
More Code Generation
and Optimization

Pat Morin

COMP 3002

2

Outline

• DAG representation of basic blocks

• Peephole optimization

• Register allocation by graph coloring

3

Basic Blocks as DAGs

4

Basic Blocks as DAGs
• Like expressions, we can represent basic

blocks as DAGs
– Create a node for the initial value of each variable

that appears in the block
– For each statement s, create a node N whose

children are the nodes defining the operands of s
– Each node N is labelled by the operation used
– Each node N has a list of variables that it defines
– A node N is marked as an output node if its value is

used outside the basic block

5

Basic Block Example

a := b + c
b := a - d
c := b + c
d := a - d

b0 c0
d0

+ (a)

- (b,d)

+ (c)

6

Basic Block Example

a := b + c
b := b - d
c := c + d
e := b + c

• Draw the DAG for this basic block

7

Dead Code Elimination

• Dead code is code that computes a value
that is never used

• Inspecting the flow graph we can tell if the
value of a variable computed within a basic
block is used outside that block
– These are called live variables or live on exit

• Algorithm
– While some node N has no ancestor and no live

variable attached
• Delete N and its outgoing edges

8

Dead Code Elimination - Example
• Remove dead code assuming c is the only

live variable

b0 c0
d0

+ (a)

- (b,d)

+ (c)

+ (x)

+ (y)

9

Using Algebraic Identities
• The DAG representation can allow constant

folding
– When a subexpression involves 2 or more constants

its value can sometimes be computed at compile
time

• Commutativity: x * y = y * x
– When creating a node for x * y we should check if

there already exists a node named x * y or a node
named y * x

• Associativity: (a + b) + c = a + (b + c)

10

Associativity

Source Code:
a = b + c;
e + c + d + b;

3-AI (slow):
a := b + c
t := c + d
e := t + b

3-AI (fast):
a := b + c
e := a + b

• An example of using associativity

11

Array References
• Array references are a different kind of

operator

• Assigning to an array location can change
any element of the array

x = a[i]
a[j] = y
z = a[i]

a0 i0

=[] (x,z)

j0

[]= (a[j])

y0

WRONG

12

Arrays References
• The right way

– x = a[i] creates a node with two children (a and i)
that defines x

– a[j] = y creates a node with 3 children
• It has the side-effect of killing any node whose

value depends on a

x = a[i]
a[j] = y
z = a[i]

a0 i0

=[] (x)

j0

[]=

y0

=[] z

13

Pointer References
• Pointer references are similar to array

references
– assigning to a pointer kills all nodes
– changing any variable kills all pointer references

x = *p
t = a + b
z = *p ; maybe p points to t
*q = y
x = a + b ; maybe q points to a or b

14

Reassembling Basic Blocks
• After converting a basic block into a DAG

and applying optimizations we must
reassemble the basic block

• Rules:
1)The order of instructions must obey the order of the

DAG
2)Assigning to an array must follow any previous

assignments to the same array
3)Evaluations of an array must follow any previous

assignments to the same array
4)Any use of a variable must follow any previous

indirect (pointer) assignments
5)Any indirect assignment must follow all previous

evaluations of variables

15

Rearrangement Order Example

a0 i0

=[] (x)

j0

[]=

y0

=[] z
x = a[i]
a[j] = y
z = a[i]

• Extra (dashed) edges implement rules 2-5

16

Basic Blocks as DAGs - Examples
• For each of the following lines of C

– x = a + b * c;
– x = a / (b+c) - d * (e+f);
– x = a[i] + 1;
– a[i] = b[c[i]];
– *p++ = *q++;

• Write a basic block of 3-address instructions

• Convert the basic block into a DAG

• Convert the DAG back into a basic block

17

Peephole Optimization

18

Peephole Optimization
• Peephole optimization is done by looking at

a small number of lines of code at a time
– We are looking at a small piece of code (the

peephole)

