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Role of the Parser

• Converts a token stream into an 
intermediate representation
– Captures the meaning (instead of text) of the 

program
– Usually, intermediate representation is a parse tree

<id, "x"> <assign> <id, "x"> <plus> <number, "1">

id, "x"

=

id, "x"

+

number, "1"

x = x + 1
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Kinds of Parsers

• Universal
– Can parse any grammar
– Cocke-Younger-Kasami and Earley's algorithms
– Not efficient enough to be used in compilers

• Top-down
– Builds parse trees from the top (root) down

• Bottom-up
– Builds parse trees from the bottom (leaves) up
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Errors in Parsing

• Lexical errors
– Misspelled identifiers, keywords, or operators

• Syntactical errors
– Misplaced or mismatched parentheses, case 

statement outside of any switch statement,...

• Semantic errors
– Type mismatches between operators and operands

• Logical errors
– Bugs – the programmer said one thing but meant 

something else 
• if (x = y) { ... } 
• if (x == y) { ... }
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Error Reporting 

• A parser should
– report the presence of errors clearly and correctly 

and
– recover from errors quickly enough to detect further 

errors
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Error Recovery Modes

• Panic-Mode
– discard input symbols until a "synchronizing token" is 

found
– Examples (in Java): semicolon, '}' 

• Phrase-Level
– replace a prefix of the remaining input to correct it
– Example: Insert ';' or '{'
– must be careful to avoid infinite loops
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Error Recover Modes (Cont'd)

• Error Productions
– Specify common errors as part of the language 

specification

• Global Correction
– Compute the smallest set of changes that will make 

the program syntactically correct (impractical and 
usually not usually useful)
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Context-Free Grammars

• CF grammars are used to define languages

• Specified using BNF notation
– A set of non-terminals N
– A set of terminals T
– A list of rewrite rules (productions)
– The LHS of each rule contains one non-terminal 

symbol
– The RHS of each rule contains a regular expression 

over the alphabet N T
– A special non-terminal is usually designated as the 

start symbol
• Usually, start symbols is LHS of the first production
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Context Free Grammars and 
Compilers
• In a compiler

– N consists of language constructs (function, block, if-
statement, expression, ...)

– T consists of tokens
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Grammar Example

• Non-terminals: E, T, F
– E = expression
– T = term
– F = factor

• Terminals: id, +, *, (, )

• Start symbol E

• "Mathematical formulae using + and * 
operators"

E  E + T | T
T  T * F | F
F  ( E ) | id

E   T E'
E'  + T E' | 
T   F T'
T'  * F T' | 
T  T * F | F
F  ( E ) | id

E  E + E | E * E | ( E ) | id



12

Derivations

• From a grammar specification, we can 
derive any string in the language
– Start with the start symbol
– While the current string contains some non-terminal 

N
• expand N using a rewrite rule with N on the LHS

E  E + E | E * E | ( E ) | id

E
E + E
E + id
E * E + id
E * id + id
( E ) * id + id
( E + E ) * id + id
( id + E ) * id + id
( id + id ) * id + id
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Derivation Example

• Derive id + id * id with these grammars:

E  E + T | T
T  T * F | F
F  ( E ) | id

E   T E'
E'  + T E' | 
T   F T'
T'  * F T' | 
T  T * F | F
F  ( E ) | id

E  E + E | E * E | ( E ) | id



14

Derivation Example

• Derive:
– id * id + id
– id + id * id

E   T E'
E'  + T E' | 
T   F T'
T'  * F T' | 
T  T * F | F
F  ( E ) | id
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Terminology

• The strings of terminals that we derive from 
the start symbol are called sentences

• The strings of terminals and non-terminals 
are called sentential forms
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Leftmost and Rightmost 
Derivations
• A derivation is leftmost if at each stage we 

always expand the leftmost non-terminal

• A derivation is rightmost if at each stage we 
always expand the rightmost non-terminal

• Give a leftmost and rightmost derivation of
– id * id + id

E  E + E | E * E | ( E ) | id
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Derivations and Parse Trees

• A parse-tree is a graphical representation of 
a derivation

• Internal nodes are labelled with non-
terminals
– Root is the start symbol

• Leaves are labelled with terminals
– String is represented by left-to-right traversal of 

leaves

• When applying an expansion E  ABC...Z

– Children of node E become nodes labelled 
A,B,C,...Z
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Derivations and Parse Trees - 
Example

E
E + E
E + id
E * E + id
E * id + id
( E ) * id + id
( E + E ) * id + id
( id + E ) * id + id
( id + id ) * id + id

E

E E

id

+

E E*

id( )E

id

E E+

id

E  E + E | E * E | ( E ) | id
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Ambiguity

