Bottom-Up Parsing

COMP3002

School of Computer Science

e

Carleton

QY UNIVERSITY

Canada’s Capital University

N
Bottom-Up Parsing

= We start with the leaves of the parse tree
(individual tokens) and work our way up to the
root.

e

Carleton

UNIVERSITY

©

Canada’s Capital University

L) D
d * " T\\I*
SR e

H—
+ % B, N
S
SR -

B—k—0

1

2
Q
3
i

UNIVERSITY

Canada’s Capital University

® Carleton

Reductions

Find a handle

— Elements in the string that form the right-hand side of a
production in the grammar.

= Replace
— Replace the handle with the left-hand side of the grammar it
matches.
= Sto
Carleton P |
W UNIVERSITY — When we end up with only the start symbol, we stop.

Canada’s Capital University

= Derivation in reverse

— Reverse the reductions to get a sequence of derivations.
— Specifically, a rightmost derivation.

Example (again...)

= We constructed the tree using 5 reductions...

id *id ESE+T|T

F*id T >T*F | F

T*id F - (E) id
& Carleton T*F

Canada’s Capital University F

E

N
Shift-Reduce Parsing

Shift

— Shift the next element on the input to the top of the stack.

= Reduce

— There is a handle on top of the stack. Replace those
elements with the left-hand side of the associated
production.

= Accept

‘

v Carleton
UNIVERSITY — There is no more input to process.

Canada’s Capital University

— The stack consists only of the start symbol.

= Error
— Syntax error discovered.

N
Example (yet again!)

E—-SE+T | T
T >T®*F | F
F - (E) id

IIIIIIIIII

Carleton

conflict

N
Shift-Reduce Conflict

= Can’t decide whether to shift or reduce...

stmt — if expr then stmt

| if expr then simt else stmt

| other

® Carleton

UNIVERSITY

Canada’s Capital University

= Consider following stack configuration...

STACK INPUT
$... if expr then stmt else ... $

Reduce-Reduce Conflict

= What production to reduce by?

E — S
F - S

e

Carleton . \what production to reduce by?

Canada’s Capital University

©

STACK INPUT
$...S .. $

10

LR Parsers

LR(k) Parsers

— L for left-to-right scanning
— R for rightmost derivation
— k symbols of lookahead

= Different types...
— Simple LR (SLR)
Carleton — Canonical-LR

QY UNIVERSITY

Canada’s Capital University —_ LALR

11

N
Why is this good?

Lookahead is easier

— LR(k) looks ahead k symbols in a right-sentential form, and
matches a production.

— LL(k) tries to recognize a production from the first k
characters of the string it derives.

— S0, more grammars.

Error Handling

‘

Carleton — Detect syntax errors as soon as they occur.

QY UNIVERSITY

Canada’s Capital University

12

N
Conflict Resolution

= Construct a finite automaton (FA) that recognizes

the right-hand-side of productions by scanning the
input from right to left.

= ltems
— An item of G is a production of G with a dot at some position
of the body.
Carleton - Eg,A—>X.YZ

QY UNIVERSITY

— A state in our FA is a set of items.

Canada’s Capital University

= Thisis Simple LR (SLR) Parsing

13

® Carleton

UNIVERSITY

@

Canada’s Capital University

14

Constructing the Finite Automaton

We need the Canonical Collection of LR(0) Items.

1. Augment the grammar
2. CLOSURE of items

3. GOTO function between items

o

Carleton

UNIVERSITY

©

Canada’s Capital University

15

Augmented Grammars

= To augment grammar G with start symbol S, we
add a new production S’ — S and make S’ the
new start symbol.

E - E
E — E+T|T
w® Carleton
< e T~ TFIF
F — (E) | id

16

Closure

= CLOSURE(Il), where | is a set of items for a

grammar G.
1. Initially, add every item in | to CLOSURE(I)

2. IfA—=x.Byisin CLOSURE(l),and B — . wisa
production, add B — .w to CLOSURE(]) if it isn’t there
already.

3. Apply Rule 2 until no more new items are added to
Carleton CLOSURE(]).

QY UNIVERSITY

‘

Canada’s Capital University

17

Example

= Ifl = {E —.E }, then CLOSURE(l):

E'—E
E— . E+T
E—.T

Carleton |27 " =k

- E - E+T|T
F— (E) T — T*F | F
F—.id L (E) | id

18

N
The GOTO Function

= GOTO(l, X) defined where | is an item and X'is a
grammar symbol.

