
Review

Pat Morin

COMP 3002

2

What is a Compiler
• A compiler translates

– from a source language S
– to a target language T
– while preserving the meaning of the input

3

Structure of a Compiler

syntactic
analyzer

code
generator

program
text

interm.
rep.

machine
code

4

Compiler Structure: Front End

syntactic
analyzer

code
generator

program
text

interm.
rep.

machine
code

tokenizer parser
token
stream

5

Compiler Structure: Back End

syntactic
analyzer

code
generator

program
text

interm.
rep.

machine
code

machine
indep. opts.

basic
code gen.

interm.
rep.

machine
dep. opts.

6

Tokenizing
• The first step in compilation

– takes the input (a character stream) and converts it
into a token stream

– Tokens have attributes

• Technology
– Convert regular expressions into
– NFA and then convert into
– DFA

7

Regular Expressions
• Concatenation, alternation, Kleene closure,

and parenthesization

• Regular definitions
– multiline regular expressions

• Exercise: Write regular definitions for
– All strings of lowercase letters that contain the five

vowels in order
– All strings of lowercase letters in which the letters

are in ascending lexicographic order
– Comments, consisting of a string surrounded by /*

and */ without any intervening */

8

NFAs
• Finite collection of states

• Edges are labelled with letters

• One start state

• (Wlog) one accepting state

• Exercise: Convert these to NFA
– a|b
– (a|b)c
– (a|b)*c
– (a|b)* a (a|b)(a|b)

9

DFAs
• Like NFAs, but

– all the outgoing edges of any node have distinct
labels

• Any NFA can be converted to an equivalent
DFA

• Exercises:
– Convert to DFA: 1

p

p

p

e 
l e a

a

start





1 01 01 01start

01

10

Parsing
• Purpose

– Convert a token stream into a parse tree

<id, "x"> <assign> <id, "x"> <plus> <number, "1">

id, "x"

=

id, "x"

+

number, "1"

x = x + 1

11

Context-Free Grammars
• Context-free grammars have

– terminals (tokens)
– non-terminals
– sentential forms
– sentences

• Derivations
– Derive id + id * id with this grammar:

E  E + T | T
T  T * F | F
F  (E) | id

12

Derivations
• Leftmost (rightmost) derivations

– Always expand the leftmost (rightmost) non-terminal

• Derivations and parse trees
– Internal nodes correspond to non-terminals
– Leaves correspond to terminal

• Ambiguity
– When a string has more than one derivation
– Can result in different parse trees

13

Derivations and Parse Trees

E
E + E
E + id
E * E + id
E * id + id
(E) * id + id
(E + E) * id + id
(id + E) * id + id
(id + id) * id + id

E

E E

id

+

E E*

id()E

id

E E+

id

14

Left-Recursion
• Left-recursion makes parsing difficult

• Immediate left recursion:
– A  A
– Rewrite as: AA' and A'  A'

• More complicated left recursion
– A + A

15

Left Factoring
• Makes a grammar suitable for top-down

parsing

• For each non-terminal A find the longest

prefix  common to two or more

alternatives
– Replace A  

1










n
 with

– A   A' and A'  
1











n

• Repeat until not two alternatives have a common prefix

16

Exercise

• Exercise:
– Remove left recursion
– Left-factor

rexpr  rexpr + rterm | rterm
rterm  rterm rfactor | rfactor
rfactor  rfactor * | rprimary
rprimary  a | b

17

First and Follow
• FIRST(X) : The set of terminals that begin

strings that can be derived from X

• FOLLOW(X): The set of terminals that can
appear immediately to the right of X in
some sentential form

• Be able to:
– compute FIRST and FOLLOW for a small example

18

FIRST and FOLLOW Example

• FIRST(F) = FIRST(T) = FIRST(E) = {(, id }

• FIRST(E') = {+, }

• FIRST(T') = {*, }

• FOLLOW(E) = FOLLOW(E') = {), $}

• FOLLOW(T) = FOLLOW(T') = {+,),$}

• FOLLOW(F) = {+, *,), $}

E  T E'
E' + T E' | 
T  F T'
T' * F T' | 
F  (E) | id

19

LL(1) Grammars
• Left to right parsers producing a leftmost

derivation looking ahead by at most 1
symbol

• Grammar G is LL(1) iff for every two
productions of the form A  |
– FIRST() and FIRST() are disjoint

