
Chapter 2

Records and Random Binary Search

Trees

In this 
hapter we examine the use of re
ords in analyzing the running times of operations on random-ized data stru
tures. The re
ords we are talking about are not re
ords in a database, but rather bestresults so far, like Olympi
 re
ords. In parti
ular, let A1, . . . An be a random permutation of the integers
1, . . . , n. Then Ak is a re
ord if Line 4 of the following pseudo
ode exe
utes when i = k.1: m← −∞2: for i = 1, . . . , n do3: if Ai > m then4: m← Ai5: end if6: end forMore pre
isely, Ai is a re
ord if and only Ai = max{A1, . . . , Ai}. As an example, the re
ords inthe sequen
e

S = 2, 7, 5, 4, 9, 8, 3, 1, 6are underlined.The probability that Ai is a re
ord is exa
tly 1/i sin
e A1, . . . , Ai has only one maximum and itis equally likely to o

ur at any of the i positions. What is the expe
ted number of re
ords in a randompermuation of n elements? De�ne the indi
ator variable
Ii =

{ 1 if Ai is a re
ord0 otherwise .Then the expe
ted value of Ii is E[Ii] = 0 � Pr{Ai is not a re
ord} + 1 � Pr{Ai is a re
ord} = 1/i. So theexpe
ted number of re
ords is given by
1
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E

"
n∑

i=1

Ii

#
=

n∑

i=1

E[Ii] (2.1)
=

n∑

i=1

1/i (2.2)
= Hn , (2.3)Where Hn =

∑n

i=1 1/i is 
alled the nth harmoni
 number. The value of Hn has re
eived 
onsiderableattention. Bounding Hn using integrals [4, Se
tion 3.2℄ shows that lnn � Hn � lnn + 1 for all n > 1.Thus, the expe
ted number of re
ords in a random sequen
e is O(lgn). This very simple fa
t
an be used to give very short proofs about the running times of many randomized algorithms.
2.1 Random Binary Search TreesA binary sear
h tree T is either the symbol nil, or 
onsists of an integer key, key(T), and two 
hildren,left(T) and right(T), that are both binary sear
h trees. Additionally, a binary sear
h tree satis�es thefollowing sear
h property
Property 1 (Sear
h Property). If left(T) 6= nil then key(left(T)) � key(T) and if right(T) 6= nil thenkey(T) � key(right(T))For an integer k, the sear
h path of k in T , denoted path(k, T) is given the following re
ursivesear
h pro
edure path(k, T) =






nil if T = nil

T if k = key(T)

T,path(k, left(T)) if k < key(T)

T,path(k, right(T)) if k > key(T)

.A random binary sear
h tree T of size n is a binary sear
h tree 
onstru
ted by inserting theelements {1, . . . , n} into T in random order. Assuming that the key k is not already 
ontained in the tree
T , we insert k into T by making a new tree T 0 with key(T 0) = k and making T 0 a 
hild of the last non-niltree in path(k, T). This results in a sequen
e of trees T0, . . . , Tn = T where Ti is the tree resulting fromthe insertion of the �rst i elements. See Figure 2.1 for an example of a binary tree 
onstru
ted by asequen
e of insertions.One question we might ask about a random binary sear
h tree is how mu
h it 
osts to 
onstru
tone. Most of us will have seen bad examples where 
onstru
ting a binary sear
h tree on n elements byrepeated insertion takes Ω(n2) time. One obvious example of this o

urs when the elements form anin
reasing sequen
e, in whi
h 
ase the tree is just a sorted list.Sin
e we are assuming that the elements of T are inserted in random order, what we would reallylike to know is the expe
ted 
ost of 
reating T . One way to ta
kle this is to �nd the expe
ted 
ost ofinserting the ith element and then summing this over all i. In other words, if Ci is the 
ost of the ith
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1 2 3 4 5 6 7 8 9Figure 2.1: A binary sear
h tree 
onstru
ted by inserting the elements 2, 7, 4, 1, 8, 5, 9, 6, and 3 in thatorder.insertion then
E[Cost of building T ] = E

"
n∑

i=1

Ci

#
=

n∑

i=1

E[Ci] .It is 
lear that Ci is proportional to the length of path(ki, T), where ki is the ith value inserted.To bring things to an even �ner level of detail, let path(ki, T) = U1, . . . , Um. We 
all Uj a left turn if
Uj+1 = left(Uj), otherwise we 
all Uj a right turn. Let Li and Ri denote the number of left and rightturns, respe
tively, in path(ki, T). We will analyze the expe
ted values of Li and Ri seperately.To get some intuition about Li and Ri we should look at an example from Figure 2.1. In thisexample, path(6, T) = 2, 7, 4, 5, 6. This sear
h path takes a left turn at node 7 and right turns at nodes2, 4 and 5. The insertion sequen
e at the time node 6 is inserted is

