
Chapter 3

Persistence

This 
hapter introdu
es the topi
 of persisten
e in data stru
tures. A dynami
 data stru
ture evolvesthrough time as elements are inserted and deleted. Usually, operations on the data stru
ture are alwaysperformed on the most re
ent version. In 
ontrast, a persistent data stru
ture is one that allows a

essto all previous versions of the data stru
ture.Sin
e it may not immediately be obvious that persisten
e is useful, we begin this 
hapter with amotivating example from the �eld of 
omputational geometry. As it happens, persisten
e plays a 
entralrole in many algorithms for 
omputational geometry problems.
3.1 Next Element SearchLet S = {s1, . . . , sn} be a set of horizontal line segments in the plane. The next element sear
h problemasks us to propro
ess S so that, given query point q we 
an return the element of S that is dire
tlyabove q (see Figure 3.1), or nil if no su
h element exists.The next element sear
h problem 
an be solved in the following way (see Figure 3.2): Sortthe endpoints of S by x-
oordinate. Create a di
tionary D that will store intervals sorted by their y-
oordinates. We use the sorted list of endpoints to sweep the plane with a line from left to right. When

qFigure 3.1: The 
orre
t answer for query point q is the line segment dire
tly above q.11



CHAPTER 3. PERSISTENCE 12

Figure 3.2: The next element sear
h problem 
an be solved by partitioning the plane into verti
al stripsand building a di
tionary for ea
h strip.the line passes over the left endpoint of a segment we insert that segment into D. When the line passesover the right endpoint of a segment we delete that segment from D. In both 
ases, we save a 
opy of
D and store all these 
opies sorted by the x-
oordinate of the endpoint that 
reated them.To perform next element sear
h for a query point q, we perform a binary sear
h on the x-
oordinate of q to �nd the 
opy D 0 of D that 
ontains exa
tly the segments that are above and below q.We then sear
h D 0 to �nd the segment that is dire
tly above q. The �rst binary sear
h takes O(logn)time and the se
ond sear
h takes O(logn) time if we implement D using an eÆ
ient di
tionary datastru
ture. Therefore, the 
ost of performing next element sear
h with this data stru
ture is O(logn).What is the 
ost of 
onstru
ting the data stru
ture? Clearly the di
tionary D never 
ontainsmore than n elements, so it 
an be 
opied in O(n) time. Sin
e we have to do this 2n times, the overall
ost of 
opying is O(n2). The 
osts of other operations (sorting endpoints and insertions and deletionsinto D) is O(n logn), so the total 
ost of building the data stru
ture is O(n2).Plane sweep provides a ni
e simple, intuitive solution to the next element sear
h problem.However, if we want to do better with the plane sweep approa
h we need a faster way to 
opy thedi
tionary D. But if D has size Ω(n) how 
an we 
opy it any faster? The tri
k is that ea
h 
opy of Ddi�ers only from the previous one by one insertion or deletion, so we only need to 
opy the parts that
hange.
3.2 Path CopyingSuppose we have a di
tionary implemented as a balan
ed binary sear
h tree T . Re
all from Chapter 2that when we insert a key k into a balan
ed binary sear
h tree we 
reate a new leaf 
ontaining k andthen rebalan
e T by performing rotations on some of the nodes on the path, path(k, T), from the newly
reated leaf to the root of T . These rotations only modify the nodes of path(k, T), so the entire insertionpro
ess only modi�es the nodes of path(k, T).Suppose that, before we perform insertion of the key k into the tree T , we �rst 
opy all nodeson path(k, T) (see Figure 3.3). We now have two sear
h trees; the original tree T is still valid, and thea new tree T 0 whose root is a 
opy of the root of T (see Figure 3.3). Now, if we do an insertion on T 0



