
Lexical Analysis (Tokenizing)

COMP 3002

School of Computer Science

2

List of Acronyms
• RE - regular expression

• FSM - finite state machine

• NFA - non-deterministic finite automata

• DFA - deterministic finite automata

3

The Structure of a Compiler

syntactic
analyzer

code
generator

program
text

interm.
rep.

machine
code

tokenizer parser
token
stream

4

Purpose of Lexical Analysis
• Converts a character stream into a token

stream

tokenizer
int main(void) {
 for (int i = 0;
 i < 10;
 i++) { ...

5

How the Tokenizer is Used
• Usually the tokenizer is used by the parser,

which calls the getNextToken() function
when it wants another token

• Often the tokenizer also includes a
pushBack() function for putting the token
back (so it can be read again)

tokenizer parser
token

getNextToken()
program

text

6

Other Tokenizing Jobs
• Input reading and buffering

• Macro expansion (C's #define)

• File inclusion (C's #include)

• Stripping out comments

7

Tokens, Patterns, and Lexemes
• A token is a pair

– token name (e.g., VARIABLE)
– token value (e.g., "myCounter")

• A lexeme is a sequence of program
characters that form a token
– (e.g., "myCounter")

• A pattern is a description of the form that
the lexemes of a token may take
– e.g., character strings including A-Z, a-z, 0-9, and _

8

A History Lesson
• Usually tokens are easy to recognize even

without any context, but not always

• A tough example from Fortran 90:

DO 5 I = 1.25
<variable, "DO5I"> <assign> <number,"1.25">

DO 5 I = 1,25
<do> <number, "5"> <variable, "I">
<assign> <number, "1"> <comma> <number, "25">

9

Lexical Errors
• Sometimes the current prefix of the input

stream does not match any pattern
– This is an error and should be logged

• The lexical analyzer may try to continue by
– deleting characters until the input matches a pattern
– deleting the first input character
– adding an input character
– replacing the first input character
– transposing the first two input characters

10

Exercise
• Circle the lexemes in the following

programs

public static void main(String args[]) {
 System.println("Hello World!");
}

float max(float a, float b) {
 return a > b ? a : b;
}

11

Input Buffering
• Lexemes can be long and the pushBack

function requires a mechanism for pushing
them back

• One possible mechanism (suggested in the
textbook) is a double buffer

• When we run off the end of one buffer we
load the next buffer

 return (23); \n }\n public static void

st
ar

t

cu
rr

en
t

12

Tokenizing (so far)
• What a tokenizer does

– reads character input and turns it into tokens

• What a token is
– a token name and a value (usually the lexeme)

• How to read input
– use a double buffer if some lookahead is necessary

• How does the tokenizer recognize tokens?

• How do we specify patterns?

13

Where to Next?
• We need a formal mechanism for defining

the patterns that define tokens

• This mechanism is formal language theory

• Using formal language theory we can make
tokenizers without writing any actual code

14

Strings and Languages

• An alphabet  is a set of symbols

• A string S over an alphabet  is a finite

sequence of symbols in 

• The empty string, denoted , is a string of

length 0

• A language L over is a countable set of

strings over 

15

Examples of Languages

• The empty language L = 

• The language L =  containing only the

empty string

• The set L of all syntactically correct C
programs

• The set L of all valid variable names in Java

• The set L of all grammatically correct
english sentences

16

String Concatenation
• If x and y are strings then the

concatenation of x and y, denoted xy, is the
string formed by appending y to x

• Example
– x = "dog"
– y = "house"
– xy = "doghouse"

• If we treat concatenation as a "product"
then we get exponentiation:
– x2 = "dogdog"
– x3 = "dogdogdog"

