Chapter 2

Records and Random Binary Search
Trees

In this chapter we examine the use of records in analyzing the running times of operations on random-
ized data structures. The records we are talking about are not records in a database, but rather best
results so far, like Olympic records. In particular, let Aq,... A, be a random permutation of the integers
1,...,m. Then Ay is a record if Line 4 of the following pseudocode executes when i = k.

1: M —00
2: fori=1,...,ndo
3 if A; > m then
4: m«— A

5 end if

6: end for

More precisely, A; is a record if and only A; = max{A1,...,A;}. As an example, the records in

the sequence
$=2,7,54,9,8,3,1,6

are underlined.

The probability that A; is a record is exactly 1/i since A1,...,A; has only one maximum and it
is equally likely to occur at any of the i positions. What is the expected number of records in a random
permuation of n elements? Define the indicator variable

L — { 1 if Ay is a record
i =

0 otherwise

Then the expected value of I; is E[I;] = 0 - Pr{A; is not a record} + 1 - Pr{A; is a record} = 1/1i. So the
expected number of records is given by

CHAPTER 2. RECORDS AND RANDOM BINARY SEARCH TREES 2

Zh] = Y E[I] (2.1)
i=1

= im (2.2)
i=1
= Hn, (2.3)

Where H,, = Z?ﬂ 1/1 is called the nth harmonic number. The value of H,, has received considerable
attention. Bounding H,, using integrals [4, Section 3.2] shows that Inn < H,, <Ilnn+1foralln > 1.

Thus, the expected number of records in a random sequence is O(lgn). This very simple fact
can be used to give very short proofs about the running times of many randomized algorithms.

2.1 Random Binary Search Trees

A binary search tree T is either the symbol nil, or consists of an integer key, key(T), and two children,
left(T) and right(T), that are both binary search trees. Additionally, a binary search tree satisfies the
following search property

Property 1 (Search Property). If left(T) # nil then key(left(T)) < key(T) and if right(T) # nil then
key(T) < key(right(T))

For an integer k, the search path of k in T, denoted path(k, T) is given the following recursive
search procedure
nil if T=nil
T if k = key(T)
T, path(k,left(T)) if k < key(T)
T, path(k,right(T)) if k > key(T)

path(k, T) =

A random binary search tree T of size n is a binary search tree constructed by inserting the

elements {1,...,n}into T in random order. Assuming that the key k is not already contained in the tree
T, we insert k into T by making a new tree T’ with key(T') = k and making T’ a child of the last non-nil
tree in path(k, T). This results in a sequence of trees Typ,..., T, = T where T; is the tree resulting from

the insertion of the first i elements. See Figure 2.1 for an example of a binary tree constructed by a
sequence of insertions.

One question we might ask about a random binary search tree is how much it costs to construct
one. Most of us will have seen bad examples where constructing a binary search tree on n elements by
repeated insertion takes Q(n?) time. One obvious example of this occurs when the elements form an
increasing sequence, in which case the tree is just a sorted list.

Since we are assuming that the elements of T are inserted in random order, what we would really
like to know is the expected cost of creating T. One way to tackle this is to find the expected cost of
inserting the ith element and then summing this over all i. In other words, if C; is the cost of the ith

CHAPTER 2. RECORDS AND RANDOM BINARY SEARCH TREES 3

1 2 3 4 5 6 7 8 9

Figure 2.1: A binary search tree constructed by inserting the elements 2, 7, 4, 1, 8, 5, 9, 6, and 3 in that
order.

insertion then

E[Cost of building T] = E

Zci] =Y E[C] .
i=1 i

i=1

It is clear that C; is proportional to the length of path(ki, T), where k; is the ith value inserted.
To bring things to an even finer level of detail, let path(k;, T) = Uy,..., Uy, We call U;j a left turn if
W1 = left(U;), otherwise we call U; a right turn. Let L; and R; denote the number of left and right
turns, respectively, in path(ki, T). We will analyze the expected values of L; and R; seperately.

To get some intuition about L; and R; we should look at an example from Figure 2.1. In this
example, path(6,T) =2,7,4,5,6. This search path takes a left turn at node 7 and right turns at nodes
2, 4 and 5. The insertion sequence at the time node 6 is inserted is

$=2,7,418529,6 .
Consider the sequence containing only those elements that are less than 6, i.e.,
§'=2,4,1,5.

Note that the records in the sequence S’ are underlined and that these records correspond to the right
turns in path(6,T). We might also consider the sequence of elements larger than 6, i.e.,

$"=7,8,9 .