CHAPTER 3. PERSISTENCE 13
k

T T
′

Figure 3.3: Before inserting k into T we 
opy all nodes on path(k, T).we know that the insertion only modi�es nodes on path(k, T 0), whi
h are not nodes of T . Therefore,after the insertion, T 0 is balan
ed binary sear
h tree that 
ontains k and T is a balan
ed binary sear
htree that does not 
ontain k. Copying path(k, T) before insertion does not in
rease the insertion timeby more than a 
onstant fa
tor, and requires O(logn) additional spa
e.1Next we turn to the problem of deletions. To delete key k, we �rst simulate the deletion of key
k to determine whi
h nodes of T will be modi�ed by the deletion. Now, for ea
h node v that is modi�ed,we 
opy v and all the nodes on the path from v to the root of T , doing this in su
h a way as to avoid
opying any node more than on
e. This gives us a new tree T 0 whose root is a 
opy of root(T). We thenperform the deletion on T 0. Sin
e this deletion does not modify any nodes of T , we are left with a tree Tthat 
ontains k and a tree T 0 that does not 
ontain k. Furthermore, any reasonable deletion algorithmruns in O(logn) time, and only modi�es node v if it rea
hes v by following a path from root(T) to v.Therefore, the number of nodes 
opied by this s
heme, and hen
e the overall running time and spa
erequirement is O(logn).For 
on
rete examples of insertions and deletions, 
onsider a treap T as des
ribed in Se
tion 2.2.To insert the key k we 
opy path(k, T), append a new node (with key k) and then use rotations tomove k upwards in the tree. It is easy to verify that the only nodes modi�ed by these rotations arethose on path(k, T).2 To delete a key k, we make a 
opy of path(k, T) and then use rotations to move kdownwards in T until it be
omes a leaf. Ea
h rotation modi�es two nodes: One node is a 
opy of thenode with key k. Therefore, before performing the rotation, we make a 
opy of the se
ond node and dothe rotation with the 
opy rather than the original.None of the work of 
opying in
reases the running time of treap operations by more than a
onstant fa
tor, so the expe
ted running times for insertion and deletion are still O(logn). Furthermore,the number of nodes 
opied during an insertion or deletion does not ex
eed the running time, so theexpe
ted number of nodes 
opied during ea
h insertion and deletion is O(logn).We have just shown how to implement a di
tionary so that a sequen
e of insertions and deletions
o1, . . . on results in a sequen
e of di
tionariesD0, . . . , Dn where Di is the result of operationsD1, . . . , Di.Ea
h Di 
an be sear
hed in O(logmi) time where mi is the number of keys stored in Di. We 
all su
ha di
tionary a persistent di
tionary. The following theorem states the performan
e of this di
tionary
Theorem 5. There exists a persistent di
tionary data stru
ture that supports Insert, Deleteand Sear
h in O(logn) time and requires O(n logn) storage for a sequen
e of n operations.1In the 
ase of randomized sear
h trees the spa
e bound is in the expe
ted sense.2This is true if nodes only 
ontain pointers to their left and right 
hildren. If they also 
ontain pointers to their parentsthen the nodes adja
ent to this path must also be 
opied.



CHAPTER 3. PERSISTENCE 14Using this data stru
ture for the next element sear
h problem we obtain the following 
orollary.
Theorem 6. There exists a data stru
ture that takes as input a set S of n horizontal line seg-ments and after O(n logn) prepro
essing requiring O(n logn) storage, answers next element sear
hqueries on S in O(logn) time.
3.3 Generalized PersistencePath 
opying is a ni
e simple method for implementing persisten
e in binary sear
h trees, but it is adho
. It's not obvious how to extend it for data stru
tures other than binary sear
h trees. Next we givea more general strategy for implementing persisten
e.Suppose we have a pointer-based data stru
ture whi
h we model as a dire
ted graph G. Ea
hvertex of G has some 
onstant number c � 2 of outgoing edges (representing pointers) and a label(representing data). The restri
tion to a 
onstant number of outgoing edges is, in many 
ases, not reallya restri
tion sin
e we 
an simulate one node with many outgoing edges by many nodes that we linktogether as a linked list. Another possibility is to simulate a node with many outgoing edges as a binarytree whose leaves represent the edges.The real restri
tion we pla
e on G is that it have bounded in-degree. That is, no vertex of Ghas more than d edges leading into it, for some 
onstant d > 1.The operations we allow onG areCreate-Node(G)whi
h 
reates a new vertex with no outgoingor in
oming edges, Change-Label(v, x) whi
h 
hanges the value of the data stored at vertex v to be
x, and Change-Edge(v, i, u) whi
h 
hanges the ith outgoing edge of node v so that it points to node
u, where u may be nil. After ea
h update operation, the global time t advan
es by 1 unit. This givesus a sequen
e of graphs G0, . . . , Gt where Gt 0 denotes the graph G at time t 0.For a persistent graph representation we would like an appli
ation to have a

ess to Gt 0 for any
0 � t 0 � t. Of 
ourse, to a

ess Gt 0 an appli
ation needs to have a pointer to some node v that existsat time t 0. How this is done depends on the appli
ation, but in most 
ases it is obvious (e.g., for sear
htrees it is usually the root of the tree). The a

ess operations we allow are Label(v, t 0) whi
h returnsthe label of the node v at time t 0 and Edge(v, i, t 0) whi
h returns the ith outgoing edge of v at time t 0.In order to implement this, we represent ea
h vertex v of G as a table (array of stru
tures).Ea
h table 
ontains d + 1 rows and has one 
olumn for a label (data), c 
olumns for outgoing edges(pointers), and one 
olumn whi
h indi
ates the time at whi
h the 
orresponding row was �lled in. Inaddition to this, v maintains an array inedges(v) of d pointers that keep tra
k of the (at most d) otherverti
es of G that have edges leading to v.
Creating a vertex. A 
all to Create-Node simply 
reates (and returns a pointer to) a new tablein whi
h all rows are empty and whose inedges values are all set to nil.
Changing an edge. In a 
all to Change-Edge(v, i, u), two 
ases 
an o

ur:



