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What is a Compiler
• A compiler translates

– from a source language S
– to a target language T
– while preserving the meaning of the input
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Structure of a Compiler
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Compiler Structure: Front End
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Compiler Structure: Back End
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Tokenizing
• The first step in compilation

– takes the input (a character stream) and converts it 
into a token stream

– Tokens have attributes

• Technology
– Convert regular expressions into
– NFA and then convert into
– DFA
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Regular Expressions
• Concatenation, alternation, Kleene closure, 

and parenthesization

• Regular definitions
– multiline regular expressions

• Exercise: Write regular definitions for
– All strings of lowercase letters that contain the five 

vowels in order
– All strings of lowercase letters in which the letters 

are in ascending lexicographic order
– Comments, consisting of a string surrounded by /* 

and */ without any intervening */
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NFAs
• Finite collection of states

• Edges are labelled with letters

• One start state

• (Wlog) one accepting state

• Exercise: Convert these to NFA
– a|b
– (a|b)c
– (a|b)*c
– (a|b)* a (a|b)(a|b)
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DFAs
• Like NFAs, but

– all the outgoing edges of any node have distinct 
labels

• Any NFA can be converted to an equivalent 
DFA

• Exercises:
– Convert to DFA: 1
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Parsing
• Purpose

– Convert a token stream into a parse tree

<id, "x"> <assign> <id, "x"> <plus> <number, "1">

id, "x"

=

id, "x"

+

number, "1"

x = x + 1
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Context-Free Grammars
• Context-free grammars have

– terminals (tokens)
– non-terminals
– sentential forms
– sentences

• Derivations
– Derive id + id * id with this grammar:

E  E + T | T
T  T * F | F
F  ( E ) | id
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Derivations
• Leftmost (rightmost) derivations

– Always expand the leftmost (rightmost) non-terminal

• Derivations and parse trees
– Internal nodes correspond to non-terminals
– Leaves correspond to terminal

• Ambiguity
– When a string has more than one derivation
– Can result in different parse trees
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Derivations and Parse Trees

E
E + E
E + id
E * E + id
E * id + id
( E ) * id + id
( E + E ) * id + id
( id + E ) * id + id
( id + id ) * id + id

E

E E

id

+

E E*

id( )E

id

E E+

id
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Left-Recursion
• Left-recursion makes parsing difficult

• Immediate left recursion:
– A  A
– Rewrite as: AA' and A'  A'

• More complicated left recursion
– A + A
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Left Factoring
• Makes a grammar suitable for top-down 

parsing

• For each non-terminal A find the longest 

prefix  common to two or more 

alternatives
– Replace A  

1 


 


 


 


n
 with

– A   A' and A'   
1 


 


 


 


n

• Repeat until not two alternatives have a common prefix
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Exercise

• Exercise:
– Remove left recursion
– Left-factor

rexpr     rexpr + rterm | rterm
rterm     rterm rfactor | rfactor
rfactor   rfactor * | rprimary
rprimary  a | b
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First and Follow
• FIRST(X) : The set of terminals that begin 

strings that can be derived from X

• FOLLOW(X): The set of terminals that can 
appear immediately to the right of X in 
some sentential form

• Be able to: 
– compute FIRST and FOLLOW for a small example
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FIRST and FOLLOW Example

• FIRST(F) = FIRST(T) = FIRST(E) = {(, id }

• FIRST(E') = {+, }

• FIRST(T') = {*, }

• FOLLOW(E) = FOLLOW(E') = {), $}

• FOLLOW(T) = FOLLOW(T') = {+,),$}

• FOLLOW(F) = {+, *, ), $}

E  T E'
E' + T E' | 
T  F T'
T' * F T' | 
F  ( E ) | id
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LL(1) Grammars
• Left to right parsers producing a leftmost 

derivation looking ahead by at most 1 
symbol

• Grammar G is LL(1) iff for every two 
productions of the form A  |
– FIRST() and FIRST() are disjoint

