Lexical Analysis (Tokenizing)

COMP 3002
School of Computer Science

List of Acronyms

- RE regular expression
- FSM finite state machine
- NFA non-deterministic finite automata
- DFA deterministic finite automata

The Structure of a Compiler

Purpose of Lexical Analysis

 Converts a character stream into a token stream

How the Tokenizer is Used

- Usually the tokenizer is used by the parser, which calls the getNextToken() function when it wants another token
- Often the tokenizer also includes a pushBack() function for putting the token back (so it can be read again)

Other Tokenizing Jobs

- Input reading and buffering
- Macro expansion (C's #define)
- File inclusion (C's #include)
- Stripping out comments

Tokens, Patterns, and Lexemes

- A token is a pair
 - token name (e.g., VARIABLE)
 - token value (e.g., "myCounter")
- A lexeme is a sequence of program characters that form a token
 - (e.g., "myCounter")
- A pattern is a description of the form that the lexemes of a token may take
 - e.g., character strings including A-Z, a-z, 0-9, and _

A History Lesson

- Usually tokens are easy to recognize even without any context, but not always
- A tough example from Fortran 90:

```
D0 5 I = 1.25
<variable, "D05I"> <assign> <number, "1.25">
```

```
Carleton
UNIVERSITY
Canada's Capital University
```

```
D0 5 I = 1,25
<do> <number, "5"> <variable, "I">
<assign> <number, "1"> <comma> <number, "25">
```

Lexical Errors

- Sometimes the current prefix of the input stream does not match any pattern
 - This is an error and should be logged
- The lexical analyzer may try to continue by
 - deleting characters until the input matches a pattern
 - deleting the first input character
 - adding an input character
 - replacing the first input character
 - transposing the first two input characters

Exercise

 Circle the lexemes in the following programs

```
public static void main(String args[]) {
   System.println("Hello World!");
}
```

```
Carleton
UNIVERSITY
Canada's Capital University
```

```
float max(float a, float b) {
  return a > b ? a : b;
}
```

Input Buffering

- Lexemes can be long and the pushBack function requires a mechanism for pushing them back
- One possible mechanism (suggested in the textbook) is a double buffer
- When we run off the end of one buffer we load the next buffer

return (23); \n }\n public static void

Tokenizing (so far)

- What a tokenizer does
 - reads character input and turns it into tokens
- What a token is
 - a token name and a value (usually the lexeme)
- How to read input
 - use a double buffer if some lookahead is necessary
- How does the tokenizer recognize tokens?
- How do we specify patterns?

Where to Next?

- We need a formal mechanism for defining the patterns that define tokens
- This mechanism is formal language theory
- Using formal language theory we can make tokenizers without writing any actual code

Strings and Languages

- An alphabet Σ is a set of symbols
- A string S over an alphabet Σ is a finite sequence of symbols in Σ
- The *empty string*, denoted ϵ , is a string of length 0
- A *language* L over Σ is a countable set of strings over Σ

Examples of Languages

- The empty language $L = \emptyset$
- The language $L = \{\epsilon\}$ containing only the empty string
- The set L of all syntactically correct C programs
- The set L of all valid variable names in Java
- The set L of all grammatically correct english sentences

String Concatenation

- If x and y are strings then the concatenation of x and y, denoted xy, is the string formed by appending y to x
- Example
 - x = "dog"
 - -y = "house"
 - -xy = "doghouse"
- If we treat concatenation as a "product" then we get exponentiation:
 - $-x^2 = "dogdog"$
 - $-x^3 = "dogdogdog"$