17

Operations on Languages
• We can form complex languages from

simple ones using various operations

• Union: L  M (also denoted L | M)
– L  M = { s : s  L or s  M }

• Concatenation
– LM = { st : s  L and t  M }

• Kleene Closure L*
– L* = { Li : i = 0, 1, 2, ... }

• Positive Closure L+
– L* = { Li : i = 1, 2, 3, ... }

18

Some Example
• L = { A,B,C,...Z,a,b,c,...z }

• D = { 0,1,2,3,4,5,6,7,8,9 }

• L  D

• LD

• L4

• L*

• L(L  D)*

• D+

19

Regular Expressions
• Regular expressions provide a notation for

defining languages

• A regular expression r denotes a language

L(r) over a finite alphabet 

• Basics:
–  is a RE and L
– For each symbol a in a is a RE and L(a) = { a }

20

Regular Expression Operators
• Suppose r and s are regular expressions

• Union (choice)
– (r)|(s) denotes L(r)  L(s)

• Concatenation
– (r)(s) denotes L(r) L(s)

• Kleene Closure
– r* denotes (L(r))*

• Parenthesization
– (r) denote L(r)
– Used to enforce specific order of operations

21

Order of Operations in REs
• To avoid too many parentheses, we adopt

the following conventions
– The * operator has the highest level of precedence

and is left associative
– Concatenation has second highest precedence and is

left associative
– The | operator has lowest precedence and is left

associative

22

Binary Examples

• For the alphabet  = { a,b }
– a|b denotes the language { a, b }
– (a|b)(a|b) denotes the langage { aa, ab, ba, bb }

– a* denotes { , a, aa, aaa, aaaa, }

– (a|b)* denotes all possible strings over 
– a|a*b denotes the language { a, b, ab, aab,

aaab, ... }

23

Regular Definitions
• REs can quickly become complicated

• Regular definitions are multiline regular
expressions

• Each line can refer to any of the preceding
lines but not to itself or to subsequent lines

letter_ = A|B|...|Z|a|b|...|z|_
digit = 0|1|2|3|4|5|6|7|8|9
id = letter_(letter_|digit)*

24

Regular Definition Example
• Floating point number example

– Accepts 42, 42.314159, 42.314159E+23, 42E+23,
42E23, ...

digit = 0|1|2|3|4|5|6|7|8|9
digits = digit digit*
optionalFraction = . digits | 
optionalExponent = (E (+|-|) digits) | 
number = digits optionalFraction optionalExponent

25

Exercises
• Write regular definitions for

– All strings of lowercase letters that contain the five
vowels in order

– All strings of lowercase letters in which the letters
are in ascending lexicographic order

– Comments, consisting of a string surrounded by /*
and */ without any intervening */

26

Extension of Regular Expressions
• There are also several time-saving

extensions of REs

• One or more instances
– r+ = rr*

• Zero or one instance
– r? = r|

• Character classes
– [abcdef] = (a|b|c|d|e|f)
– [A-Za-z] = (A|B|C|...|Y|Z|a|b|c|...|y|z)

• Others
– See page 127 of the text for more common RE

shorthands

27

Some Examples

digit = [0-9]
digits = digit+
number = digits (. digits)? (E[+-]? digits)?

letter_ = [A-Za-z_]
digit = [0-9]
variable= letter_ (letter|digit)*

28

Recognizing Tokens
• We now have a notation for patterns that

define tokens

• We want to make these into a tokenizer

• For this, we use the formalism of finite state
machines

29

An FSM for Relational Operators
• relational operators <, >, <=, >=, ==, <>

0 1 2

3

6

4 5

start <

>

=

>

=

7

LE

NE

GE

EQ
= =

LT

GT

30

FSM for Variable Names

letter_ = [A-Za-z_]
digit = [0-9]
variable= letter_ (letter|digit)*

0 1letter

letter or digit

31

FSM for Numbers
• Build the FSM for the following:

digit = [0-9]
digits = digit+
number = digits (. digits)? ((E|e) digits)?

