
Chapter 4

Fractional Cascading

In this chapter, we study an algorithm design principle called fractional cascading. Essentially, frac-
tional cascading says that many problems can be solved by �rst solving (recursively) a subproblem
whose size is a constant fraction of the original problem size and then using this solution to get back to
a solution of the original problem.

4.1 Iterated Search

Consider the following iterated search problem. We are given h < n sorted arrays of numbers
A(1), . . . , A(h) each of length n. We want to preprocess these arrays so that we can quickly locate
a query key k in each of the h arrays. That is, for each 1 � i � h we want to know the smallest value in

A(i) greater than or equal to k. For convenience, so that the output is well-de�ned, we de�ne A
(i)∞ =∞.

Since the arrays are sorted, we can solve this problem without any preprocessing by using binary
search to locate k in each of the arrays. Since there are h arrays and binary search takes O(logn) time,
the query time we get from this is O(h logn). Can we do better?

Suppose we merge all the arrays into a single sorted array A 0 as in Figure 4.1. Each element in
A 0 keeps track of which array A(i) that it came from. With each element x in A 0 we also associate h
integers x1, . . . , xh, where xi is smallest integer such that A 0

xi
� x and A 0

xi
came from array A(i). Once

this data structure is built, answering a query takes O(h + loghn) = O(h + logn) time, since we only
have to do binary search on A 0 to �nd the element x and then report A 0

x1
, . . . , A 0

xh
.

A query time of O(h+ logn) is certainly better than the O(h logn) query time we got without
building the data structure, but what price did we pay for this query time? The array A 0 contains
hn entries, and each entry contains h integers (x1, . . . , xh), so this array takes up a memory of size
Θ(h2n). Constructing the array can be done fairly easily in O(hn logn+ h2n) time by �rst sorting (in
O(hn logn) time) and then scanning the sorted array using an auxilliary array of size h (in O(h2n)
time) to compute the xi values for each array entry.

18

CHAPTER 4. FRACTIONAL CASCADING 19

A(1)

A(2)

A(3) 3 9 10 13 14

1 2 5 11 15

4 6 7 8 12

3 9 10 13 141 2 5 11 154 6 7 8 12

x1

x2

x3

Figure 4.1: A �rst solution to the iterated search problem obtained by merging the h = 3 input arrays
of size n = 5 into one sorted array of size hn = 15.

B(2)

B(3) 3 9 10 13 14

1 2 5 11 159 13

2 9 13B(1) 4 6 7 8 12

Figure 4.2: An iterated search data structure using fractional cascading. Loops in right pointers are
ommitted to reduce clutter.

The O(h2n) term in the running time and memory requirements seems unfortunate. Luckily, it
can be avoided by using fractional cascading. Let us de�ne B(h) = A(h) and suppose we take a sample
of B(h) by selecting every second element, starting with the second element. In this way, we obtain
a sample S(h) of size bn/2c. Next, we merge S(h) with Ah−1 to get a sorted array B(h−1). For each
element x in B(h−1) we maintain two extra values, down(x) and right(x). The value of down(x) is the

smallest integer i such that B
(h)
i � x. If x comes from A(h−1), then the integer right(x) is the index

of x, otherwise right(x) is the index of the �rst element of B(h−1) that comes from A(h−1) and appears
after x. See Figure 4.2 for an example.

Above, we've outlined a procedure that takes as input B(h) and A(h−1) and output B(h−1). We
can now repeat this procedure, using A(h−2) and B(h−1) to obtain B(h−2), and so on until we get B(1).
We claim that this data structure can be used to solve the iterated search problem in O(h+ logn) time.

Suppose we have done something to B(i), 1 � i < h to �nd the smallest integer i such that

B
(1)
i � k. Let x denote B(1)

i . Then the smallest element of A(i) greater than k is A
(i)
right(x), so locating k

in B(i) is su�cient to locate k in A(i). Furthermore, we can locate k in B(i+1) by looking at down(x).

It is not hard to verify that the smallest index j such that B
(i+1)
j � k is either down(x) or down(x) − 1.

(It can't be down(x) − 2 otherwise x would not be the smallest element in B(i) larger than x.)

CHAPTER 4. FRACTIONAL CASCADING 20

This is enough to solve an iterated search query because we can �rst locate the query key k in
B(1) using binary search and the repeatedly use the location of k in B(i) to locate k in A(i) and B(i+1),
for each 1 � i < h. The binary search takes O(logn) time and each subsequent step takes constant
time, for a total of O(h+ logn).

