
Compilers and Security

Pat Morin

COMP 3002

2

Outline

• Purposes

• Code obfuscation
– control-flow graph obfuscation
– variable hiding

• Digital signatures

• Code randomization

• Virtual machines

• Automated Theorem Proving

3

Security and Compilers

• Tamper resistance
– Code should run as shipped
– Binary executables should not be modified

• Resistance against attacks
– Buffer overflows
– DoS attacks

• User security
– Running untrusted binaries

• Attack scenarios
– Attacker has access to
• binaries, source code, a debugger, a service

4

Code Obfuscation

• Code obfuscation makes the (compiled
binary) code difficult or impossible to
understand

• Different kinds of obfuscation
– Flow-graph obfuscation
– Variable hiding

5

Flow-Graph Obfuscation

• What are these control-flow graphs doing?

6

The Big Switch

• Any control flow-graph can be turned into a
giant switch statement contained in an
infinite loop
– Each block becomes a separate case
– A variable controls which block to go to next
– The cases can be arbitrarily numbered

7

Variable Hiding

• We would like to obfuscate the values of
variables in our program
– Transform variables using algebraic (or bitwise

boolean) transformations

• Example:
– Replace x with u and use the u=x+27262
– 'if (x > 10)' becomes 'if (u > 27262)'

• Example:
– Replace y with v and use v=y*4635
– 'if (y > 10)' becomes 'if (v > 46350)'
– y+7 becomes v + 32445
– x > y becomes 4635*(u - 27262) > v

8

Variable Hiding

• Variable Hiding can be arbitrarily
complicated
– Can use cryptographic hash functions
• if (x == 10) becomes:

if (hash(x) == 38934782782928)

• Hiding the variable that controls flow is
especially confounding
– Transform x using addition, multiplication, and/or

bitwise operations
– switch (hash(x)) {case 83434727: ... case

2382722: ... }

9

Obfuscating Compilers

• Several companies make obfuscating
compilers
– Angel Security
• Randomized obfuscating compiler
• Receives millions in funding from US DoD

– Cloakware
• Builds DRM around obfuscating compilers
• iTunes, Blu-Ray, PVRs

10

Digital Signatures

• Public/private digital signature schemes
exist
– Private key allows owner to sign any binary object
– Public key allows anyone to verify a signature

• Use digital signature schemes to check that
binaries were not tampered with
– Software developer signs their binary
– Code in the software checks the signature on the

binary
– Modifying the binary invalidates the signature and

this can't be fixed without the public key

11

Digital Signatures

• Problem:
– Code in the binary checks the digital signature:
• if (!verify_signature(this_file)) { exit(-1); }

– Attacker can just delete this code
– Signature is invalid, but no one checks it

• Solutions:
– Have the OS check the signature
– Spread the signature checking throughout the binary
• More work for attacker

– Obfuscate the signature checking
– Obfuscate variables using a value that depends on a

hash of the binary

12

Randomizing Compilers

• Compilers have a lot of choice they can
make
– Order of functions in a binary
– Order of variables on the stack
– Order of global variables on the heap
– Order of instructions within a basic block
– Locations of basic blocks (especially with

obfuscating)

• Randomizing compilers make some or/all of
these choices randomly

13

Randomizing compilers

• Security advantage
– More difficult to perform a buffer overflow attack if

you don't know the layout of the binary

• IP rights enforcement advantage
– Vendors can ship a different binary to every

customer
– Can identify customers who violate copyright

14

Virtual Machines

• Some languages compile for use on virtual
machines
– JVM is an example

• A secure VM can enforce security policies
– No file access
– No network access
– No access to personal information
– No sharing of personal information (through data-

flow analysis)

15

Automated Theorem Proving

• Some VMs prove things about the binaries
before executing them
– the value of x does not affect the value of y
– the value of x does not affect any value transmitted

over the network
– ...

• The VM may refuse to run some code if it
can not prove the theorem it needs
– Problem: Reasoning about code leads to

undecideable problems

16

Proof-Carrying Code

• To help with automated theorem proving,
some code is proof carrying
– Finding proofs of theorem takes a long time
– Checking proofs is easy

• The code comes with proofs of statements
like
– the value of x does not affect the value of y
– the value of x does not affect any value transmitted

over the network
– ...

• The VM can load the program much faster
this way

17

Summary

• Code obfuscation
– Makes code difficult to
• understand, reverse-engineer, or modify (while

still preserving correctness)

• Digital signatures
– Make it difficult to modify code

• Code randomization
– Can make every executable unique
• Acts as a watermark
• Makes some attacks more difficult

• Virtual Machines and Theorem Proving
– Allows fine-grained control over what a is allowed to

do

	Title of presentation
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17