– If  is in FIRST() then FIRST() and FOLLOW(A) are 
disjoint (and vice versa)



20

LL(1) Parser
• LL(1) Parsers are driven by a table

– Non-terminal x Next token => Expansion

• Be able to:
– fill in a table given the FIRST and FOLLOW sets
– use a table to parse an input string
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Bottom-up Parsing
• Shift-reduce parsing

– Won't be covered on the exam
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Type-Checking
• Type checking is done by a bottom-up 

traversal of the parse tree
– For each type of node, define what type it evaluates 

to given the types of its children
– Some extra types may be introduced

• error type
• unknown type

– These can be used for error recovery

• Environments
– Used for keeping track of types of variables
– Static lexical scoping

• Exercise:
– pick a parse tree and assign types to its nodes
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Parse DAGs
• Parse DAGS

– Like parse trees
– Common subexpressions get merged

• Exercise:
– Construct the parse DAG for

• (x+y)-((x+y)*(x-y))
• ((x1-x2)*(x1-x2))+((y1-y2)*(y1-y2))
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Intermediate Code Generation
• Two kinds of intermediate code

– Stack machine
– 3 address instructions

• For 3AI
– Assign temporary variables to internal nodes of parse 

dags
– output the instructions in reverse topological order

• For stack machines
– just like in assignment 3

• Recipes for control structures
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Example
• Exercise: Generate 3AI and stack-machine 

code for this parse tree

a

a

b c

-

b c

- d

**

+

+
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Scope and Code Generation
• The interaction between static lexical scope 

and the machine stack
– Frame pointers
– Parent frame pointers
– The frame pointer array

• Object scope
– Inheritance
– Virtual methods

• dispatch tables

• Be able to:
– Illustrate state of stack fp, and fpp for a function call
– Illustrate memory-layout of an OOP-language object
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Basic Blocks
• Blocks of code that always execute from 

beginning to end

• Be able to:
– Given a program, compute the basic blocks

• Next-use information:
– Lazy algorithm for code generation and register 

usage based on next-use information

• Be able to:
– Compute next-use information for all the variables in 

a basic block
– Illustrate a register allocation based on next-use 

information

• The dangers of pointers and arrays
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Basic Blocks as DAGS
• Applications

– Dead-code elimination, algebraic identities, 
associativity, etc

• Be able to:
– Given a basic block, compute its DAG representation
– Reassemble a basic block from its DAG

• be careful with pointers and arrays
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Peephole Optimization
• Different kinds of peephole optimizations

– redundant load/stores
– unreachable code
– flow of control optimizations (shortcuts)
– algebraic simplifications and reduction in strength
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The Control Flow Graph
• Indicates which basic blocks may succeed 

other basic blocks during execution

• Be able to:
– Compute a control flow graph
– Choose register variables based on the control-flow 

graph
– Eliminate unreachable code
– Find no-longer-used variables
– Compute the transitive closure
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Register Allocation by Graph 
Coloring
• The interference graph

– nodes are variables
– two nodes are adjacent if the variables are active 

simultaneously
– Color the graph with the minimum number of colors

• Inductive graph coloring algorithm
– Delete vertex of lowest degree
– Recurse
– Reinsert vertex and color with lowest available color

• Be able to:
– Illustrate inductive coloring algorithm
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Ershov Numbers
• Computed by bottom-up traversal of parse 

tree

• Represent the minimum number of 
registers required to avoid loads and stores

• Dynamic programming extension
– reorderings of children
– different instructions

• Be able to:
– Compute Ershov numbers
– Compute dynamic programming costs
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Data-Flow Analysis
• Define in and out

– for each line of code
– for each basic block

• Define transfer functions
– out[L] = f(L, in[L])
– in[B] = f(out[B1],...,out[Bk])

• where B1,...,Bk are predecessors of B
– Sometimes works backwards

• Example applications
– reaching definitions, undefined variables, live 

variable analysis

• Be able to: 
– Apply iterative algorithm for solving equations
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The GNU Compiler Collection
• History and background