If we modify the definition of records to use the minimum instead of the maximum, then the left turns
in path(6, T) all correspond to records in the sequence S”.

Is this always the case? The answer to this question is yes. To see this, let T; denote the tree
T after insertion of the first j elements. The j keys inserted into T; divide the real line up into j + 1
intervals, and k; lies in one of these intervals [a,b]. When we insert the (j + 1)-st element, one of two
things happens, either path(k;, T;) = path(ki, Tj+1) or not, in which case the path of k; increases by one.
The key observation is that the latter case only happens if the newly inserted key lies in the interval
[a, b]. If the newly inserted key is less than k; then it is a record in S’. If it is greater than k; then it is
a record in S”.

CHAPTER 2. RECORDS AND RANDOM BINARY SEARCH TREES 4

By splitting the insertion sequence into two sequences S’ and S we get two new sequences,
which are both random. That is, the elements of S’ (and S”) are equally likely to occur in any order.
Therefore, the expected number of records in S’ is

ERi] =His <Hj
and a symmetric argument shows that E[[;] < H;. Therefore, the expected cost of building a random

binary search tree by repeated insertions is

n

D ElCl=c) (ELI+ER]) <c) 2Hi=0O(nlogn) ,
i=1 i

i=1 i=1

where c is a positive constant.

Thus, given n distinct keys, we can randomly permute them and then insert them into a binary
search tree. An in-order traversal of the resulting tree can then be used to output the elements in sorted
order. This gives us a sorting algorithm whose expected running time is O(nlogn). In fact, the famous
Quicksort algorithm is actually just an efficient implementation of this procedure.

Once we have constructed a random binary search tree we can use it as a data structure for
searching. The expected cost of searching for some key k is proportional to the length of path(k, T).
There are two cases to consider. If k is not stored in T then the above argument shows that the expected
cost of searching for k is

Eljpath(k, T)] = Hi + Hn ¢ (2.4)

where i is the rank, i.e., the number of elements less than k, of k in T.

If k is stored in T then the upper bound
E[‘path(k’v T)l] S Hi + Hn—i)

still holds, since path(k, T) only visits the records in S’ and S”. However, it does not visit all the records
in S’ and S" since it never visits any node that was inserted after the insertion of k. Therefore, if we
want a more exact result we must account for the time at which k was inserted into T.

The expected number of elements of S’ visited while searching for k is
[S’|
E[R] = Z H; x Pr{k appears at position j in S’}
i=1

1 IS’
- E
j=1

1+
+ 1/2 +
:T%x + 12 4 13+
S : :

T e

T+ 12 + 13 + 1/4 + - + 1/|5|
o .o IS —=1 s’ —=2 IS'|-3 ,
_I9XOS+ I e B e AR VI

1 2 3 S/ —1

T4+ 1/241/34+1/44---+1/IS"| —
Hisy —1 .

21S 3|7 4lS] S|

v

CHAPTER 2. RECORDS AND RANDOM BINARY SEARCH TREES 5
T TI

T LEFT-ROTATE(T) T

AN s — /\
AVAN [N/

Figure 2.2: Left and right rotations.

A symmetric argument shows that the expected number of elements of S visited while searching for k
is

E[L] Z H‘Su‘ —] .
Thus, the expected length of the search path for k when k is stored in T is

Hi +Hn i > Ellpath(k, T)] > Hy + H,y i — 2, (2.5)

where 1 is the rank of k in T.

Theorem 1. The ezpected cost of constructing a random binary search tree on n elements is
O(nlogn). Omnce such a tree ts constructed it can be used to search for any key in O(logn)
expected time.

2.2 Treaps

Next we show how randomization can be used to implement dictionary operations. A dictionary D is
an abstract data type supporting the following operations on a set of real-valued keys.

1. INSERT(k, D). Insert the key k into D. This assumes that k is not already stored in D.
2. DELETE(k, D). Delete the key k from D. This assumes that k is already stored in D.

3. SEARCH(k, D). Return the smallest key k' contained in D such that k' > k. If no such k' exists
then return oo.

The reason we can not just use random binary trees to implement dictionary operations is that
they are a static data structure. Once we build a random binary search tree on a set of keys we can not
perform insertion or deletions into them and still maintain the expected operation times of O(logn).
Traditionally, this problem is overcome by introducing a balancing scheme like those used in red-black
[7] or AVL [1] trees. These balancing schemes use rotations to ensure that every root to leaf path in T
has length in O(logn). A rotation swaps a tree and one of its children in such a way that the order in
which keys appear in an in-order traversal is maintained. An example of a rotation is given in Figure 2.2.