32

NumReader.java
• Look at NumReader.java example

– Implements a token recognizer using a switch
statement

33

The Story So Far
• We can write tokens types as regular

expressions

• We want to convert these REs into
(deterministic) finite automata (DFAs)

• From the DFA we can generate code
– A single while loop containing a large switch

statement
• Each state in S becomes a case

– A table mapping S×→S
• (current state,next symbol)→(new state)

– A hash table mapping S×→S

– Elements of may be grouped into character classes

34

NumReader2.java
• Look at NumReader2.java example

– Implements a tokenizer using a hashtable

35

Automatic Tokenizer Generators
• Generating FSMs by hand from regular

expressions is tedious and error-prone

• Ditto for generating code from FSMs

• Luckily, it can be done automatically

lex

Regular
expressions lex NFA NFA2DFA tokenizer

36

Non-Deterministic Finite
Automata
• An NFA is a finite state machine whose

edges are labelled with subsets of 

• Some edges may be labelled with 

• The same labels may appear on two or
more outgoing edges at a vertex

• An NFA accepts a string s if s defines any
path to any of its accepting states

37

NFA Example
• NFA that accepts apple or ape

1

p

p

p

e 

l e


a

a

start
 

38

NFA Example
• NFA that accepts any binary string whose 4

last value is 1

1 01 01 01start
01

39

From Regular Expression to NFA
• Going from a RE to a NFA with one

accepting state is easy

• 

• a

start

a
start

40

FSM for s

Union
• r|s

FSM for r







start

41

Concatenation
• rs

FSM for s

FSM for r
start

42

Kleene Closure
• r*

FSM for rstart

ɛ

ɛ

43

NFA to DFA
• So far

– We can express token patterns as RE
– We can convert REs to NFA

• NFAs are hard to use
– Given an NFA F and a string s, it is difficult to test if F

accepts s

• Instead, we first convert the NFA into a
deterministic finite automaton
– No  transitions
– No repeated labels on outgoing edges

44

Converting an NFA into a DFA
• Converting an NFA into a DFA is easy but

sometimes expensive

• Suppose the NFA has n states 1,...,n

• Each state of the DFA is labelled with one of
the 2n subsets of {1,...,n}

• The DFA will be in a state whose label
contains i if the NFA could be in state i

• Any DFA state that contains an accepting
state of the NFA is also an accepting state

45

NFA 2 DFA – Sketch of Algorithm
• Step 1 - Remove duplicate edge labels by

using  transitions

a

a a


a

46

NFA 2 DFA
• Step 2: Starting at state 0, start expanding

states
– State i expands into every state reachable from i

using only -transitions
– Create new states, as necessary for the neighbours

of already-expanded states
– Use a lookup table to make sure that each possible

state (subset of {1,...,n}) is created only once

47

Example

11

2

8

3 4 5 6

9 10

p

p

p

e 

l e


0start

• Convert this NFA into a DFA

aa

48

Example
• Convert this NFA into a DFA

1
a|b

3
b

32 4
a|b a|b

49

From REs to a Tokenizer
• We can convert from RE to NFA to DFA

• DFAs are easy to implement
– Using a switch statement or a (hash)table

• For each token type we write a RE

• The lexical analysis generator then creates
a NFA (or DFA) for each token type and
combines them into one big NFA

50

From REs to a Tokenizer
• One giant NFA captures all token types

• Convert this to a DFA
– If any state of the DFA contains an accepting state

for more than 1 token then something is wrong with
the language specification

NFA for token A

NFA for token B

NFA for token C






51

Summary
• The Tokenizer converts the input character

stream into a token stream

• Tokens can be specified using REs

• A software tool can be used to convert the
list of REs into a tokenizer
– Convert each RE to an NFA
– Combine all NFAs into one big NFA
– Convert this NFA into a DFA and the code that

implements this DFA

52

Other Notes
• REs, NFAs, and DFAs are equivalent in

terms of the languages they can define

• Converting from NFA to DFA can be
expensive
– An n-state NFA can result in a 2n state DFA

• None of these are powerful enough to parse
programming languages but are usually
good enough for tokens
– Example: the language { anbn : n = 1,2,3,...} is not

recognizable by a DFA (why?)

	Title of presentation
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52

