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List of Acronyms
• RE - regular expression

• FSM - finite state machine

• NFA - non-deterministic finite automata

• DFA - deterministic finite automata
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Purpose of Lexical Analysis
• Converts a character stream into a token 

stream

tokenizer
int main(void) {
  for (int i = 0; 
       i < 10;
       i++) { ...
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How the Tokenizer is Used
• Usually the tokenizer is used by the parser, 

which calls the getNextToken() function 
when it wants another token

• Often the tokenizer also includes a 
pushBack() function for putting the token 
back (so it can be read again)

tokenizer parser
token

getNextToken()
program

text
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Other Tokenizing Jobs
• Input reading and buffering

• Macro expansion (C's #define)

• File inclusion (C's #include)

• Stripping out comments
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Tokens, Patterns, and Lexemes
• A token is a pair

– token name (e.g., VARIABLE)
– token value (e.g., "myCounter")

• A lexeme is a sequence of program 
characters that form a token 
– (e.g., "myCounter")

• A pattern is a description of the form that 
the lexemes of a token may take
– e.g., character strings including A-Z, a-z, 0-9, and _
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A History Lesson
• Usually tokens are easy to recognize even 

without any context, but not always

• A tough example from Fortran 90:

DO 5 I = 1.25
<variable, "DO5I"> <assign> <number,"1.25">

DO 5 I = 1,25
<do> <number, "5"> <variable, "I"> 
<assign> <number, "1"> <comma> <number, "25">
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Lexical Errors
• Sometimes the current prefix of the input 

stream does not match any pattern
– This is an error and should be logged

• The lexical analyzer may try to continue by
– deleting characters until the input matches a pattern
– deleting the first input character
– adding an input character 
– replacing the first input character
– transposing the first two input characters
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Exercise
• Circle the lexemes in the following 

programs

public static void main(String args[]) {
  System.println("Hello World!");
}

float max(float a, float b) {
  return a > b ? a : b;
}
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Input Buffering
• Lexemes can be long and the pushBack 

function requires a mechanism for pushing 
them back

• One possible mechanism (suggested in the 
textbook) is a double buffer

• When we run off the end of one buffer we 
load the next buffer

 return (23); \n }\n   public static void

st
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t
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t
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Tokenizing (so far)
• What a tokenizer does

– reads character input and turns it into tokens

• What a token is
– a token name and a value (usually the lexeme)

• How to read input
– use a double buffer if some lookahead is necessary

• How does the tokenizer recognize tokens?

• How do we specify patterns?
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Where to Next?
• We need a formal mechanism for defining 

the patterns that define tokens

• This mechanism is formal language theory

• Using formal language theory we can make 
tokenizers without writing any actual code
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Strings and Languages

• An alphabet  is a set of symbols

• A string S over an alphabet  is a finite 

sequence of symbols in 

• The empty string, denoted , is a string of 

length 0

• A language L over is a countable set of 

strings over 



15

Examples of Languages

• The empty language L = 

• The language L =   containing only the 

empty string

• The set L of all syntactically correct C 
programs

• The set L of all valid variable names in Java

• The set L of all grammatically correct 
english sentences



16

String Concatenation
• If x and y are strings then the 

concatenation of x and y, denoted xy, is the 
string formed by appending y to x

• Example
– x = "dog"
– y = "house"
– xy = "doghouse"

• If we treat concatenation as a "product" 
then we get exponentiation:
– x2 = "dogdog"
– x3 = "dogdogdog"
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Operations on Languages
• We can form complex languages from 

simple ones using various operations

• Union: L  M (also denoted L | M)
– L  M = { s : s  L or s  M }

• Concatenation
– LM = { st : s  L and t  M }

• Kleene Closure L* 
– L* = { Li : i = 0, 1, 2, ... }

• Positive Closure L+ 
– L* = { Li : i = 1, 2, 3, ... }
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Some Example
• L = { A,B,C,...Z,a,b,c,...z }