– If  is in FIRST() then FIRST() and FOLLOW(A) are
disjoint (and vice versa)

20

LL(1) Parser
• LL(1) Parsers are driven by a table

– Non-terminal x Next token => Expansion

• Be able to:
– fill in a table given the FIRST and FOLLOW sets
– use a table to parse an input string

21

Bottom-up Parsing
• Shift-reduce parsing

– Won't be covered on the exam

22

Type-Checking
• Type checking is done by a bottom-up

traversal of the parse tree
– For each type of node, define what type it evaluates

to given the types of its children
– Some extra types may be introduced

• error type
• unknown type

– These can be used for error recovery

• Environments
– Used for keeping track of types of variables
– Static lexical scoping

• Exercise:
– pick a parse tree and assign types to its nodes

23

Parse DAGs
• Parse DAGS

– Like parse trees
– Common subexpressions get merged

• Exercise:
– Construct the parse DAG for

• (x+y)-((x+y)*(x-y))
• ((x1-x2)*(x1-x2))+((y1-y2)*(y1-y2))

24

Intermediate Code Generation
• Two kinds of intermediate code

– Stack machine
– 3 address instructions

• For 3AI
– Assign temporary variables to internal nodes of parse

dags
– output the instructions in reverse topological order

• For stack machines
– just like in assignment 3

• Recipes for control structures

25

Example
• Exercise: Generate 3AI and stack-machine

code for this parse tree

a

a

b c

-

b c

- d

**

+

+

26

Scope and Code Generation
• The interaction between static lexical scope

and the machine stack
– Frame pointers
– Parent frame pointers
– The frame pointer array

• Object scope
– Inheritance
– Virtual methods

• dispatch tables

• Be able to:
– Illustrate state of stack fp, and fpp for a function call
– Illustrate memory-layout of an OOP-language object

27

Basic Blocks
• Blocks of code that always execute from

beginning to end

• Be able to:
– Given a program, compute the basic blocks

• Next-use information:
– Lazy algorithm for code generation and register

usage based on next-use information

• Be able to:
– Compute next-use information for all the variables in

a basic block
– Illustrate a register allocation based on next-use

information

• The dangers of pointers and arrays

28

Basic Blocks as DAGS
• Applications

– Dead-code elimination, algebraic identities,
associativity, etc

• Be able to:
– Given a basic block, compute its DAG representation
– Reassemble a basic block from its DAG

• be careful with pointers and arrays

29

Peephole Optimization
• Different kinds of peephole optimizations

– redundant load/stores
– unreachable code
– flow of control optimizations (shortcuts)
– algebraic simplifications and reduction in strength

30

The Control Flow Graph
• Indicates which basic blocks may succeed

other basic blocks during execution

• Be able to:
– Compute a control flow graph
– Choose register variables based on the control-flow

graph
– Eliminate unreachable code
– Find no-longer-used variables
– Compute the transitive closure

31

Register Allocation by Graph
Coloring
• The interference graph

– nodes are variables
– two nodes are adjacent if the variables are active

simultaneously
– Color the graph with the minimum number of colors

• Inductive graph coloring algorithm
– Delete vertex of lowest degree
– Recurse
– Reinsert vertex and color with lowest available color

• Be able to:
– Illustrate inductive coloring algorithm

32

Ershov Numbers
• Computed by bottom-up traversal of parse

tree

• Represent the minimum number of
registers required to avoid loads and stores

• Dynamic programming extension
– reorderings of children
– different instructions

• Be able to:
– Compute Ershov numbers
– Compute dynamic programming costs

33

Data-Flow Analysis
• Define in and out

– for each line of code
– for each basic block

• Define transfer functions
– out[L] = f(L, in[L])
– in[B] = f(out[B1],...,out[Bk])

