Chapter 3

Persistence

This chapter introduces the topic of persistence in data structures. A dynamic data structure evolves
through time as elements are inserted and deleted. Usually, operations on the data structure are always
performed on the most recent version. In contrast, a persistent data structure is one that allows access
to all previous versions of the data structure.

Since it may not immediately be obvious that persistence is useful, we begin this chapter with a
motivating example from the field of computational geometry. As it happens, persistence plays a central
role in many algorithms for computational geometry problems.

3.1 Next Element Search

Let S ={s1,...,sn} be a set of horizontal line segments in the plane. The nezt element search problem
asks us to proprocess S so that, given query point q we can return the element of S that is directly
above ¢ (see Figure 3.1), or nil if no such element exists.

The next element search problem can be solved in the following way (see Figure 3.2): Sort
the endpoints of S by x-coordinate. Create a dictionary D that will store intervals sorted by their y-
coordinates. We use the sorted list of endpoints to sweep the plane with a line from left to right. When

Figure 3.1: The correct answer for query point q is the line segment directly above q.

11



CHAPTER 3. PERSISTENCE 12

Figure 3.2: The next element search problem can be solved by partitioning the plane into vertical strips
and building a dictionary for each strip.

the line passes over the left endpoint of a segment we insert that segment into D. When the line passes
over the right endpoint of a segment we delete that segment from D. In both cases, we save a copy of
D and store all these copies sorted by the x-coordinate of the endpoint that created them.

To perform next element search for a query point q, we perform a binary search on the x-
coordinate of g to find the copy D’ of D that contains exactly the segments that are above and below g.
We then search D’ to find the segment that is directly above q. The first binary search takes O(logn)
time and the second search takes O(logn) time if we implement D using an efficient dictionary data
structure. Therefore, the cost of performing next element search with this data structure is O(logn).

What is the cost of constructing the data structure? Clearly the dictionary D never contains
more than n elements, so it can be copied in O(n) time. Since we have to do this 2n times, the overall
cost of copying is O(n?). The costs of other operations (sorting endpoints and insertions and deletions
into D) is O(nlogn), so the total cost of building the data structure is O(n?).

Plane sweep provides a nice simple, intuitive solution to the next element search problem.
However, if we want to do better with the plane sweep approach we need a faster way to copy the
dictionary D. But if D has size Q(n) how can we copy it any faster? The trick is that each copy of D
differs only from the previous one by one insertion or deletion, so we only need to copy the parts that
change.

3.2 Path Copying

Suppose we have a dictionary implemented as a balanced binary search tree T. Recall from Chapter 2
that when we insert a key k into a balanced binary search tree we create a new leaf containing k and
then rebalance T by performing rotations on some of the nodes on the path, path(k, T), from the newly
created leaf to the root of T. These rotations only modify the nodes of path(k, T), so the entire insertion
process only modifies the nodes of path(k, T).

Suppose that, before we perform insertion of the key k into the tree T, we first copy all nodes
on path(k, T) (see Figure 3.3). We now have two search trees; the original tree T is still valid, and the
a new tree T’ whose root is a copy of the root of T (see Figure 3.3). Now, if we do an insertion on T’



CHAPTER 3. PERSISTENCE 13

Figure 3.3: Before inserting k into T we copy all nodes on path(k, T).

we know that the insertion only modifies nodes on path(k,T'), which are not nodes of T. Therefore,
after the insertion, T’ is balanced binary search tree that contains k and T is a balanced binary search
tree that does not contain k. Copying path(k, T) before insertion does not increase the insertion time
by more than a constant factor, and requires O(logn) additional space.!

Next we turn to the problem of deletions. To delete key k, we first simulate the deletion of key
k to determine which nodes of T will be modified by the deletion. Now, for each node v that is modified,
we copy v and all the nodes on the path from v to the root of T, doing this in such a way as to avoid
copying any node more than once. This gives us a new tree T’ whose root is a copy of root(T). We then
perform the deletion on T'. Since this deletion does not modify any nodes of T, we are left with a tree T
that contains k and a tree T’ that does not contain k. Furthermore, any reasonable deletion algorithm
runs in O(logn) time, and only modifies node v if it reaches v by following a path from root(T) to v.
Therefore, the number of nodes copied by this scheme, and hence the overall running time and space
requirement is O(logn).