• Some rules are applied to simplify or speed
up various patterns

• Can be applied to intermediate code or
machine code

19

Redundant Loads and Stores
• An adjacent pair of load and store

operations (to the same variable) is
unnecessary and can be eliminated
mov x, R0
mov R0, x

fload 4
fstore 4

fload 4
pop

20

Algebraic Simplification and
Reduction in Strength
• Peephole optimization may recognize

algebraic simplification and reduction in
strength
– x = x + 1 => inc x [machine instruction]
– x = x + 0 => unnecessary
– x = x * 1 => unnecessary
– x = 2 * x => x = x + x

• To do this in the JVM we need a 3 line
peephole

21

Unreachable Code
• Examining the code surrounding jump

statements can often help

 if debug == 1 goto L1
 goto L2
L1: some debug code...
L2:

 if debug != 1 goto L2
 some debug code...
L2:

 if 0 != 1 goto L2
 some debug code...
L2:

goto L2
 some debug code...
L2:

goto L2
L2:

22

Flow of Control Optimization

 goto L1
 ...
L1: goto L2

 goto L2
 ...
L1: goto L2

 if a < b goto L1
 ...
L1: goto L2

 if a < b goto L2
 ...
L1: goto L2

 goto L1
 ...
L1: if a < b goto L2
L3:

 if a < b goto L2
 goto L3
 ...
L3:
[saves a goto when a < b]

23

Register Allocation by Graph
Coloring

24

Register Allocation By Graph
Coloring
• We have seen how to manage registers

within a basic block
– lazy load and store algorithm
– spill (or flush) a register back to memory only when

necessary

• We have seen how to assign register
variables across blocks (savings
calculations)

• Both these methods are heuristics

25

Register Allocation by Graph
Coloring
• Step 1: Generate code as if we have

infinitely many registers R1,R2,R3,....
– R1, R2, R3,... are just like variable names

• Step 2: Create the register interference
graph
– Nodes are R1, R2, R3,
– Two nodes are adjacent if they are active at the

same time

• Step 3: Properly color the register
interference graph with the "colors"
1,2,3,...,k where k is as small as possible

26

Register Allocation by Graph
Coloring
• A virtual register Ri that is colored with

color c is assigned to the real register R(c
mod r) where r is the number of real
registers

• If k <= r then there are no conflicts and
every variable gets its own register

• Otherwise, conflicts results in extra
loads/stores

27

The Register Interference Graph
• For each register Ri, determine which lines

of which basic blocks the register Ri is
active in

• Ri conflicts with Rj if they are active at the
same time

28

Coloring a Graph
• Coloring a graph with the fewest colors is

NP-hard

• The following heuristic is used to color a
graph G=(V,E) with the colors 1,2,3,...
– Find the vertex v with smallest degree (say d)
– Recursively color the graph G \ {v}
– Color v with smallest color not used by one of G's

neighbours

• (Note: v will receive color at most d+1)

29

Graph Color Example

30

Graph Coloring Example

31

Graph Coloring Example

32

Notes on Graph Coloring
• What we are actually trying to find is a

balanced ordering on the vertices of G
– If at most d neighbours of v appear before v in the

ordering then v will be colored with color at most
d+1

• Thorup (1995) has shown that structured
programming languages generate register
interference graphs with small treewidth
– Optimally coloring a graph with tree width t can be

done in O(f(t) n) where f(t) is a really fast growing
function of t.

– Optimal graph coloring can be done in linear time!

33

Summary
• We've seen some more code generation

and optimization techniques
– Representing basic blocks as DAGs allows:

• Common subexpression elimination
• Dead code elimination
• Use of algebraic identities
• Reordering of instructions

– Peephole optimization allows:
• Useless code elimination
• Use of algebraic identities and machine idioms

– Register allocation by graph color
• Can do "optimal" register allocation

	Title of presentation
	Heading of presentation
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33

