
Name: Student Number:

COMP4804 ASSIGNMENT 1: DUE WEDNESDAY JANUARY 25, 23:59EDT

Print this assignment and answer all questions in the boxes provided. Any text outside of the
boxes will not be considered when marking your assignment.

1 Frequency Assignment in Wireless Networks

We have a graph G = (V ,E) in which every vertex has degree 6, |V | = n and |E| = m. For each vertex
v ∈ V , we color v uniformly (and independently from all other vertices) at random with a color
selected from the set {1, . . . , k}.

1. We say that an edge e = (u,v) is good if u and v are assigned different colors in the above
experiment and bad otherwise. What is the probability that an edge e is bad?

2. What are the expected numbers of bad edges and good edges?

3. We say that a vertex v is dead if all 6 of v’s incident edges are bad. What is the probability
that a particular vertex v is dead? What is the expected number of dead vertices?

4. How many colors k do we need if we want the expected number of dead vertices to be at
most: (a) n/10, (b) n/100, and (c) n/1000

1

Name: Student Number:

2 Approximating Max-2-Sat

A 2-CNF formula is the conjunction of a set clauses, where each clause is the disjunction of two
(possibly negated, but distinct) variables. For example, the boolean formula

(a∨ b)∧ (b∨¬d)∧ (¬a∨ c)

is a 2-CNF formula with 3 clauses. When we assign truth values to the variables (a, b, c and d
above) we say that the assignment satisfies the formula if the formula evaluates to true. In general,
it is not always possible to satisfy a 2-CNF-Formula, so we may try to satisfy most of the clauses.

1. Describe and analyze a very simple randomized algorithm that takes as input a 2-CNF for-
mula with n clauses and ouputs a truth-assignment such that the expected number of clauses
satisfied by the assignment is at least 3n/4. (Prove that the running time of your algorithm
is small and that the expected number of clauses it satisfies is at least 3n/4. You may assume
that the variables are named a1, . . . , am, m ≤ n, so that you can associate truth values with
variables by using an array of length m.)

2. Your algorithm implies something about all 2-CNF formulas having at most 3 clauses. What
does it imply?

3. What does your algorithm guarantee for d-CNF formulas? (Where each clause contains d
distinct variables.)

2

Name: Student Number:

3 Computing the OR of a Bit String

We are given a bit-string B1, . . . ,Bn and we want to compute the or of its bits, i.e., we want to com-
pute B1∨B2∨· · ·∨Bn. Suppose we use the following algorithm to do this:

1: for i← 1, . . . ,n do
2: if Bi = 1 then
3: return 1
4: return 0

1. In the worst case, what is the number of times line 2 executes, i.e., how many bits must be
inspected by the algorithm? Describe an input B1, . . . ,Bn that achieve the worst case when
the output is 0 and when the output is 1.

2. Consider the following modified algorithm:
Toss a coin c
if c comes up heads then

for i← 1, . . . ,n do
if Bi = 1 then
return 1

else
for i← n, . . . ,1 do

if Bi = 1 then
return 1

return 0
Assume that exactly one input bit Bk = 1. Then what is the expected number of input bits
that the algorithm examines.

3

Name: Student Number:

4 3-Way Partitioning

Suppose you are working on a system where two values can only be compared using the < opera-
tor. (Sorting in Python is an example.) Here is an algorithm that, given an array A[1], . . . ,A[n] and
a value x classifies the elements of A as either less than, greater than or equal to x.
3-Way-Partition(A,x)

1: for i = 1 to n do
2: if A[i] < x then
3: add A[i] to S<
4: else if A[i] > x then
5: add A[i] to S>
6: else
7: add A[i] to S=

1. Let n<, n> and n= denote the number of elements of A that less than, greater than or equal
to x, respectively. State the exact number of comparisons performed by 3-Way-Partition.

2. Show that there exists a randomized algorithm that uses only 1 random bit (coin toss) and
performs an expected number of comparisons that is 2n= + 3

2 (n< +n>).

4

Name: Student Number:

Matchings

We have a bag of n candies, n/2 of which are lemon and n/2 of which are lime. Consider the
following experiment: We reach into the bag and pull out two candies. If they’re different flavours
we eat them both. Otherwise, we put them both back in the bag.

1. What is the probability that we eat the candies? (Warning: It’s not exactly 1/2)

2. What is the expected number of times we have to repeat this experiment until we get to eat
some candy?

3. Suppose the number of candies are not the same: There are n1 limes and n2 lemons. Then
what is the probability that we eat the candies.

4. If we start with a bag containing n/2 lime candies and n/2 lemon candies, then what is the
expected number of times we have to repeat this experiment before the bag is empty?

5

Name: Student Number:

5. Show that, if we start with a bag containing n/3 lime candies and 2n/3 lemon candies then
the expected number of times we repeat this experiment before running out of lime candies
is Ω(n logn). Hint: Harmonic numbers, from Lecture 1, should come up.

6