For concrete examples of insertions and deletions, consider a treap T as described in Section 2.2.
To insert the key k we copy path(k,T), append a new node (with key k) and then use rotations to
move k upwards in the tree. It is easy to verify that the only nodes modified by these rotations are
those on path(k, T).? To delete a key k, we make a copy of path(k, T) and then use rotations to move k
downwards in T until it becomes a leaf. Each rotation modifies two nodes: One node is a copy of the
node with key k. Therefore, before performing the rotation, we make a copy of the second node and do
the rotation with the copy rather than the original.

None of the work of copying increases the running time of treap operations by more than a
constant factor, so the expected running times for insertion and deletion are still O(logn). Furthermore,
the number of nodes copied during an insertion or deletion does not exceed the running time, so the
expected number of nodes copied during each insertion and deletion is O(logn).

We have just shown how to implement a dictionary so that a sequence of insertions and deletions
01,...0x results in a sequence of dictionaries Dy, ..., Dy, where D; is the result of operations Dy, ..., Dj.
Each D; can be searched in O(logm;) time where m; is the number of keys stored in D;. We call such
a dictionary a persistent dictionary. The following theorem states the performance of this dictionary

Theorem 5. There exists a persistent dictionary data structure that supports INSERT, DELETE
and SEARCH in O(logn) tzme and requires O(nlogn) storage for a sequence of n operations.

1In the case of randomized search trees the space bound is in the expected sense.
2This is true if nodes only contain pointers to their left and right children. If they also contain pointers to their parents
then the nodes adjacent to this path must also be copied.



CHAPTER 3. PERSISTENCE 14

Using this data structure for the next element search problem we obtain the following corollary.

Theorem 6. There exists a data structure that takes as tnput a set S of n horizontal line seg-
ments and after O(nlogn) preprocessing requiring O(nlogn) storage, answers nect element search
queries on S in O(logn) time.

3.3 Generalized Persistence

Path copying is a nice simple method for implementing persistence in binary search trees, but it is ad
hoc. It’s not obvious how to extend it for data structures other than binary search trees. Next we give
a more general strategy for implementing persistence.

Suppose we have a pointer-based data structure which we model as a directed graph G. Each
vertex of G has some constant number ¢ > 2 of outgoing edges (representing pointers) and a label
(representing data). The restriction to a constant number of outgoing edges is, in many cases, not really
a restriction since we can simulate one node with many outgoing edges by many nodes that we link
together as a linked list. Another possibility is to simulate a node with many outgoing edges as a binary
tree whose leaves represent the edges.

The real restriction we place on G is that it have bounded tn-degree. That is, no vertex of G
has more than d edges leading into it, for some constant d > 1.

The operations we allow on G are CREATE-NODE(G) which creates a new vertex with no outgoing
or incoming edges, CHANGE-LABEL(v, x) which changes the value of the data stored at vertex v to be
x, and CHANGE-EDGE(v,1,u) which changes the ith outgoing edge of node v so that it points to node
u, where u may be nil. After each update operation, the global time t advances by 1 unit. This gives
us a sequence of graphs Gy, ..., G, where G, denotes the graph G at time t'.

For a persistent graph representation we would like an application to have access to Gy for any
0 <t' <t. Of course, to access Gi/ an application needs to have a pointer to some node v that exists
at time t’. How this is done depends on the application, but in most cases it is obvious (e.g., for search
trees it is usually the root of the tree). The access operations we allow are LABEL(v, t’) which returns
the label of the node v at time t’ and EDGE(v,1,t’) which returns the ith outgoing edge of v at time t'.

In order to implement this, we represent each vertex v of G as a table (array of structures).
Each table contains d + 1 rows and has one column for a label (data), ¢ columns for outgoing edges
(pointers), and one column which indicates the time at which the corresponding row was filled in. In
addition to this, v maintains an array inedges(v) of d pointers that keep track of the (at most d) other
vertices of G that have edges leading to v.