S = 2, 7, 4, 1, 8, 5, 9, 6 .Consider the sequen
e 
ontaining only those elements that are less than 6, i.e.,
S 0 = 2, 4, 1, 5 .Note that the re
ords in the sequen
e S 0 are underlined and that these re
ords 
orrespond to the rightturns in path(6, T). We might also 
onsider the sequen
e of elements larger than 6, i.e.,
S 00 = 7, 8, 9 .If we modify the de�nition of re
ords to use the minimum instead of the maximum, then the left turnsin path(6, T) all 
orrespond to re
ords in the sequen
e S 00.Is this always the 
ase? The answer to this question is yes. To see this, let Tj denote the tree

T after insertion of the �rst j elements. The j keys inserted into Tj divide the real line up into j + 1intervals, and ki lies in one of these intervals [a, b]. When we insert the (j + 1)-st element, one of twothings happens, either path(ki, Tj) = path(ki, Tj+1) or not, in whi
h 
ase the path of ki in
reases by one.The key observation is that the latter 
ase only happens if the newly inserted key lies in the interval
[a, b]. If the newly inserted key is less than ki then it is a re
ord in S 0. If it is greater than ki then it isa re
ord in S 00.
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e into two sequen
es S 0 and S 00 we get two new sequen
es,whi
h are both random. That is, the elements of S 0 (and S 00) are equally likely to o

ur in any order.Therefore, the expe
ted number of re
ords in S 0 is
E[Ri] = H|S 0| � Hi ,and a symmetri
 argument shows that E[Li] � Hi. Therefore, the expe
ted 
ost of building a randombinary sear
h tree by repeated insertions is

n∑

i=1

E[Ci] = c

n∑

i=1

(E[Li] + E[Ri]) � c

n∑

i=1

2Hi = O(n logn) ,where c is a positive 
onstant.Thus, given n distin
t keys, we 
an randomly permute them and then insert them into a binarysear
h tree. An in-order traversal of the resulting tree 
an then be used to output the elements in sortedorder. This gives us a sorting algorithm whose expe
ted running time is O(n logn). In fa
t, the famousQui
ksort algorithm is a
tually just an eÆ
ient implementation of this pro
edure.On
e we have 
onstru
ted a random binary sear
h tree we 
an use it as a data stru
ture forsear
hing. The expe
ted 
ost of sear
hing for some key k is proportional to the length of path(k, T).There are two 
ases to 
onsider. If k is not stored in T then the above argument shows that the expe
ted
ost of sear
hing for k is
E[|path(k, T)|] = Hi + Hn−i , (2.4)where i is the rank, i.e., the number of elements less than k, of k in T .If k is stored in T then the upper bound
E[|path(k, T)|] � Hi + Hn−i ,still holds, sin
e path(k, T) only visits the re
ords in S 0 and S 00. However, it does not visit all the re
ordsin S 0 and S 00 sin
e it never visits any node that was inserted after the insertion of k. Therefore, if wewant a more exa
t result we must a

ount for the time at whi
h k was inserted into T .The expe
ted number of elements of S 0 visited while sear
hing for k is

E[R] =

|S 0|∑
j=1

Hj � Pr{k appears at position j in S 0}
=

1

|S 0| |S 0|∑
j=1

Hj

=
1

|S 0| �0BBBBB� 1 +

1 + 1/2 +

1 + 1/2 + 1/3 +... +
... +

... +
. . .

1 + 1/2 + 1/3 + 1/4 + � � � + 1/|S 0|
1CCCCCA

=
1

|S 0| ��|S 0| + |S 0| − 1

2
+

|S 0| − 2

3
+

|S 0| − 3

4
+ � � �+ 1/|S 0|�

= 1 + 1/2 + 1/3 + 1/4 + � � �+ 1/|S 0| − 1

2|S 0| −
2

3|S 0| −
3

4|S 0| − � � �− |S 0| − 1

|S 0|2� H|S 0| − 1 .
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Figure 2.2: Left and right rotations.A symmetri
 argument shows that the expe
ted number of elements of S 00 visited while sear
hing for kis
E[L] � H|S 00| − 1 .Thus, the expe
ted length of the sear
h path for k when k is stored in T is