Next we analyze the preprocessing and storage requirements for this data structure. Let |X|
denote the size of the array X. Since B(i) is obtained by sampling every second element from B(i+1) and
merging this sample with A(i), we have

|B(h)| = n

|B(h−1)| � n+
1

2
|B(h)| � n+

1

2
n

|B(h−2)| � n+
1

2
|B(h−1)| � n+

1

2
n+

1

4
n

|B(h−3)| � n+
1

2
|B(h−2)| � n+

1

2
n+

1

4
n+

1

8
n

and, in general,

|B(i)| �
∞∑
j=0

n/2j = 2n

Therefore, the total number of array entries in the entire data structure is O(hn), and since each array
entry contains only a constant amount of data, the entire data structure has size O(hn). It is not hard to
implement the preprocessing so that computing B(i) takes O(n) time, so the preprocessing and memory
requirements are O(hn).

Theorem 8. Given h � n sorted arrays each of size n, there exists a data structure requiring
O(hn) preprocessing time and memory that answers iterated search queries in O(h+ logn) time.

4.2 Segment Trees

To be done later.

4.3 Skip Lists

In the last section, we saw how fractional cascading can help when we are trying to locate the same
element in many sorted arrays. In this section, we will see fractional cascading can be used to locate an
element in 1 sorted array.

Let X = {k1, . . . , kn} be a set of n distinct real numbers, where ki < ki+1 for all 1 � i < n. For
convenience, we also de�ne k0 = −∞ and kn+1 = +∞. We de�ne a gradation X(0), . . . , X(h) as follows.
The level X(0) = X. The level X(i), i > 0, is obtained by selecting each element from X(i−1) with a
�xed constant probability 0 < p < 1. The value h is called the height of the skip list and is de�ned as
h = min{i : |X(i+1)| = 0}.

CHAPTER 4. FRACTIONAL CASCADING 21

3 9 10 132 5 114 6 7 8 121 ∞−∞

2 3 6 7 8 9 10 12 13 ∞−∞

2 3 6 7 9 13 ∞−∞

−∞ 3 7 ∞

−∞ 7 ∞

Figure 4.3: A skip list. The grey nodes show the search path for the key 11.

In a skip list, we maintain each level in a sorted list. More precisely, for each level X(i), we
maintain {k0, kn+1} [X(i) in a sorted list Li. We use the notation right(v) to denote the successor
of a node v in one of these lists. Each element of Li, i > 0 also maintains another pointer down(x)
which points to the same element in Li+1. Note that k0 and kn+1 appear as the �rst and last elements,
respectively, of every list. We call the �rst node of Lh the root of the skip list. See Figure 4.3 for an
example of a skip list generated by coin tosses.

To search for the key k in a skip list, we start by setting v equal to the root of the skip list
and repeating the following step: If the value stored at right(v) is less than q then we set v equal to
right(v), otherwise we set v = down(v). The search ends when we try to set v = down(v) but down(v)
is unde�ned. It is not hard to verify that the search ends at a node v whose value is the largest value ki
smaller than k. (This follows from the invariant that the value stored at v is always less than k and the
search terminates at level 0.) The highlighted path in Figure 4.3 shows the search path for key 11.

To insert a new key k into a skip list we �rst choose a random height l for k, according to the
distribution Pr{l = i} = pi(1−p) . We then follow the search path of k in the skip list, except any time
we follow a down pointer at level i � l we splice a new node into the skip list at level i whose value is
k. If the value h = dlog1/p ne changes due to the insertion of the new element, then we add one more
level to the skiplist and add each node at level h− 1 to this new level with probability p.

To delete the key k from a skip list, we follow the search path for k in the list, except that any
time the data at right(v) is equal to k we splice right(v) out of the list. If the value k = dlog1/p ne
decreases due to the deletion of k then we remove the top level of the skip list.

Analysis. To start with something simple, we �rst analyze the expected number of nodes at level i.
A value k appears at level i because it was selected in the �rst i gradation steps. The probability that
this happens is pi. Therefore, by linearity of expectation, the expected number of nodes at level i is
E[|Li|] � 2 + npi. (The extra 2 counts the elements k0 and kn+1, which appear on every level.) This
works �ne for small values of i, but when i gets big the extra 2 nodes start to add up. To resolve this,
we note that, for any level, i, |Li| � 3|X(i)|. Taking expected values on both sides of this equation, we
see that E[|Li|] � 3npi.

CHAPTER 4. FRACTIONAL CASCADING 22

We can now analyze the expected number of nodes in the skiplist as

E

" ∞∑
i=0

|Li|

#
=

∞∑
i=0

E[|Li|]

=

dlog1/p ne∑
i=0

E[|Li|] +

∞∑
i=dlog1/p ne+1

E[|Li|]

�
dlog1/p ne∑
i=0

(2+ npi) +

∞∑
i=dlog1/p ne+1

3npi

�
dlog1/p ne∑
i=0

(2+ npi) +

∞∑
i=0

3pi

� n/(1− p) +O(log1/p n)

= O(n)

for any constant 0 < p < 1.