= Defines the transitions between sets of items in
the finite automaton.

Carleton If[A —a.Xb]isinl, GOTO(l, X) contains

CLOSURE(A —aX.b)

Canada’s Capital University

e

©

19

Example
, GOTO(l, +)
E'—E. E—-E+.T
E—~E.+T T T*F
I'—.F
O Careton |E° > E F=.(E)
aaaaaaaaaaaaaaaaaaaaaaaaa E —> E+T|T .
T - T*FIF R
F - (E)|id

20

‘

Carleton

Y UNIVERSITY

Canada’s Capital University

A fat groundhog

21

Canonical Collection of LR(0) items

C=CLOSURE({S —.S})
repeat
for each set ofitems I in C
for each grammar symbol X
if GOTO(I,X) is not empty and not in C
add GOTO(I,X) to C

until no new sets of items are added to see

‘

Carleton

QY UNIVERSITY

Canada’s Capital University

22

e

Carleton

QY UNIVERSITY

Canada’s Capital University

23

N
Simple LR Parsing

Parse Table

— ACTION and GOTO functions
— Built from the finite automaton

= GOTO
— Defined as before
= ACTION
Carleton - If[A =A.xB] isinl, and GOTO(/;, x) = [, then
o o S = ACTION(, x) = “shift j”

— If[A = X.]isin [, then
= ACTION(i, a) = “reduce A —=X" for all a in FOLLOW(A).

24

Elements of SLR Parser

Stack

— Maintains a stack of states
— Used to resolve conflicts.

= Symbols

— Grammar symbols corresponding to states on the stack

‘

Carleton

QY UNIVERSITY

Canada’s Capital University

25

N
Shift-Reduce Parsing

= ACTION[s,a] = shift |
— Push j onto the stack
— Append a to the input symbols

= ACTION]Is,a] = reduce A — X

— Pop |X| symbols off the stack
— Let t be state on top of the stack
— Push GOTOIt, A] onto the stack

‘

Carleton
W UNIVERSITY - Accept’ Error

Canada’s Capital University

— As before

26

Example
't action ROtO
STATE
d + x () $ |£E T F
0 s5 s4 1 2 3
| 56 ace
2 2 §7 r2 2
3 M 4 r4 r4
4 85 s4 8 2 3
5 rb rb r6
6 s5 s4 9 3
Carleton 1 | s 0
Canada’s Capital University b s6 shl
9 rl 87 rl rl
10 3ol r3 3
1 S S 5 rS

Fig. 4.31. Parsing table for expression grammar. o7

Canonical LR Parsing

= In SLR, we always reduce by [A — B .] on input
aifitisin FOLLOW(A).

= However, there may be some prefix XYZA that
can never be followed by a.

e

Carleton « |n Canonical LR Parsing, for each item we store
a lookahead that we have to see before
reducing. Eg,[A — B . (a)]

©

Canada’s Capital University

28

e
LALR

= Lookahead LR

= Canonical LR tables are typically an order of
magnitude larger than SLR tables.

= Construct Canonical LR table, prune them.

e

Carleton

UNIVERSITY

©

Canada’s Capital University

29

N
Final Thoughts

Hard to implement

— Compared to LL(k) parsers.
— In practice, don’t construct them.
— Instead, use parser generators.

= More powerful
— Every LL(k) grammar is LR(k)
— Reverse not necessarily true.

‘

Carleton

QY UNIVERSITY

Canada’s Capital University

30

Caﬂe’[OIl I;i()ﬂ«)]p ['"];)
W UNIVERSITY I)JU'»’?-]]]Q‘

Canada’s Capital University

A

31