• Different parse trees for the same sentence 
result in ambiguity

E  E + E | E * E | ( E ) | id

E
E + E
E + E * E
a + b * c

E
E * E
E + E * E
a + b * c

E

E E

id

*

E E+ c

a b

E

E E

a

+

E E*

b c
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Ambiguity – Cont'd

• Ambiguity is usually bad

• The same program means two different 
things

• We try to write grammars that avoid 
ambiguity
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Context Free Grammars and 
Regular Expressions

• CFGs are more powerful than regular 
expressions
– Converting a regular expression to a CFG is trivial

– The CFG S  aSb |  generates a language that is not 
regular

• But not that powerful
– The language { ambncmdn : n,m>0 } can not be 

expressed by a CFG
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Enforcing Order of Operations

• We can write a CFG to enforce specific 
order of operations
– Example: + and *
– Exercises: 
• Add comparison operator with lower level of 

precedence than +
• Add exponentiation operator with higher level of 

precedence than *

 E  PE
PE  TE + PE | TE
TE  id * TE | id | ( E )
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Picking Up - Context free 
grammars

• CFGs can specify programming languages

• It's not enough to write a correct CFG
– An ambiguous CFG can give two different parse trees 

for the same string
• Same program has two different meanings!

– Not all CFGs are easy to parse efficiently

• We look at restricted classes of CFGs
– Sufficiently restricted grammars can be parsed easily
– The parser can be generated automatically
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Parser Generators

• Benefits of parser generators
– No need to write code (just grammar)
– Parser always corresponds exactly to the grammar 

specification
– Can check for errors or ambiguities in grammars
– No surprise programs

• Drawbacks
– Need to write a restricted class of grammar [LL(1), 

LR(1), LR(k),...]
– Must be able to understand when and why a 

grammar is not LL(1) or LR(1) or LR(k)
– Means learning a bit of parsing theory
– Means learning how to make your grammar LL(1), 

LR(1), or LR(k)
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Ambiguity

• This grammar is ambiguous
– consider the input 
• a - b - c

• Rewrite this grammar to be unambiguous

• Rewrite this grammar so that - becomes left 
associative:

• a - b - c ~ ((a - b) - c)

E  E - E | id
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Solutions

E  id M
M  - E |  

E  M | id
M  E - id
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A Common Ambiguity – The 
Dangling Else

• Show that this grammar is ambiguous

• Remove the ambiguity
– Implement the “else matches innermost if” rule

stmt  if expr then stmt
     |  if expr then stmt else stmt
     |  other
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Solution

stmt          matched_stmt | open_stmt
matched_stmt  if expr then matched_stmt 
                else matched_stmt
              | other
open_stmt     if expr then stmt
              | if expr then matched_stmt 
                else open_stmt
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Left Recursion

• A top-down parser expands the left-most 
non-terminal based on the next token

• Left-recursion is difficult for top-down 
parsing

• Immediate left recursion:
– A  A
– Rewrite as: AA' and A'  A'

• More complicated left recursion occurs 
when A can derive a string starting with A
– A + A
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Removing Left Recursion

• Removing immediate left-recursion is easy

• Simple case:
– A  A
– Rewrite as: AA' and A'  A'

• More complicated: 
– A  A


A


A





 


  


 

– Rewrite as: 

• A

A'|


A'| | 


A' 

• A'  

A'


A'


A'
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Algorithm for Removing all Left 
Recursion
• Textbook page 213
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Left Factoring

• Left factoring is a technique for making a 
grammar suitable for top-down parsing

• For each non-terminal A find the longest 

prefix  common to two or more 

alternatives
– Replace A  

1 


 


 


 


n
 with

– A   A' and A'   
1 


 


 


 


n

• Repeat until no two alternatives have a common prefix
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Left Factoring Example

• Left factor the following grammars

 E  PE
PE  TE + PE | TE
TE  id * TE | id | ( E )
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Summary of Grammar-
Manipulation Tricks

• Eliminating ambiguity
– Different parse trees for same program

• Enforcing order of operations
– Left-associative
– right-associative

• Eliminating left-recursion
– Gets rid of potential "infinite recursions"

• Left factoring
– Allows choosing between alternative productions 

based on current input symbol
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Exercise

• Remove left recursion

• Left-factor

rexpr     rexpr + rterm | rterm
rterm     rterm rfactor | rfactor
rfactor   rfactor * | rprimary
rprimary  a | b
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Top-Down Parsing

• Top-down parsing is the problem of 
constructing a pre-order traversal of the 
parse tree

• This results in a leftmost derivation

• The expansion of the leftmost non-terminal 
is determined by looking at a prefix of the 
input
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LL(1) and LL(k)

• If the correct expansion can always be 
determined by looking ahead at most k 
symbols then the grammar is an LL(k) 
grammar

• LL(1) grammars are most common
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FIRST()

• Let  be any string of grammar symbols

• FIRST() is the set of terminals that begin 

strings that can be derived from  a
– If  can derive  then  is also in FIRST()

• Why is FIRST useful
– Suppose A  | and FIRST() and FIRST() are 

disjoint
– Then, by looking at the next symbol we know which 

production to use next
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Computing FIRST(X)