In this section we present a simple balancing scheme that uses randomization. A treap is a
search tree in which each subtree T also has a unique priority priority(T) € [0, 1]. In addition to having
the sorted property (Property 1), every non-nil treap also has the following heap property.

CHAPTER 2. RECORDS AND RANDOM BINARY SEARCH TREES 6

1/9
2/9

/ — 3/9
IR BK
5/9

/ 6/9
/ 179
/ 8/9
9/9

1 2 3 45 6 7 8 9
Figure 2.3: We obtain a treap by setting priority(T') = i/n.

Property 2 (Heap Property). If left(T) # nil then priority(T) < priority(left(T)) and +f right(T) # nil
then priority(T) < priority(right(T))

The link between treaps and random binary search trees is the following: If k; was the key that
created the subtree T' in a random binary search tree, then we obtain a treap by setting priority(T!) «
i/n. Essentially, we are setting priority(T') to be the time at which k; was inserted. See Figure 2.3.

The interesting thing about this relationship is that it works both ways. If we assign priorities
uniformly and independently at random from [0, 1] to all keys then the resulting treap is a random
binary search tree on the keys. It’s as if we've inserted the keys in random order. We call such a treap
a random treap. Thus, the nice properties of search paths on random binary search trees also apply to
random treaps. It follows immediately that the expected cost of searching for a key k in a random treap
is O(logn).

To insert the key k into a random treap, we first insert it the way we normally would into a
binary search tree. We then assign the key a priority p selected uniformly at random from [0, 1] and
apply left and right rotations (as appropriate) to move the new subtree upwards until the heap property
(Property 2) is restored. See Figure 2.4 for an example.

What is the expected cost of inserting the key k into a random treap T? Since a random treap
has all the properties of a random binary search tree, the expected cost of performing the basic insertion
is proportional to the expected length of path(k, T). From (2.4) we see that E[|lpath(k, T)[] = Hi+Hyn_i.
Next, the algorithm performs rotations to restore the heap property. Equation (2.5) show that after
performing these rotations, E[lpath(k, T)|] > H; + H,,_i — 2. Since each rotation reduces |[path(k, T)| by
one, it follows that the expected number of rotations is at most 2.

To perform deletion of the key k from a treap, we find the subtree T’ having k as its key and
repeatedly perform a rotation that moves T’ towards the child of T’ that has minimum priority. That
is, we perform a left or right rotation (as appropriate) on the child of T’ that has smaller priority. We
repeat this until T’ becomes a leaf, at which point it is deleted by setting a pointer in its parent to nil.
For an example of deletion, look at Figure 2.4 starting at the bottom right.

CHAPTER 2. RECORDS AND RANDOM BINARY SEARCH TREES

2,.2 2,.2

] 1,.25 \] 5,.3 \] 1,.25 \] 5,.3

(3,4] |65] (45| [65 |

4, 15 ||[§||@||

] 1, .25 \] 4,.15 \ 4, .15

55 [55] 2] (55

] 6,.5 \] 1, .25 \] 3, .4 \] 6, .5 \

Figure 2.4: Inserting the key k = 4 with priority p = .15 into a treap.

CHAPTER 2. RECORDS AND RANDOM BINARY SEARCH TREES 8

At first the analysis of deletion seems somewhat more complicated than that of insertion. How-
ever, the following observation makes it trivial. Let T* be the treap that would have existed if the key k
had never been inserted. Then T* is a random treap with n —1 nodes and the expected cost of inserting
k into T* is O(logn). Now, note that the rotations performed while deleting k from T are exactly the
same rotations performed while inserting k into T*, only they are done in reverse order. Therefore,
the expected number of rotations performed while deleting k is ©(1), so the overall cost of deletion is
O(logn). (Note that, if a pointer to the node containing k is given then the expected cost of deletion is
o(1).)

Theorem 2. Random treaps support the operations INSERT, DELETE and SEARCH in O(logn)
expected time per operation, where n is the number of keys stored in the treap at the time of the
operation. The expected number of rotations performed during an insert or delete operation is

O(1).

Another class of operations that treaps support very well are the SPLIT and MERGE operations.
A SPLIT operation takes a value k not in the treap and splits the treap into two treap Ty and T, such
that T; contains all keys less than k and T, contains all keys greater than k. To implement a split
operation we simply observe that we can insert k and then perform rotations until k becomes the root
of the treap. At this point, the two treaps T; and T, that we want are the left and right children of the
root. The cost of this is proportional to |path(k, T)|, and so the split operation can be done in O(logn)
time.