Hi + Hn−i � E[|path(k, T)|] � Hi + Hn−i − 2 , (2.5)where i is the rank of k in T .
Theorem 1. The expe
ted 
ost of 
onstru
ting a random binary sear
h tree on n elements is
O(n logn). On
e su
h a tree is 
onstru
ted it 
an be used to sear
h for any key in O(logn)expe
ted time.
2.2 TreapsNext we show how randomization 
an be used to implement di
tionary operations. A di
tionary D isan abstra
t data type supporting the following operations on a set of real-valued keys.1. Insert(k, D). Insert the key k into D. This assumes that k is not already stored in D.2. Delete(k, D). Delete the key k from D. This assumes that k is already stored in D.3. Sear
h(k, D). Return the smallest key k 0 
ontained in D su
h that k 0 � k. If no su
h k 0 existsthen return ∞.The reason we 
an not just use random binary trees to implement di
tionary operations is thatthey are a stati
 data stru
ture. On
e we build a random binary sear
h tree on a set of keys we 
an notperform insertion or deletions into them and still maintain the expe
ted operation times of O(logn).Traditionally, this problem is over
ome by introdu
ing a balan
ing s
heme like those used in red-bla
k[7℄ or AVL [1℄ trees. These balan
ing s
hemes use rotations to ensure that every root to leaf path in Thas length in O(logn). A rotation swaps a tree and one of its 
hildren in su
h a way that the order inwhi
h keys appear in an in-order traversal is maintained. An example of a rotation is given in Figure 2.2.In this se
tion we present a simple balan
ing s
heme that uses randomization. A treap is asear
h tree in whi
h ea
h subtree T also has a unique priority priority(T) 2 [0, 1]. In addition to havingthe sorted property (Property 1), every non-nil treap also has the following heap property.
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8/9

9/9Figure 2.3: We obtain a treap by setting priority(T i) = i/n.
Property 2 (Heap Property). If left(T) 6= nil then priority(T) < priority(left(T)) and if right(T) 6= nilthen priority(T) < priority(right(T))The link between treaps and random binary sear
h trees is the following: If ki was the key that
reated the subtree T i in a random binary sear
h tree, then we obtain a treap by setting priority(T i)←
i/n. Essentially, we are setting priority(T i) to be the time at whi
h ki was inserted. See Figure 2.3.The interesting thing about this relationship is that it works both ways. If we assign prioritiesuniformly and independently at random from [0, 1] to all keys then the resulting treap is a randombinary sear
h tree on the keys. It's as if we've inserted the keys in random order. We 
all su
h a treapa random treap. Thus, the ni
e properties of sear
h paths on random binary sear
h trees also apply torandom treaps. It follows immediately that the expe
ted 
ost of sear
hing for a key k in a random treapis O(logn).To insert the key k into a random treap, we �rst insert it the way we normally would into abinary sear
h tree. We then assign the key a priority p sele
ted uniformly at random from [0, 1] andapply left and right rotations (as appropriate) to move the new subtree upwards until the heap property(Property 2) is restored. See Figure 2.4 for an example.What is the expe
ted 
ost of inserting the key k into a random treap T? Sin
e a random treaphas all the properties of a random binary sear
h tree, the expe
ted 
ost of performing the basi
 insertionis proportional to the expe
ted length of path(k, T). From (2.4) we see that E[|path(k, T)|] = Hi +Hn−i.Next, the algorithm performs rotations to restore the heap property. Equation (2.5) show that afterperforming these rotations, E[|path(k, T)|] � Hi + Hn−i − 2. Sin
e ea
h rotation redu
es |path(k, T)| byone, it follows that the expe
ted number of rotations is at most 2.To perform deletion of the key k from a treap, we �nd the subtree T 0 having k as its key andrepeatedly perform a rotation that moves T 0 towards the 
hild of T 0 that has minimum priority. Thatis, we perform a left or right rotation (as appropriate) on the 
hild of T 0 that has smaller priority. Werepeat this until T 0 be
omes a leaf, at whi
h point it is deleted by setting a pointer in its parent to nil.For an example of deletion, look at Figure 2.4 starting at the bottom right.
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Figure 2.4: Inserting the key k = 4 with priority p = .15 into a treap.