Creating a vertex. A call to CREATE-NODE simply creates (and returns a pointer to) a new table
in which all rows are empty and whose inedges values are all set to nil.

Changing an edge. In a call to CHANGE-EDGE(v,1,u), two cases can occur:



CHAPTER 3. PERSISTENCE 15

Case 1: The table for node v has an empty row. In this case, we modify the table for node v by coping
the last non-empty row into the first empty row and then modifying the entry for edge 1 in the new row
so that it contains u. At the same time, we update the time column for the newly added row so that it
contains the current global time t.

We then update inedges arrays for u and for the vertex w that was previously contained in the
column for the ith outgoing edge of v. We add an entry to inedges(u) containing a pointer to the table
for v (if no such entry existed previously), and we delete an entry that points to the table for v from
inedges(w).

Case 2: The table for node v has no empty row. In this case, we make a new table for node v with
a call to CREATE-NODE. We then copy the last row out of the old table into the first row of the new
table. As before, we modify the entry for edge i in the first row of the new table so that it points to u
and we modify the time so that it contains the current time t.

Next we modify the inedges arrays for every vertex w such that the edge (v, w) exists in G.
For every edge (v,w) in the first row of the new table, we change the entry for v in inedges(w) (which
pointed to the old table) so that it points to the new table.

At this point, there still exist up to d references to the old table for node v. To get rid of these,
we recursively modify every node in inedges(v) so that it points to the new table for v. More precisely,
if w contains the edge (w,Vv) as it’s ith edge, then we call CHANGE-EDGE(w, i,Vv), where v is a pointer
to the new table for v.

At this point we note that if there is some external reference to node v, then this reference
should be updated to point to the new table for v. For example, if v is the root of a binary search tree
then any accesses to the tree at time t' > t will have to start at the new table for v (until the time the
new table is copied).

Changing a label. The implementation of CHANGE-LABEL(v,x) is exactly the same as a call to
CHANGE-EDGE(v,1,u) except that, instead of updating the column for edge i, we update the label
column. Because of this, there is no need to update the inedges array for u.

Accessing label and edge data. We say that a table for node v in this implementation is active
during the time interval [tq,t,), where t; is the time at which the table was first created with a call to
CREATE-NODE and t; is the time at which the table was first copied as part of Case 2 of the procedure
for changing an edge or label. It follows that for any time t such that t; < t’ <, there is exactly one
table for node v that is active.

To access an outgoing edge of v or a label of v at time t’ < t, we use the table for v that was
active at time t’. To determine the value of the edge or label, we look in the last row whose time value
is less than or equal to t’. If the vertex v had label x at time t’, then it is clear that the label in this
row is x.

Similarly, if the vertex v had edge (v, w) as its ith outgoing edge at time t’ then the entry for
edge i in this row points to a table for w. We claim that this table for w is active at time t’. Clearly,
the table must be active at some time t"” < t/, otherwise a pointer to this table could not have existed



CHAPTER 3. PERSISTENCE 16

at time t’. Therefore, the only way the table for w could not be active at time t’ is if the table were
copied (as part of Case 2 above) at some time t” < t’. But in this case, the table for v would have been
updated at time t” to point to the new table for w.

Thus, if we start at the table for node v that is active at time t’ and only follow edges as
described above then we can reach only tables that were active at time t’. Any such table corresponds
to a vertex w such that there is a path from v to w in Gt. In other words, this scheme is correct.

Analysis. How efficient is this scheme? To determine this, we use an accounting argument, also called
a credit scheme. A credit can be thought of as a unit of currency that can pay for the cost of creating
a new table. In fact, every newly created table will be paid for with 1 credit.

In addition to this, tables can accumulate credits which they can pay for later. The accumulation
of credits at a table satisfies the following credit invariant: If the table is active, it has exactly the same
number of credits as rows that have been filled in. Otherwise (the table is non-active) it has no credits.

