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Outline

• DAG representation of basic blocks

• Peephole optimization

• Register allocation by graph coloring
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Basic Blocks as DAGs
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Basic Blocks as DAGs
• Like expressions, we can represent basic 

blocks as DAGs
– Create a node for the initial value of each variable 

that appears in the block
– For each statement s, create a node N whose 

children are the nodes defining the operands of s
– Each node N is labelled by the operation used
– Each node N has a list of variables that it defines
– A node N is marked as an output node if its value is 

used outside the basic block
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Basic Block Example

a := b + c
b := a - d
c := b + c
d := a - d

b0 c0
d0

+ (a)

- (b,d)

+ (c)
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Basic Block Example

a := b + c
b := b - d
c := c + d
e := b + c

• Draw the DAG for this basic block
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Dead Code Elimination

• Dead code is code that computes a value 
that is never used

• Inspecting the flow graph we can tell if the 
value of a variable computed within a basic 
block is used outside that block
– These are called live variables or live on exit

• Algorithm
– While some node N has no ancestor and no live 

variable attached
• Delete N and its outgoing edges
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Dead Code Elimination - Example
• Remove dead code assuming c is the only 

live variable

b0 c0
d0

+ (a)

- (b,d)

+ (c)

+ (x)

+ (y)
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Using Algebraic Identities
• The DAG representation can allow constant 

folding
– When a subexpression involves 2 or more constants 

its value can sometimes be computed at compile 
time

• Commutativity: x * y = y * x
– When creating a node for x * y we should check if 

there already exists a node named x * y or a node 
named y * x

• Associativity: (a + b) + c = a + (b + c)
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Associativity

Source Code:
a = b + c;
e + c + d + b;

3-AI (slow):
a := b + c
t := c + d
e := t + b

3-AI (fast):
a := b + c
e := a + b

• An example of using associativity
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Array References
• Array references are a different kind of 

operator

• Assigning to an array location can change  
any element of the array

x = a[i]
a[j] = y
z = a[i]

a0 i0

=[] (x,z)

j0

[]= (a[j])

y0

WRONG
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Arrays References
• The right way

– x = a[i] creates a node with two children (a and i) 
that defines x

– a[j] = y creates a node with 3 children
• It has the side-effect of killing any node whose 

value depends on a

x = a[i]
a[j] = y
z = a[i]

a0 i0

=[] (x)

j0

[]=

y0

=[] z
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Pointer References
• Pointer references are similar to array 

references
– assigning to a pointer kills all nodes
– changing any variable kills all pointer references

x = *p
t = a + b
z = *p     ; maybe p points to t
*q = y  
x = a + b  ; maybe q points to a or b
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Reassembling Basic Blocks
• After converting a basic block into a DAG 

and applying optimizations we must 
reassemble the basic block

• Rules:
1)The order of instructions must obey the order of the 

DAG
2)Assigning to an array must follow any previous 

assignments to the same array
3)Evaluations of an array must follow any previous 

assignments to the same array
4)Any use of a variable must follow any previous 

indirect (pointer) assignments
5)Any indirect assignment must follow all previous 

evaluations of variables
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Rearrangement Order Example

a0 i0

=[] (x)

j0

[]=

y0

=[] z
x = a[i]
a[j] = y
z = a[i]

• Extra (dashed) edges implement rules 2-5
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Basic Blocks as DAGs - Examples
• For each of the following lines of C

– x = a + b * c;
– x = a / (b+c) - d * (e+f);
– x = a[i] + 1;
– a[i] = b[c[i]];
– *p++ = *q++;

• Write a basic block of 3-address instructions

• Convert the basic block into a DAG

• Convert the DAG back into a basic block
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Peephole Optimization
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Peephole Optimization
• Peephole optimization is done by looking at 

a small number of lines of code at a time
– We are looking at a small piece of code (the 

peephole)

