelings, but when starting them from the minimal
labeling, it could take a large number of steps to reach a good neighborhood. Therefore
we start by performing a simulated annealing search for one million steps using the average
bounding box separation distance. The best labeling from this search is then used as initial
labeling for the final simulated annealing search for 2000 steps with the desired combined
measure.

2At the time of writing, our enumeration application has been running for 72 days and is still counting.
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Figure 5.5: The simplified map of Europe we used as input.

Fig. 5.6 shows some results of our implementation. Note that all our cartograms have
correct adjacencies for the land regions. The top figure shows the total population of the
countries of Europe on January 1st 20083, with the populations of Luxembourg and Moldova
added to Belgium and Ukraine, respectively and the populations of Serbia, Montenegro and
Kosovo aggregated into Serbia and Montenegro. It has an average cartographic error of
0.000002 and a maximum cartographic error of 0.000007. The bottom figure shows the total
highway length in Europe and uses the exact same map and data set as the cartograms made
by Speckmann et al. which were based on user-specified regular edge labelings. It has an
average cartographic error of 0.000001 and a maximum error of 0.000007. This is a significant
improvement over the results of Speckmann et al. who achieved 0.022 average and 0.166
maximum cartographic error. Both cartograms were generated using a weighted average of
the average cartographic error with weight 0.7 and the average resulting angle deviation with
weight 0.3 as quality measure.

3Source: Eurostat, http://epp.eurostat.ec.europa.eu/
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Figure 5.6: Two rectangular cartograms of Europe. The first cartogram shows the total
population of each country and the second cartogram shows the total highway length.
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5.4 United States

Our final test case consists of the contiguous states of the United States of America, shown in
Fig. 5.7. Again, this is the same map as used by Speckmann et al. in order to get comparable
results. With 48 states and 9 sea regions, this map is comparable in size to the map of Europe.
Its augmented dual has over 10400 million regular edge labelings and the corresponding lattice
has a diameter of 278.
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Figure 5.7: The simplified map of the United States we used as input.

Fig. 5.8 shows three cartograms, each depicting the total population of the states4. This is
the same data set used by Speckmann et al. The first cartogram was generated by bounding
the average cartographic error on 5% and optimizing the maximum resulting angle deviation.
It achieves an average cartographic error of 0.037 and a maximum error of 0.247. The second
cartogram was generated by using a weighted average of the average cartographic error with
weight 0.7 and the average resulting angle deviation with weight 0.3 and has an average error
of 0.039 and a maximum error of 0.207. The third cartogram was again generated using a
weighted average, but instead of the resulting angle deviation, it used the average bounding
box separation distance with weight 0.3. It has an average error of 0.031 and a maximum
error of only 0.140. Again a significant improvement over the results of Speckmann et al. of
0.086 average and 0.873 maximum cartographic error.

Fig. 5.9 also shows three cartograms, this time depicting the native population of each
state. All three cartograms were generated by bounding the average cartographic error at 5%
and optimizing the maximum resulting angle deviation. They achieve average cartographic
errors of 0.005, 0.012 and 0.017 respectively, with maximum errors of 0.077, 0.228 and 0.196.

4Source: the US Census Bureau, http://www.census.gov/
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Figure 5.8: Three rectangular cartograms depicting the total population for each of the
contiguous states in the United States of America.
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Figure 5.9: Three rectangular cartograms depicting the native population for each of the
contiguous states in the United States of America.





Chapter 6

Conclusions and future work

In this thesis we showed how to find optimal or near-optimal regular edge labelings for var-
ious quality criteria. We evaluated these methods by using them to generate high quality
rectangular cartograms. We also showed that every irreducible triangulation with n vertices
has less than O(4.6807n) regular edge labelings and that there are irreducible triangulations
with Ω(3.0426n) regular edge labelings.

Regarding the experiments, we can conclude that our fully automated method to find
optimal regular edge labelings for cartogram construction performs at least as well as semi-
manual methods and frequently leads to better cartograms. Although this shows that false
adjacencies are not necessary to generate cartograms with low cartographic error, using our
approach to optimize the regular edge labeling in addition to allowing some adjacencies to
slip a little could result in even better cartograms. Our recognizability measures also raise
some interesting questions for future research focusing on user perception: Which measure
matches user perception best, regarding the direction of adjacency of two regions? Are the
cartograms produced using this measure indeed more recognizable? Are there other measures
that produce even better results? Finally, while our choices of cooling schedule, acceptance
probability function and neighbor generation seem to work well for our simulated annealing
implementation, we did not perform any experiments that establish them as the best val-
ues. Tweaking these parameters to the specific measures and lattice structure could improve
the chances of quickly finding high-quality results. Another option is to use other global
optimization schemes such as genetic algorithms.

Of the two bounds we proved, we believe that the lower bound is closer to the true value,
and improving the upper bound seems to be a promising open problem. This improvement
could come from working more globally and using more specific properties of regular edge
labelings. The lower bound can still be increased by applying our method for larger values
of h′, but when increasing it from 6 to 7, he bound increased by less than 0.02. We estimate
that subsequent increases of h′ will yield even smaller improvements of the bound, while using
much more computing power and time.

There are many more related problems that are still unsolved. They can be divided in
two groups: problems dealing with more theoretical aspects of regular edge labelings and
problems dealing specifically with rectangular cartogram construction.

From an algorithmic point of view, it would be interesting to find a more efficient algorithm
that produces a regular edge labeling consistent with a given partial labeling, or reports the
non-existence of such a labeling. The algorithm presented by Eppstein and Mumford [12] can
solve this problem, but they have a quadratic running time only if the lattice representation
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is known and it is unclear how much time it takes to build this representation (although it
is certainly polynomial). Working directly on the graph instead of via the lattice could give
a much better running time. Some more fundamental decision problems have also not been
fully solved yet. For example, it is unknown if it is possible to decide efficiently if a given
irreducible triangulation has a sliceable dual. Further, although Eppstein et al. [13] give an
algorithm that finds a one-sided dual if it exists, this algorithm is not fully polynomial. It is
still unknown whether this problem is NP-complete.

Concerning the generation of rectangular cartograms, one of the few steps that has not
been automated yet is dividing the sea into sea regions such that the resulting map has an
irreducible triangulation as dual graph. There are always many sets of possible sea regions
and this choice can have a very large influence on the quality of the resulting cartogram. A
good choice of sea regions increases recognizability by preserving the shape of the coastline or
border and decreases cartographic errors by shrinking or expanding to compensate for errors
in adjacent land regions. For example, looking at the US population cartograms in Fig. 5.8,
Texas is too small in each of them. Splitting the large sea region at the bottom into two and
letting Texas be adjacent to both of these and the South border would allow more room for it
to expand, while having little influence on other regions. This would also correspond better
with the input map and make more sense geographically, since the right sea region would
then represent the Gulf of Mexico, while the left would represent Mexico. There is also no
algorithm yet that can decide whether an errorless rectangular cartogram can be made for a
given graph and set of weights.
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