We claim that the above credit scheme can be maintained if we insert two credits every time
the user calls CREATE-VERTEX and one credit every time the user calls CHANGE-EDGE or CHANGE-
LABEL. Note that we only insert a credit when a user calls one of these functions. As part of their
implementation, they may call each other or themselves recursively, but we do not create new credits
for these internal calls.

CREATE-VERTEX creates a new active table with exactly one row. If we insert two credit during
a call to CREATE-VERTEX then we can use one credit to pay for the cost of creating the table and give
one credit to the table so that the credit invariant is maintained.

CHANGE-EDGE has two cases. In Case 1, we add one row to an existing table. In this case we
give our newly inserted credit to this table so that the credit scheme is maintained. Case 2 is more
complicated. In this case, one (full) table becomes inactive, a new active table with one full row is
created and up to d recursive calls are made.

Before the call to CHANGE-EDGE, the old (full) table stores d+1 credits and it becomes inactive,
so we have d + 2 credits at our disposal. We use one credit to pay for creating the new table and we
give one more credit to this new table to satisfy the credit invariant. We are left with the cost of paying
for d recursive calls, each of which requires one input credit. Luckily we have d credits left and we use
each of these as input to one recursive call.

The accounting for CHANGE-LABEL is exactly the same as for CHANGE-EDGE.

We have just shown the following result.

Lemma 1. ng calls to CREATE-NODE, and n; calls to CHANGE-EDGE and CHANGE-LABEL results
wn the creation of at most 2ny + ny tables.

Each table has size O(d) and, excluding recursive calls, filling in a table requires O(d?) work
(the extra d factor comes from updating inedges arrays at other nodes). Therefore, the amount of work
done during a sequence of operations is bounded by O(d?) times the number of tables created. Each
access operation (EDGE and LABEL) can be done in O(d) time, or in O(logd) time if we use binary



BIBLIOGRAPHY 17

search on the rows.

Theorem 7. There exists a data structure that can complete any sequence of n CREATE-NODE,
CHANGE-EDGE and CHANGE-LABEL operations and m EDGE and LABEL operations in O(nd? +
mlogd) time.

3.4 Discussion and References

By now, the use of persistence is standard in data structure papers, so much so that most authors,
after definining a dynamic data structure simply cite Driscoll et al [1] to give a persistent version. Path
copying was discovered independently by many authors, including Myers [3, 4], Krijnen and Meertens
[2], Reps, Teitelbaum and Demers [5], and Swart [7].

Sarnak and Tarjan [6] first used a version of the generalized persistence scheme with red-black
trees to give a data structure for the next-element search problem requiring O(n) space. The generalized
persistence mechanism of Section 3.3 is due to Driscoll et al [1].

In computational geometry, a dynamic data structure for a problem in d-dimensions can often
be combined with persistence and plane-sweep to yields a static data structure in d+ 1 dimensions. Our
next-element search data structure is an example of this, since a binary search tree can be thought of
as a next-element search structure for 1-dimensional data. Unfortunately, this trick only works once.

Bibliography

[1] J. R. Driscoll, N. Sarnak, D. D. Sleator, and R. E. Tarjan. Making data structures persistent. Journal
of Computer and System Sciences, 38(1):86-124, February 1989.

[2] T. Krijnen and L. G. L. T. Meertens. Making B-trees work for B. Technical Report 219/83, The
Mathematical Center, Amsterdam, 1983.

[3] E. W. Myers. AVL dags. Technical Report 82-9, Department of Computer Science, University of
Arizona, 1982.

[4] E. W. Myers. Efficient applicative data structures. In Conference Record eleventh Annual ACM
Symposium on Principles of Programmaing Languages, pages 6675, 1984.

[5] T. Reps, T. Teitelbaum, and A. Demers. Incremental context-dependent analysis for language-based
editors. ACM Transactions on Programming Languages and Systems, 5:449-477, 1983.

[6] N. Sarnak and R. E. Tarjan. Planar point location using persistent search trees. Communications
of the ACM, 29(7):669-679, July 1986.

[7] G. Swart. Efficient algorithms for computing geometric intersections. Technical Report #85-01-02,
Department of Computer Science, University of Washington, Seattle, 1985.