The inverse of a SPLIT operation is a MERGE operation. This is where we take two treaps T;
and T, such that all keys in T; are less than k and all keys in T, are greater than k and we merge Ty
and T, into a single treap. The implementation of merge is the exact inverse of split: We make a new
root k whose left and right children are T; and T,, respectively, and then we delete k from the treap.
Again, the expected cost of this is O(logn).

Theorem 3. Random treaps support the operations SPLIT and MERGE in O(logn) ezpected time
per operation.

2.3 Heaters

In the previous section we showed that by assigning random priorities to the nodes of a binary search
tree we get a balanced binary search tree. In this section we will see that this trick also works the other
way. If we assign random keys to the nodes of a priority queue, we get a balanced priority queue.

A priority queue Q is an abstract data type supporting the following operations on a set of
real-valued priorities.

1. INSERT(p, Q). Insert the priority p into Q. This assumes that p is not already stored in Q.
2. FINDMIN(Q). Return the smallest priority p* stored in Q. This assumes Q is not empty.
3. DELETEMIN(Q). Delete the smallest priority p* stored in Q from Q. This assume Q is not empty.

To implement a priority queue we can use a randomized binary tree as in the previous section.
When we use a randomized binary tree in this way, we call it a heater. The difference from the previous

BIBLIOGRAPHY 9

section is that now instead of using random priorities, we will use random keys to obtain a random
heater. Note that switching from random priorities to random keys makes no difference in how the
shape of the underlying tree is distributed. In either case, the shape of the tree is distributed in the
same way as the shape of a random binary search tree.

To insert the priority p into a heater H, we choose a random real number k € [0, 1] and insert
the key/value pair (k,p) as described in the previous section. The cost of this insertion is proportional
to the length of path(k,H). Since the expected length of path(k,H) is O(logn), the expected cost of
insertion is O(logn).

Finding the minimum priority p* stored in a heater H is trivial since the heap property ensures
that the p* is stored at the root of H. Thus, FINDMIN can be implemented in constant time using a
heater.

To delete the minum priority p* from a heater H, we simply delete the root of H using the
deletion algorithm described in the previous section. Let k* be the key associated with p* and let H*
be the heater obtained after deletion of p*. Then, as with treaps, the cost of deletion is proportional to
the length of path(k*, H*). Since H* is a random treap, the expected length of path(k*, H*) is O(logn)
and the expected cost of deletion is O(logn).

Theorem 4. Random heaters support the operations INSERT and DELETEMIN in O(logn) ezpected
time and FINDMIN in constant time per operation, where n is the number of priorities stored in
the heater at the time of the operation.

2.4 Discussion and References

The use of records to analyze random binary search trees was introduced by Devroye [5]. His lecture
notes [6] use records to give ultra-short proofs about many random phenomena. Randomized trees
(treaps and heaters) are introduced by Vuillemin [8]. Aragon and Seidel [2] reinvestigate randomized
trees and are responsible for the name treap. Basch et al [3] study the use of heaters in the context
of kinetic priority queues. These are priorities queues in which the priorities are changing continuously
over time.

Bibliography

[1] G. M. Adel’son-Vel’skii and Y. M. Landis. An algorithm for the organization of information. Soviet
Mathematics. Doklady, 3:1259-1263, 1962.

[2] C. R. Aragon and R. Seidel. Randomized search trees. Algorithmica, 16(4):464—-497, 1996.

[3] J. Basch, L. Guibas, and G. D. Ramkumar. Reporting red-blue intersections between two sets of
connected line segments. Lecture Notes in Computer Science, 1136:302—314, 1996.

[4] T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introduction to Algorithms. MIT Press, Cambridge
MA, 1990.

[5] L. Devroye. Applications of the theory of records in the study of random trees. Acta Informatica,
26:123-130, 1988.

BIBLIOGRAPHY 10

[6] L. Devroye. Probabilistic analysis of algorithms and data structures (lecture notes). Manuscript,
2001.

[7] L. J. Guibas and R. Sedgewick. A dichromatic framework for balanced trees. In Proceedings of the
19th Annual Symposium on Foundations of Computer Science (FOCS’78), pages 8-21, 1978.

[8] J. Vuillemin. A unifying look at data structures. Communications of the ACM, 23(4):229-239,
April 1980.