For all three operations (search, insert, delete) the cost of operating on the key k is closely
related to the length of the search path for k in a skip list of size n. Therefore, we analyze the expected
length of the search path for an arbitrary key k. To analyze the cost of a search, we split the cost into
two parts: The number of times the search follows a down pointer and the number of times the search
follows a right pointer.

The �rst part, i.e., the number of times the search follows a down pointer is exactly h, the height
of the list. Let

hi =

{
1 if X(i) 6= ;
0 if X(i) = ;

and observe that hi � X(i). Then the expected height of the skiplist is given by

E

" ∞∑
i=0

hi

#
=

∞∑
i=0

E[hi]

=

dlog1/p ne∑
i=0

E[hi] +

∞∑
i=dlog1/p ne+1

E[hi]

�
dlog1/p ne∑
i=0

1+

∞∑
i=dlog1/p ne+1

E[|X(i)|]

� 2+ log1/p n+

∞∑
i=dlog1/p ne+1

E[npi]

� 2+ log1/p n+

∞∑
i=0

pi

� log1/p n+O(1)

CHAPTER 4. FRACTIONAL CASCADING 23

All that remains is to analyze the cost of following right pointers. Let ri be the number of right
pointers the search follows at level i. Again, we can always fall back on the trivial bound ri < X

(i). To
get a more re�ned bound, imagine running the search backwards, starting from the node containing k in
L0 and working our way left and upwards to the top left node. When at a node v in Li, if v appears in
Li+1 then we go up, otherwise, we go to v's left neighbour. This process traces exactly the same search
path, except in reverse.

For a node v that appears in Li, the probability that it also appears in Li+1 is p, so the probability
that this reverse path traverses exactly j edges at level i is at most p(1 − p)j. Therefore, the expected
number of edges traversed at level i is at most

ri �
∞∑
j=0

jp(1− p)j = p

∞∑
j=0

j(1− p)j = (1− p)/p .1

Therefore, the expected total number of (down and right) pointers we follow at all levels is at most

E

2
4h+

dlog1/p ne∑
i=0

ri +

∞∑
i=dlog1/p ne+1

|X(i)|

3
5 = (1+ 1/p) log1/p n+O(1) ,

for any constant p.

The expected cost of searching for the key k is proportional the expected length of the search
path for k, which is O(logn). The cost of deleting the key k is proportional to the length of the search
path for k, which is also O(logn). The cost of inserting a key k is proportional to the length of the
search path for k in the skiplist we obtain after the insertion, which is O(log(n+ 1)) = O(logn).

Theorem 9. Skip lists support insertion, deletion, and searching of keys in O(logn) expected time
and use O(n) expected storage.

Another nice property of skip lists is that the expected number of pointer updates during an
insertion or deletion is p/(1 − p). Therefore, if we combine skip lists with the persistence paradigm of
Chapter 3 we get a data structure for next element search queries that whose expected size is O(n) and
that answers next element search queries in O(logn) time.

4.4 Discussion and References

Fractional cascading has found many applications over the years, especially in computational geometry.
Willard [7] and Luecker [5] both independently discovered the idea that iterated search could be solved
in O(k+ logn) time and used this idea to speed up searches in segment trees (Section 4.2). Edelsbrun-
ner et al [4] applied fractional cascading to speed up a next-element search data structure based on
decomposing the elements into monotone chains. Chazelle and Guibas' two part article [1, 2] describes
a very general form of fractional cascading and its applications. Cole [3] uses fractional cascading to
obtain his celebrated O(logn)-time, O(n)-processor parallel merge-sort algorithm. Mehlhorn and N�aher
[6] show that fractional cascading can be done in a dynamic setting. That is, insertions and deletions
to the individual lists can be done in O(logn log logn) time per operation and iterated search queries
can be done in O(logn+ h log logn) time.

1Here we use the identity
∑∞
j=0 jx

j = x/(1 − x)2, for any x < 1.

BIBLIOGRAPHY 24

Bibliography

[1] B. Chazelle and L. J. Guibas. Fractional cascading: I. A data structuring technique. Algorithmica,
1(2):133{162, 1986.

[2] B. Chazelle and L. J. Guibas. Fractional cascading: II. Applications. Algorithmica, 1(2):163{191,
1986.

[3] R. Cole. Parallel merge sort. SIAM Journal on Computing, 17(4):770{785, 1988.

[4] H. Edelsbrunner, L. J. Guibas, and J. Stol�. Optimal point location in a monotone subdivision.
SIAM Journal on Computing, 15(2):317{340, 1986.

[5] G. S. Lueker. A data structure for orthogonal range queries. In 19th Annual Symposium on
Foundations of Computer Science, pages 28{34, 1978.

[6] K. Mehlhorn and S. N�aher. Dynamic fractional cascading. Algorithmica, 5:215{241, 1990.

[7] D. E. Willard. Predicate-Oriented Database Search Algorithms. PhD thesis, Harvard University,
1978.

