Scope and Code Generation

Pat Morin
COMP 3002

M Carleton

UNIVERSITY
Canada’s Capital University

S
Scope

« Scoping rules define how variable names
are looked up when a program is run or
compiled

 We have seen how to implement scoping
rules in a typechecker

« How does it work in a code generator?

Carleton

UNIVERSITY

Canada’s Capital University

Run-time Environments

Carleton

UNIVERSITY

Canada’s Capital University

During execution, each time a function call
IS made, a new stack frame is created to
hold all the parameters and local variables
for that function call

Local variables are assigned a position
within their stack frame

A frame pointer (fp) keeps track of the top
of the current stack frame

Example of stack frame layout

int factorial(int n) {
1f (n == 1) return 1;
int t = factorial(n-1);
return n * t;

}

4 bytes)
4 bytes)

—+ 35
N SN

Carleton

UNIVERSITY

Canada’s Capital University

A Runtime Example

no>S :
t undefineq | lactorial(s)
n 4 -
t undefineq | lactorial(4)
n 3 :
t undefineq | lactorial(3)
> fp
n factorial(2)

%g(iarkﬂxnl tl

UNIVERSITY

Canada’s Capital University

Discussion

 The compiler assigns, to each variable and
parameter, a location within the current
stack frame

* QOperations on local variables are compiled
Into operations on memory locations
relative to the frame pointer (fp)

i .
QNE.‘IV‘!?E(?Q e But now all variable references are to local

Canada’s Capital University

variables
— We assume static lexical scoping

A more complicated example

int odd factorial(int q) {
int factorial(int n) {
if (n == 1) return q; q (4 bytes)
int t = factorial(n-1);
return n * t;

}
if (g % t == 0)
=2 Carleton return t;
%% UNIVERSITY return factorial(t);
Canada’s Capital University } n (4 bytes)

t (4 bytes)

A Runtime Example

« How do we access q within factorial?

q 5 even factorial(5)
n o> :
t undefined | 2ctorial(s)
n 4 :
t undefined | ‘2ctorial(4)
a2 Carleton
UNIVERSITY n 3 : faCtorial(B)
Canada’s Capital University t undeflned
n 2 :
- factorial(2)
£n
n 1 F
t undefined .

Solution 1

« Each function has a static level of scope
— Global scope - level 0
— even_factorial - level 1
— factorial - level 2

* Each stack frame contains an extra pointer
fpp that points to the stack frame at the
next highest level (fpp is actually an implicit

Carleton
g UNIVERSITY parameter)

Canada’s Capital University

A Runtime Example

 Now we know how to find g from within any

recursive call
— g is at memory location fpp + 0

q 3 even factorial(3)
fpp _
n 3 factorial(3)

t undefined

Carleton | ‘¢,

Canada’s Capital University Nn 2 fa C'tO rla-l. (2)
t 1
fpp factorial(1)
n 1 - fp

t undefined

10

Solution 2

 The problem with solution 2 is that it
becomes increasingly expensive to access

elements that are further away in scope
— Current level /

— Variable to access is at level j>i
— We must follow j-/ fpp pointers

e To speed this up, we can use a global arra
Carleton P . P J y
& UNIVERSITY frame _pointers

Canada’s Capital University

— frame_pointers[/] is the frame pointer to the
currently active level i frame

11

N
Frame pointer array example
q 3 even factorial(3)
n 3
t undefined factorial(3)
2
1

n
-7 Carleton t factorial(2)

UNIVERSITY
Canada’s Capital University

n 1 :
"t undefined factorial(l)

£
P

12

N
Solution 2 (Cont'd)

* Within a function at level |
— Save tmp = frame_pointers|/]
— Set frame_pointer[/] = fp (current frame pointer)
— Before returning, restore frame_pointers[/] = tmp

 When accessing a variable at level /from a
level j > /we can get the correct frame
pointer just by looking at frame_pointers]/]

Carleton

UNIVERSITY

Canada’s Capital University

13

Solution 1 versus Solution 2

« Whether to use Solution 1 or 2 depends on
how often variables at higher levels of

scope are accessed

— Solution 1 is more costly when accessing variables
that are at much higher scope levels

— Solution 2 increases the cost of every function call
but makes all variable accesses constant time

Carleton

UNIVERSITY

Canada’s Capital University

14

N
What About Objects?

 For compilers, objects are just structures

 When calling a method on an object, an
Implicit pointer to the object is passed (this
or self) to the method

* |Inheritance is handled by having the child
class inherit the structure of the parent and
95.‘%‘!?299 then add on its own elements

Canada’s Capital University

15

Inheritance Example

 Any method that assumes the memory
layout of a Book can be used on a Novel or
a Collection

Book
title -> String

T

EJNE.HV‘!GRE(.)R Novel Collection
Canada’s Capital University author -> St ring editor -> St ring

Book Novel Collection
title (4 bytes) title (4 bytes) title (4 bytes)

author (4 bytes) editor (4 bytes 16

-
“Virtual” Methods

* For each "virtual" object method, a new
iInstance variable can be created

« When a child class overrides a method in a
parent class, the instance variable is just
overridden

Carleton

UNIVERSITY

rsitv

Eook Novel Collection
title (4 bytes) title (4 bytes) title (4 bytes)
fnPrint -> printBook fnPrint -> printNovel @ fnPrint -> printColl

author (4 bytes) editor (4 bytes)

17

N
"Virtual" Methods (Cont'd)

* Virtual methods require two extra levels of

indirection
— Lookup the function address in this or self (1 level)
— Load the function address and call it

For this reason, some languages (C++ and

Java) mix "virtual" and non-virtual functions
— In C++ the virtual keyword is used to specify virtual

QNQ%‘EGRE?}} functions (all others are non-virtual)
Canada's Capital University — In Java, the final keyword is used to specify non-

virtual functions (these can't be overridden by a
subclass)

18

Summary

A compiler must resolve occurrences of a
variable to the memory location of that
variable

* For static lexical scoping, this is done using
parent frame pointers (fpp)

— 2 solutions:
Carleton * 1-slower Iooku.p for deeply nested functions
o uNivERSITY * 2 - slower function calls but faster lookup

* For objects, this is even easier

— Objects inherit their structure from their parents
— "Virtual" functions are just instance variables

19

	Title of presentation
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19