CHAPTER 2. RECORDS AND RANDOM BINARY SEARCH TREES 8At �rst the analysis of deletion seems somewhat more 
ompli
ated than that of insertion. How-ever, the following observation makes it trivial. Let T� be the treap that would have existed if the key khad never been inserted. Then T� is a random treap with n−1 nodes and the expe
ted 
ost of inserting
k into T� is O(logn). Now, note that the rotations performed while deleting k from T are exa
tly thesame rotations performed while inserting k into T�, only they are done in reverse order. Therefore,the expe
ted number of rotations performed while deleting k is Θ(1), so the overall 
ost of deletion is
O(logn). (Note that, if a pointer to the node 
ontaining k is given then the expe
ted 
ost of deletion is
O(1).)
Theorem 2. Random treaps support the operations Insert, Delete and Sear
h in O(logn)expe
ted time per operation, where n is the number of keys stored in the treap at the time of theoperation. The expe
ted number of rotations performed during an insert or delete operation is
O(1). Another 
lass of operations that treaps support very well are the Split andMerge operations.A Split operation takes a value k not in the treap and splits the treap into two treap T1 and T2 su
hthat T1 
ontains all keys less than k and T2 
ontains all keys greater than k. To implement a splitoperation we simply observe that we 
an insert k and then perform rotations until k be
omes the rootof the treap. At this point, the two treaps T1 and T2 that we want are the left and right 
hildren of theroot. The 
ost of this is proportional to |path(k, T)|, and so the split operation 
an be done in O(logn)time. The inverse of a Split operation is a Merge operation. This is where we take two treaps T1and T2 su
h that all keys in T1 are less than k and all keys in T2 are greater than k and we merge T1and T2 into a single treap. The implementation of merge is the exa
t inverse of split: We make a newroot k whose left and right 
hildren are T1 and T2, respe
tively, and then we delete k from the treap.Again, the expe
ted 
ost of this is O(logn).
Theorem 3. Random treaps support the operations Split and Merge in O(logn) expe
ted timeper operation.
2.3 HeatersIn the previous se
tion we showed that by assigning random priorities to the nodes of a binary sear
htree we get a balan
ed binary sear
h tree. In this se
tion we will see that this tri
k also works the otherway. If we assign random keys to the nodes of a priority queue, we get a balan
ed priority queue.A priority queue Q is an abstra
t data type supporting the following operations on a set ofreal-valued priorities.1. Insert(p, Q). Insert the priority p into Q. This assumes that p is not already stored in Q.2. FindMin(Q). Return the smallest priority p� stored in Q. This assumes Q is not empty.3. DeleteMin(Q). Delete the smallest priority p� stored in Q from Q. This assume Q is not empty.To implement a priority queue we 
an use a randomized binary tree as in the previous se
tion.When we use a randomized binary tree in this way, we 
all it a heater. The di�eren
e from the previous
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tion is that now instead of using random priorities, we will use random keys to obtain a randomheater. Note that swit
hing from random priorities to random keys makes no di�eren
e in how theshape of the underlying tree is distributed. In either 
ase, the shape of the tree is distributed in thesame way as the shape of a random binary sear
h tree.To insert the priority p into a heater H, we 
hoose a random real number k 2 [0, 1] and insertthe key/value pair (k, p) as des
ribed in the previous se
tion. The 
ost of this insertion is proportionalto the length of path(k, H). Sin
e the expe
ted length of path(k, H) is O(logn), the expe
ted 
ost ofinsertion is O(logn).Finding the minimum priority p� stored in a heater H is trivial sin
e the heap property ensuresthat the p� is stored at the root of H. Thus, FindMin 
an be implemented in 
onstant time using aheater. To delete the minum priority p� from a heater H, we simply delete the root of H using thedeletion algorithm des
ribed in the previous se
tion. Let k� be the key asso
iated with p� and let H�be the heater obtained after deletion of p�. Then, as with treaps, the 
ost of deletion is proportional tothe length of path(k�, H�). Sin
e H� is a random treap, the expe
ted length of path(k�, H�) is O(logn)and the expe
ted 
ost of deletion is O(logn).
Theorem 4. Random heaters support the operations Insert and DeleteMin in O(logn) expe
tedtime and FindMin in 
onstant time per operation, where n is the number of priorities stored inthe heater at the time of the operation.
2.4 Discussion and ReferencesThe use of re
ords to analyze random binary sear
h trees was introdu
ed by Devroye [5℄. His le
turenotes [6℄ use re
ords to give ultra-short proofs about many random phenomena. Randomized trees(treaps and heaters) are introdu
ed by Vuillemin [8℄. Aragon and Seidel [2℄ reinvestigate randomizedtrees and are responsible for the name treap. Bas
h et al [3℄ study the use of heaters in the 
ontextof kineti
 priority queues. These are priorities queues in whi
h the priorities are 
hanging 
ontinuouslyover time.
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