– Started in 1985
– Open source
– Compilation steps:

• Input language
• Parse tree
• GENERIC
• GIMPLE
• RTL
• Machine language

• Be able to:
– Recognize a picture of Richard Stallman
– Know difference between GENERIC and GIMPLE
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Want to Build a Compiler
• Cross-compiling

• Bootstrapping

• Self compiling

• T-diagrams

• Be able to:
– Understand T-diagrams
– Solve a cross-compilation problem

S T
I

Java JVM
C C i386

i386

Java JVM
i386
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LL(1) Parser
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Want to Write a Compiler?
• A compiler has 3 main parameter

– Source language (S)
• What kind of input does the compiler take?
• C, C++, Java, Python, ....  

– Implementation language (I)
• What language is the compiler written in?
• C, Java, i386, x84_64

– Target language (T)
• What is the compiler's target language
• i386, x86_64, PPC, MIPS, ...

S T
I

source
code
(in S)

compiled
code
(in T)
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Source Language Issues
• Complexity

– Is a completely handwritten compiler feasible? 

• Stability
– Is the language definition still changing?

• Novelty
– Do there already exist compilers for this language?

• Complicated, or still-changing languages 
promote the use of compiler generation 
tools
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Target Language Issues
• Novelty

– Is this a new architecture?
– Are there similar architectures/instruction sets?

• Available tools
– Is there an assembler for this language?
– Are there other compilers for this language?
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Performance criteria
• Speed

– Does it have to be a fast compiler?
– Does it have to be a small compiler?
– Does it have to generate fast code?

• Portability
– Should the compiler run on many different 

architectures (rehostability)
– Should the compiler generate code for many 

different architectures (retargetability)
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Possible Workarounds
• Rewrite an existing front end 

– when the source is new
– reuse back (code generation) end of the compiler

• Rewrite an existing back end 
– when the target architecture is new
– retarget an existing compiler to a new architecture

• What happens when both the source 
language and target language are new?
– Write a compiler from scratch?
– Do we have other options?
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Composing Compilers
• Compilers can be composed and used to 

compile each other

• Example:
– We have written a Java to JVM compiler in C and we 

want to make it to run on two different platforms 
i386 and x86_64

– both platforms have C compilers
Java JVM

C C i386
i386

Java JVM
i386

Java JVM
C C x64

x64

Java JVM
x64
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Example
• Assignment 3:

• Assignment 4:

PRM
Java

JVM
Java JVM

i386

PRM JVM
JVM

PRM JVM
JVM

fib.prm a.j

JVM
Java

JVM'
Java JVM

i386

PRM JVM
JVM

JVM JVM'
JVM

a.j a.j'

PRM
Java

JVM

JVM
Java

JVM'



46

Example
• Show how to

– To take your PRM compiler and make it faster
– To take your Jasmin optimizer and make it faster

PRM
Java

JVM

PRM
Java

PRM'

Java
i386

JVM
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Bootstrapping by cross-compiling
• Sometimes the source and implementation 

language are the same
– E.g. A C compiler written in C

• In this case, cross compiling can be useful

C
C

x641
C

i386
i386

C
i386

x643
C

C
x644

C
i386

i3862

C
x64

x645
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Bootstrapping Cont'd
• Bootstrapping by reduced functionality

– Implement, in machine language, a simplified 
compiler

• A subset of the target language
• No optimizations

– Write a compiler for the full language in the reduced 
language

C­­

asm

i386

C

C­­

i386 C

i386

i386



49

Bootstrapping for Self-
Improvement
• If we are writing a good optimizing compiler 

with I=S then
– We can compile the compiler with itself
– We get a fast compiler

• gcc does this (several times)

C

i386

i386

C

C

i386gcc C

i386

i386gcc
C

i386

i386cc

C

C

i386gcc C

i386

i386gcc
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Summary
• When writing a compiler there are several 

techniques we can use to leverage existing 
technology
– Reusing front-ends or back ends
– Cross-compiling
– Starting from reduced instruction sets
– Self-compiling
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