CHAPTER 3. PERSISTENCE 15
Case 1: The table for node v has an empty row. In this 
ase, we modify the table for node v by 
opingthe last non-empty row into the �rst empty row and then modifying the entry for edge i in the new rowso that it 
ontains u. At the same time, we update the time 
olumn for the newly added row so that it
ontains the 
urrent global time t.We then update inedges arrays for u and for the vertex w that was previously 
ontained in the
olumn for the ith outgoing edge of v. We add an entry to inedges(u) 
ontaining a pointer to the tablefor v (if no su
h entry existed previously), and we delete an entry that points to the table for v frominedges(w).
Case 2: The table for node v has no empty row. In this 
ase, we make a new table for node v witha 
all to Create-Node. We then 
opy the last row out of the old table into the �rst row of the newtable. As before, we modify the entry for edge i in the �rst row of the new table so that it points to uand we modify the time so that it 
ontains the 
urrent time t.Next we modify the inedges arrays for every vertex w su
h that the edge (v, w) exists in G.For every edge (v, w) in the �rst row of the new table, we 
hange the entry for v in inedges(w) (whi
hpointed to the old table) so that it points to the new table.At this point, there still exist up to d referen
es to the old table for node v. To get rid of these,we re
ursively modify every node in inedges(v) so that it points to the new table for v. More pre
isely,if w 
ontains the edge (w, v) as it's ith edge, then we 
all Change-Edge(w, i, v), where v is a pointerto the new table for v.At this point we note that if there is some external referen
e to node v, then this referen
eshould be updated to point to the new table for v. For example, if v is the root of a binary sear
h treethen any a

esses to the tree at time t 0 � t will have to start at the new table for v (until the time thenew table is 
opied).
Changing a label. The implementation of Change-Label(v, x) is exa
tly the same as a 
all toChange-Edge(v, i, u) ex
ept that, instead of updating the 
olumn for edge i, we update the label
olumn. Be
ause of this, there is no need to update the inedges array for u.
Accessing label and edge data. We say that a table for node v in this implementation is a
tiveduring the time interval [t1, t2), where t1 is the time at whi
h the table was �rst 
reated with a 
all toCreate-Node and t2 is the time at whi
h the table was �rst 
opied as part of Case 2 of the pro
edurefor 
hanging an edge or label. It follows that for any time t su
h that t1 � t 0 � t, there is exa
tly onetable for node v that is a
tive.To a

ess an outgoing edge of v or a label of v at time t 0 � t, we use the table for v that wasa
tive at time t 0. To determine the value of the edge or label, we look in the last row whose time valueis less than or equal to t 0. If the vertex v had label x at time t 0, then it is 
lear that the label in thisrow is x.Similarly, if the vertex v had edge (v, w) as its ith outgoing edge at time t 0 then the entry foredge i in this row points to a table for w. We 
laim that this table for w is a
tive at time t 0. Clearly,the table must be a
tive at some time t 00 � t 0, otherwise a pointer to this table 
ould not have existed



CHAPTER 3. PERSISTENCE 16at time t 0. Therefore, the only way the table for w 
ould not be a
tive at time t 0 is if the table were
opied (as part of Case 2 above) at some time t 00 � t 0. But in this 
ase, the table for v would have beenupdated at time t 00 to point to the new table for w.Thus, if we start at the table for node v that is a
tive at time t 0 and only follow edges asdes
ribed above then we 
an rea
h only tables that were a
tive at time t 0. Any su
h table 
orrespondsto a vertex w su
h that there is a path from v to w in Gt. In other words, this s
heme is 
orre
t.
Analysis. How eÆ
ient is this s
heme? To determine this, we use an a

ounting argument, also 
alleda 
redit s
heme. A 
redit 
an be thought of as a unit of 
urren
y that 
an pay for the 
ost of 
reatinga new table. In fa
t, every newly 
reated table will be paid for with 1 
redit.In addition to this, tables 
an a