• D = { 0,1,2,3,4,5,6,7,8,9 }

• L  D

• LD

• L4

• L*

• L(L  D)*

• D+
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Regular Expressions
• Regular expressions provide a notation for 

defining languages

• A regular expression r denotes a language 

L(r) over a finite alphabet 

• Basics:
–  is a RE and L
– For each symbol  a in a is a RE and L(a) = { a }
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Regular Expression Operators
• Suppose r and s are regular expressions

• Union (choice)
– (r)|(s) denotes L(r)  L(s)

• Concatenation
– (r)(s) denotes L(r) L(s)

• Kleene Closure
– r* denotes (L(r))*

• Parenthesization
– (r) denote L(r)
– Used to enforce specific order of operations
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Order of Operations in REs
• To avoid too many parentheses, we adopt 

the following conventions
– The * operator has the highest level of precedence 

and is left associative
– Concatenation has second highest precedence and is 

left associative
– The | operator has lowest precedence and is left 

associative
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Binary Examples

• For the alphabet  = { a,b }
– a|b denotes the language { a, b }
– (a|b)(a|b) denotes the langage { aa, ab, ba, bb }

– a* denotes { , a, aa, aaa, aaaa, .... }

– (a|b)* denotes all possible strings over 
– a|a*b denotes the language { a, b, ab, aab, 

aaab, ... }
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Regular Definitions
• REs can quickly become complicated

• Regular definitions are multiline regular 
expressions

• Each line can refer to any of the preceding 
lines but not to itself or to subsequent lines

letter_ = A|B|...|Z|a|b|...|z|_
digit   = 0|1|2|3|4|5|6|7|8|9
id      = letter_(letter_|digit)*
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Regular Definition Example
• Floating point number example

– Accepts 42, 42.314159, 42.314159E+23, 42E+23, 
42E23, ...

digit   = 0|1|2|3|4|5|6|7|8|9
digits  = digit digit*
optionalFraction = . digits | 
optionalExponent = (E (+|-|) digits) | 
number = digits optionalFraction optionalExponent
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Exercises
• Write regular definitions for

– All strings of lowercase letters that contain the five 
vowels in order

– All strings of lowercase letters in which the letters 
are in ascending lexicographic order

– Comments, consisting of a string surrounded by /* 
and */ without any intervening */
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Extension of Regular Expressions
• There are also several time-saving 

extensions of REs

• One or more instances
– r+ = rr*

• Zero or one instance
– r? = r|

• Character classes
– [abcdef] = (a|b|c|d|e|f)
– [A-Za-z] = (A|B|C|...|Y|Z|a|b|c|...|y|z) 

• Others
– See page 127 of the text for more common RE 

shorthands
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Some Examples

digit   = [0-9]
digits  = digit+
number = digits (. digits)? (E[+-]? digits)?

letter_ = [A-Za-z_]
digit   = [0-9]
variable= letter_ (letter|digit)*
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Recognizing Tokens
• We now have a notation for patterns that 

define tokens

• We want to make these into a tokenizer

• For this, we use the formalism of finite state 
machines
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An FSM for Relational Operators
• relational operators <, >, <=, >=, ==, <>

0 1 2

3

6

4 5

start <

>

=

>

=
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NE

GE

EQ
= =

LT

GT
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FSM for Variable Names

letter_ = [A-Za-z_]
digit   = [0-9]
variable= letter_ (letter|digit)*

0 1letter

letter or digit



31

FSM for Numbers
• Build the FSM for the following:

digit   = [0-9]
digits  = digit+
number = digits (. digits)? ((E|e) digits)?
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NumReader.java
• Look at NumReader.java example

– Implements a token recognizer using a switch 
statement



33

The Story So Far
• We can write tokens types as regular 

expressions

• We want to convert these REs into 
(deterministic) finite automata (DFAs)

• From the DFA we can generate code
– A single while loop containing a large switch 

statement
• Each state in S becomes a case

– A table mapping S×→S 
• (current state,next symbol)→(new state)