• where B1,...,Bk are predecessors of B
– Sometimes works backwards

• Example applications
– reaching definitions, undefined variables, live

variable analysis

• Be able to:
– Apply iterative algorithm for solving equations

34

The GNU Compiler Collection
• History and background

– Started in 1985
– Open source
– Compilation steps:

• Input language
• Parse tree
• GENERIC
• GIMPLE
• RTL
• Machine language

• Be able to:
– Recognize a picture of Richard Stallman
– Know difference between GENERIC and GIMPLE

35

Want to Build a Compiler
• Cross-compiling

• Bootstrapping

• Self compiling

• T-diagrams

• Be able to:
– Understand T-diagrams
– Solve a cross-compilation problem

S T
I

Java JVM
C C i386

i386

Java JVM
i386

36

37

38

LL(1) Parser

39

Want to Write a Compiler?
• A compiler has 3 main parameter

– Source language (S)
• What kind of input does the compiler take?
• C, C++, Java, Python,

– Implementation language (I)
• What language is the compiler written in?
• C, Java, i386, x84_64

– Target language (T)
• What is the compiler's target language
• i386, x86_64, PPC, MIPS, ...

S T
I

source
code
(in S)

compiled
code
(in T)

40

Source Language Issues
• Complexity

– Is a completely handwritten compiler feasible?

• Stability
– Is the language definition still changing?

• Novelty
– Do there already exist compilers for this language?

• Complicated, or still-changing languages
promote the use of compiler generation
tools

41

Target Language Issues
• Novelty

– Is this a new architecture?
– Are there similar architectures/instruction sets?

• Available tools
– Is there an assembler for this language?
– Are there other compilers for this language?

42

Performance criteria
• Speed

– Does it have to be a fast compiler?
– Does it have to be a small compiler?
– Does it have to generate fast code?

• Portability
– Should the compiler run on many different

architectures (rehostability)
– Should the compiler generate code for many

different architectures (retargetability)

43

Possible Workarounds
• Rewrite an existing front end

– when the source is new
– reuse back (code generation) end of the compiler

• Rewrite an existing back end
– when the target architecture is new
– retarget an existing compiler to a new architecture

• What happens when both the source
language and target language are new?
– Write a compiler from scratch?
– Do we have other options?

44

Composing Compilers
• Compilers can be composed and used to

compile each other

• Example:
– We have written a Java to JVM compiler in C and we

want to make it to run on two different platforms
i386 and x86_64

– both platforms have C compilers
Java JVM

C C i386
i386

Java JVM
i386

Java JVM
C C x64

x64

Java JVM
x64

45

Example
• Assignment 3:

• Assignment 4:

PRM
Java

JVM
Java JVM

i386

PRM JVM
JVM

PRM JVM
JVM

fib.prm a.j

JVM
Java

JVM'
Java JVM

i386

PRM JVM
JVM

JVM JVM'
JVM

a.j a.j'

PRM
Java

JVM

JVM
Java

JVM'

46

Example
• Show how to

– To take your PRM compiler and make it faster
– To take your Jasmin optimizer and make it faster

PRM
Java

JVM

PRM
Java

PRM'

Java
i386

JVM

47

Bootstrapping by cross-compiling
• Sometimes the source and implementation

language are the same
– E.g. A C compiler written in C

• In this case, cross compiling can be useful

C
C

x641
C

i386
i386

C
i386

x643
C

C
x644

C
i386

i3862

C
x64

x645

48

Bootstrapping Cont'd
• Bootstrapping by reduced functionality

– Implement, in machine language, a simplified
compiler

• A subset of the target language
• No optimizations

– Write a compiler for the full language in the reduced
language

C­­

asm

i386

C

C­­

i386 C

i386

i386

49

Bootstrapping for Self-
Improvement
• If we are writing a good optimizing compiler

with I=S then
– We can compile the compiler with itself
– We get a fast compiler

• gcc does this (several times)

C

i386

i386

C

C

i386gcc C

i386

i386gcc
C

i386

i386cc

C

C

i386gcc C

i386

i386gcc

50

Summary
• When writing a compiler there are several

techniques we can use to leverage existing
technology
– Reusing front-ends or back ends
– Cross-compiling
– Starting from reduced instruction sets
– Self-compiling

	Title of presentation
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50