• If X is a terminal then FIRST(X) = {X}

• If X is a non-terminal and X Y
1
 Y

2
...Y

k

– i = 0 ; define FIRST(Y
0
) = {  }

– while  is in FIRST(Y
i
)

• Add FIRST(Y
i+1

) to FIRST(X)

• i = i+1

– if (i =k or X  )
• Add  to FIRST(X)

• Repeat above step for all non-terminals 
until nothing is added to any FIRST set
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Example

• Compute FIRST(E), FIRST(PE), FIRST(TE), 
FIRST(TE')

 E   PE
PE   TE + E | TE
TE   id TE'
TE'  * E 
TE'  id 
TE'  ( E )



41

Computing FIRST(X
1
X

2
...X

k
)

• Given FIRST(X) for every symbol X we can 

compute FIRST(X
1
X

2
...X

k
) for any string of 

symbols X
1
X

2
...X

k
:

– i = 0 ; define FIRST(X
0
) = {  }

– while  is in FIRST(X
i
)

• Add FIRST(X
i+1

) to FIRST(X
1
X

2
...X

k
)

• i = i+1
– if (i =k)

• Add  to FIRST(X)
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FOLLOW(A)

• Let A be any non-terminal

• FOLLOW(A) is the set of terminals a that 
can appear immediately to the right of A in 
some sentential form
– I.e. S * A a  for some  and  and start symbol S

– Also, if A can be a rightmost symbol in some 
sentential form then $ (end of input marker) is in 
FOLLOW(A)
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Computing FOLLOW(A)

• Place $ into FOLLOW(S)

• Repeat until nothing changes:
– if A  B then add FIRST()\{} to FOLLOW(B)

– if A  B then add FOLLOW(A) to FOLLOW(B)

– if A  B and  is in FIRST() then add FOLLOW(A) 
to FOLLOW(B)
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Example

• Compute FOLLOW(E), FOLLOW(PE), 
FOLLOW(TE), FOLLOW(TE')

 E   PE
PE   TE + E | TE
TE   id TE'
TE'  * E 
TE'  id 
TE'  ( E )
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FIRST and FOLLOW Example

• FIRST(F) = FIRST(T) = FIRST(E) = {(, id }

• FIRST(E') = {+, }

• FIRST(T') = {*, }

• FOLLOW(E) = FOLLOW(E') = {), $}

• FOLLOW(T) = FOLLOW(T') = {+,),$}

• FOLLOW(F) = {+, *, ), $}

E  T E'
E' + T E' | 
T  F T'
T' * F T' | 
F  ( E ) | id
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LL(1) Grammars

• Left to right parsers producing a leftmost 
derivation looking ahead by at most 1 
symbol

• Grammar G is LL(1) iff for every two 
productions of the form A  |
– FIRST() and FIRST() are disjoint

– If  is in FIRST() then FIRST() and FOLLOW(A) are 
disjoint (and vice versa)

• Most programming language constructs are 
LL(1) but careful grammar writing is 
required
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LL(1) Predictions Tables

• LL(1) languages can be parsed efficiently 
through the use of a prediction table
– Rows are non-terminals
– Columns are input symbols (terminals)
– Values are productions
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Constructin LL(1) Prediction 
Table
• The following algorithm constructs the LL(1) 

prediction table

• For each production A   in the grammar
– For each terminal a in FIRST(), set M[A,a] = A  
– If  is in FIRST() then for each terminal b in 

FOLLOW(A), set M[A,b] = A   



LL(1) Prediction Table Example

E  T E'
E' + T E' | 
T  F T'
T' * F T' | 
F  ( E ) | id

Id + * ( ) $

E

E' E'   e

T

T'

F

E  T E' E  T E'

E'  + T E' E'  
T  F T' T  F T'

T'   T'  * F T' T'   T'  
F  id F  ( E )



LL(1) Prediction Table Example

• Use the table to find the derivation of
– id + id * id + id

Id + * ( ) $

E

E' E'   e

T

T'

F

E  T E' E  T E'

E'  + T E' E'  
T  F T' T  F T'

T'   T'  * F T' T'   T'  
F  id F  ( E )
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LL(1) Parser Generators

• Given a grammar G, an LL(1) parser 
generator can
– Computer FIRST(A) and FOLLOW(A) for every non-

terminal A in G
– Determine if G is LL(1)
– Construct the prediction table for G
– Create code that parses any string in G and produces 

the parse tree

• In Assignment 2 we will use such a parser 
generator (javacc)
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Summary

• Programming languages can be specified 
with context-free grammars

• Some of these grammars are easy to parse 
and generate a unique parse tree for any 
program

• An LL(1) grammar is one for which a 
leftmost derivation can be done with only 
one symbol of lookahead

• LL(1) parser generators exist and can 
produce efficient parsers given only the 
grammar
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