– A hash table mapping S×→S 

– Elements of may be grouped into character classes
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NumReader2.java
• Look at NumReader2.java example

– Implements a tokenizer using a hashtable
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Automatic Tokenizer Generators
• Generating FSMs by hand from regular 

expressions is tedious and error-prone

• Ditto for generating code from FSMs

• Luckily, it can be done automatically

lex

Regular
expressions lex NFA NFA2DFA tokenizer
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Non-Deterministic Finite 
Automata
• An NFA is a finite state machine whose 

edges are labelled with subsets of  

• Some edges may be labelled with 

• The same labels may appear on two or 
more outgoing edges at a vertex

• An NFA accepts a string s if s defines any 
path to any of its accepting states
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NFA Example
• NFA that accepts apple or ape

1

p

p

p

e 

l e


a

a

start
 
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NFA Example
• NFA that accepts any binary string whose 4 

last value is 1

1 01 01 01start
01
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From Regular Expression to NFA
• Going from a RE to a NFA with one 

accepting state is easy

• 

• a

start

a
start
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FSM for s

Union
• r|s

FSM for r







start
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Concatenation
• rs

FSM for s

FSM for r
start
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Kleene Closure
• r*

FSM for rstart

ɛ

ɛ
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NFA to DFA
• So far

– We can express token patterns as RE
– We can convert REs to NFA

• NFAs are hard to use
– Given an NFA F and a string s, it is difficult to test if F 

accepts s

• Instead, we first convert the NFA into a 
deterministic finite automaton
– No  transitions
– No repeated labels on outgoing edges
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Converting an NFA into a DFA
• Converting an NFA into a DFA is easy but 

sometimes expensive

• Suppose the NFA has n states 1,...,n

• Each state of the DFA is labelled with one of 
the 2n subsets of {1,...,n}

• The DFA will be in a state whose label 
contains i if the NFA could be in state i

• Any DFA state that contains an accepting 
state of the NFA is also an accepting state



45

NFA 2 DFA – Sketch of Algorithm
• Step 1 - Remove duplicate edge labels by 

using  transitions

a

a a


a
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NFA 2 DFA
• Step 2: Starting at state 0, start expanding 

states
– State i expands into every state reachable from i 

using only -transitions
– Create new states, as necessary for the neighbours 

of already-expanded states
– Use a lookup table to make sure that each possible 

state (subset of {1,...,n}) is created only once
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Example

11

2

8

3 4 5 6

9 10

p

p

p

e 

l e


0start

• Convert this NFA into a DFA

aa
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Example
• Convert this NFA into a DFA

1
a|b

3
b

32 4
a|b a|b
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From REs to a Tokenizer
• We can convert from RE to NFA to DFA

• DFAs are easy to implement
– Using a switch statement or a (hash)table

• For each token type we write a RE

• The lexical analysis generator then creates 
a NFA (or DFA) for each token type and 
combines them into one big NFA
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From REs to a Tokenizer
• One giant NFA captures all token types

• Convert this to a DFA
– If any state of the DFA contains an accepting state 

for more than 1 token then something is wrong with 
the language specification

NFA for token A

NFA for token B

NFA for token C





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Summary
• The Tokenizer converts the input character 

stream into a token stream

• Tokens can be specified using REs

• A software tool can be used to convert the 
list of REs into a tokenizer
– Convert each RE to an NFA
– Combine all NFAs into one big NFA
– Convert this NFA into a DFA and the code that 

implements this DFA
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Other Notes
• REs, NFAs, and DFAs are equivalent in 

terms of the languages they can define

• Converting from NFA to DFA can be 
expensive
– An n-state NFA can result in a 2n state DFA

• None of these are powerful enough to parse 
programming languages but are usually 
good enough for tokens
– Example: the language { anbn : n = 1,2,3,...} is not 

recognizable by a DFA (why?)
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