• Some rules are applied to simplify or speed 
up various patterns

• Can be applied to intermediate code or 
machine code
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Redundant Loads and Stores
• An adjacent pair of load and store 

operations (to the same variable) is 
unnecessary and can be eliminated
mov x, R0
mov R0, x

fload 4
fstore 4

fload 4
pop
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Algebraic Simplification and 
Reduction in Strength
• Peephole optimization may recognize 

algebraic simplification and reduction in 
strength
– x = x + 1 => inc x [machine instruction]
– x = x + 0 => unnecessary
– x = x * 1 => unnecessary
– x = 2 * x => x = x + x

• To do this in the JVM we need a 3 line 
peephole
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Unreachable Code
• Examining the code surrounding jump 

statements can often help

    if debug == 1 goto L1
    goto L2
L1: some debug code...
L2:

    if debug != 1 goto L2
    some debug code...
L2:

    if 0 != 1 goto L2
    some debug code...
L2:

goto L2
    some debug code...
L2:

goto L2
L2:
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Flow of Control Optimization

    goto L1
    ...
L1: goto L2

    goto L2
    ...
L1: goto L2

    if a < b goto L1
    ...
L1: goto L2

    if a < b goto L2
    ...
L1: goto L2

    goto L1
    ...
L1: if a < b goto L2
L3:

    if a < b goto L2
    goto L3
    ...
L3:
[saves a goto when a < b]
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Register Allocation by Graph 
Coloring
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Register Allocation By Graph 
Coloring
• We have seen how to manage registers 

within a basic block 
– lazy load and store algorithm
– spill (or flush) a register back to memory only when 

necessary

• We have seen how to assign register 
variables across blocks (savings 
calculations)

• Both these methods are heuristics 
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Register Allocation by Graph 
Coloring
• Step 1: Generate code as if we have 

infinitely many registers R1,R2,R3,....
– R1, R2, R3,... are just like variable names

• Step 2: Create the register interference 
graph
– Nodes are R1, R2, R3, ....
– Two nodes are adjacent if they are active at the 

same time

• Step 3: Properly color the register 
interference graph with the "colors" 
1,2,3,...,k where k is as small as possible
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Register Allocation by Graph 
Coloring
• A virtual register Ri that is colored with 

color c is assigned to the real register R(c 
mod r) where r is the number of real 
registers

• If k <= r then there are no conflicts and 
every variable gets its own register

• Otherwise, conflicts results in extra 
loads/stores
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The Register Interference Graph
• For each register Ri, determine which lines 

of which basic blocks the register Ri is 
active in

• Ri conflicts with Rj if they are active at the 
same time



28

Coloring a Graph
• Coloring a graph with the fewest colors is 

NP-hard

• The following heuristic is used to color a 
graph G=(V,E) with the colors 1,2,3,...
– Find the vertex v with smallest degree (say d)
– Recursively color the graph  G \ {v}
– Color v with smallest color not used by one of G's 

neighbours

• (Note: v will receive color at most d+1)
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Graph Color Example
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Graph Coloring Example
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Graph Coloring Example
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Notes on Graph Coloring
• What we are actually trying to find is a 

balanced ordering on the vertices of G
– If at most d neighbours of v appear before v in the 

ordering then v will be colored with color at most 
d+1

• Thorup (1995) has shown that structured 
programming languages generate register 
interference graphs with small treewidth
– Optimally coloring a graph with tree width t can be 

done in O(f(t) n) where f(t) is a really fast growing 
function of t.

– Optimal graph coloring can be done in linear time!
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Summary
• We've seen some more code generation 

and optimization techniques
– Representing basic blocks as DAGs allows:

• Common subexpression elimination
• Dead code elimination
• Use of algebraic identities
• Reordering of instructions

– Peephole optimization allows:
• Useless code elimination
• Use of algebraic identities and machine idioms

– Register allocation by graph color
• Can do "optimal" register allocation
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