umulate 
redits whi
h they 
an pay for later. The a

umulationof 
redits at a table satis�es the following 
redit invariant : If the table is a
tive, it has exa
tly the samenumber of 
redits as rows that have been �lled in. Otherwise (the table is non-a
tive) it has no 
redits.We 
laim that the above 
redit s
heme 
an be maintained if we insert two 
redits every timethe user 
alls Create-Vertex and one 
redit every time the user 
alls Change-Edge or Change-Label. Note that we only insert a 
redit when a user 
alls one of these fun
tions. As part of theirimplementation, they may 
all ea
h other or themselves re
ursively, but we do not 
reate new 
reditsfor these internal 
alls.Create-Vertex 
reates a new a
tive table with exa
tly one row. If we insert two 
redit duringa 
all to Create-Vertex then we 
an use one 
redit to pay for the 
ost of 
reating the table and giveone 
redit to the table so that the 
redit invariant is maintained.Change-Edge has two 
ases. In Case 1, we add one row to an existing table. In this 
ase wegive our newly inserted 
redit to this table so that the 
redit s
heme is maintained. Case 2 is more
ompli
ated. In this 
ase, one (full) table be
omes ina
tive, a new a
tive table with one full row is
reated and up to d re
ursive 
alls are made.Before the 
all to Change-Edge, the old (full) table stores d+1 
redits and it be
omes ina
tive,so we have d + 2 
redits at our disposal. We use one 
redit to pay for 
reating the new table and wegive one more 
redit to this new table to satisfy the 
redit invariant. We are left with the 
ost of payingfor d re
ursive 
alls, ea
h of whi
h requires one input 
redit. Lu
kily we have d 
redits left and we useea
h of these as input to one re
ursive 
all.The a

ounting for Change-Label is exa
tly the same as for Change-Edge.We have just shown the following result.
Lemma 1. n1 
alls to Create-Node, and n2 
alls to Change-Edge and Change-Label resultsin the 
reation of at most 2n1 + n2 tables.Ea
h table has size O(d) and, ex
luding re
ursive 
alls, �lling in a table requires O(d2) work(the extra d fa
tor 
omes from updating inedges arrays at other nodes). Therefore, the amount of workdone during a sequen
e of operations is bounded by O(d2) times the number of tables 
reated. Ea
ha

ess operation (Edge and Label) 
an be done in O(d) time, or in O(logd) time if we use binary



BIBLIOGRAPHY 17sear
h on the rows.
Theorem 7. There exists a data stru
ture that 
an 
omplete any sequen
e of n Create-Node,Change-Edge and Change-Label operations and m Edge and Label operations in O(nd2 +

m logd) time.
3.4 Discussion and ReferencesBy now, the use of persisten
e is standard in data stru
ture papers, so mu
h so that most authors,after de�nining a dynami
 data stru
ture simply 
ite Dris
oll et al [1℄ to give a persistent version. Path
opying was dis
overed independently by many authors, in
luding Myers [3, 4℄, Krijnen and Meertens[2℄, Reps, Teitelbaum and Demers [5℄, and Swart [7℄.Sarnak and Tarjan [6℄ �rst used a version of the generalized persisten
e s
heme with red-bla
ktrees to give a data stru
ture for the next-element sear
h problem requiring O(n) spa
e. The generalizedpersisten
e me
hanism of Se
tion 3.3 is due to Dris
oll et al [1℄.In 
omputational geometry, a dynami
 data stru
ture for a problem in d-dimensions 
an oftenbe 
ombined with persisten
e and plane-sweep to yields a stati
 data stru
ture in d+1 dimensions. Ournext-element sear
h data stru
ture is an example of this, sin
e a binary sear
h tree 
an be thought ofas a next-element sear
h stru
ture for 1-dimensional data. Unfortunately, this tri
k only works on
e.
Bibliography[1℄ J. R. Dris
oll, N. Sarnak, D. D. Sleator, and R. E. Tarjan. Making data stru
tures persistent. Journalof Computer and System S
ien
es, 38(1):86{124, February 1989.[2℄ T. Krijnen and L. G. L. T. Meertens. Making B-trees work for B. Te
hni
al Report 219/83, TheMathemati
al Center, Amsterdam, 1983.[3℄ E. W. Myers. AVL dags. Te
hni
al Report 82-9, Department of Computer S
ien
e, University ofArizona, 1982.[4℄ E. W. Myers. EÆ
ient appli
ative data stru
tures. In Conferen
e Re
ord eleventh Annual ACMSymposium on Prin
iples of Programming Languages, pages 66{75, 1984.[5℄ T. Reps, T. Teitelbaum, and A. Demers. In
remental 
ontext-dependent analysis for language-basededitors. ACM Transa
tions on Programming Languages and Systems, 5:449{477, 1983.[6℄ N. Sarnak and R. E. Tarjan. Planar point lo
ation using persistent sear
h trees. Communi
ationsof the ACM, 29(7):669{679, July 1986.[7℄ G. Swart. EÆ
ient algorithms for 
omputing geometri
 interse
tions. Te
hni
al Report #85-01-02,Department of Computer S
ien
e, University of Washington, Seattle, 1985.