Operations on Languages

- We can form complex languages from simple ones using various operations
- Union: $L \cup M$ (also denoted $L \mid M$)

$$-L \cup M = \{ s : s \in L \text{ or } s \in M \}$$

Concatenation

$$-LM = \{ st : s \in L \text{ and } t \in M \}$$

Kleene Closure L*

$$-L^* = \{ L^i : i = 0, 1, 2, ... \}$$

Positive Closure L⁺

$$-L^* = \{ L^i : i = 1, 2, 3, ... \}$$

Some Example

- *L* = { A,B,C,...Z,a,b,c,...z }
- $D = \{ 0,1,2,3,4,5,6,7,8,9 \}$
- $L \cup D$
- LD
- L⁴
- <u>L</u>*
- $L(L \cup D)^*$
- D+

Regular Expressions

- Regular expressions provide a notation for defining languages
- A regular expression r denotes a language L(r) over a finite alphabet Σ
- Basics:
 - ε is a RE and $L(\varepsilon) = \{ \varepsilon \}$
 - For each symbol a in Σ , a is a RE and $L(a) = \{a\}$

Regular Expression Operators

- Suppose r and s are regular expressions
- Union (choice)
 - (r)|(s) denotes $L(r) \cup L(s)$
- Concatenation
 - (r)(s) denotes L(r) L(s)
- Kleene Closure
 - r* denotes $(L(r))^*$
- Parenthesization
 - (r) denote L(r)
 - Used to enforce specific order of operations

Order of Operations in REs

- To avoid too many parentheses, we adopt the following conventions
 - The * operator has the highest level of precedence and is left associative
 - Concatenation has second highest precedence and is left associative
 - The | operator has lowest precedence and is left associative

Binary Examples

- For the alphabet $\Sigma = \{ a,b \}$
 - a|b denotes the language { a, b }
 - (a|b)(a|b) denotes the langage { aa, ab, ba, bb }
 - a* denotes $\{ \epsilon, a, aa, aaa, aaaa, \}$
 - (a|b)* denotes all possible strings over Σ
 - a|a*b denotes the language { a, b, ab, aab, aaab, ... }

Regular Definitions

- REs can quickly become complicated
- Regular definitions are multiline regular expressions
- Each line can refer to any of the preceding lines but not to itself or to subsequent lines

```
Carleton
UNIVERSITY
Canada's Capital University
```

```
letter_ = A|B|...|Z|a|b|...|z|_
digit = 0|1|2|3|4|5|6|7|8|9
id = letter_(letter_|digit)*
```

Regular Definition Example

- Floating point number example
 - Accepts 42, 42.314159, 42.314159E+23, 42E+23, 42E23, ...

```
digit = 0|1|2|3|4|5|6|7|8|9
digits = digit digit*
optionalFraction = . digits | \epsilon
optionalExponent = (E (+|-|\epsilon) digits) | \epsilon
number = digits optionalFraction optionalExponent
```


Exercises

- Write regular definitions for
 - All strings of lowercase letters that contain the five vowels in order
 - All strings of lowercase letters in which the letters are in ascending lexicographic order
 - Comments, consisting of a string surrounded by /* and */ without any intervening */

Extension of Regular Expressions

- There are also several time-saving extensions of REs
- One or more instances

$$- r + = r r^*$$

Zero or one instance

$$- r? = r | \varepsilon$$

- Character classes
 - [abcdef] = (a|b|c|d|e|f)
 - [A-Za-z] = (A|B|C|...|Y|Z|a|b|c|...|y|z)
- **Others**
 - See page 127 of the text for more common RE

Some Examples

```
digit = [0-9]
digits = digit+
number = digits (. digits)? (E[+-]? digits)?
```

```
letter_ = [A-Za-z_]
digit = [0-9]
variable= letter_ (letter|digit)*
```


Recognizing Tokens

- We now have a notation for patterns that define tokens
- We want to make these into a tokenizer
- For this, we use the formalism of finite state machines

An FSM for Relational Operators

relational operators <, >, <=, >=, ==, <>

FSM for Variable Names

```
letter_ = [A-Za-z_]
digit = [0-9]
variable= letter_ (letter|digit)*
```


FSM for Numbers

Build the FSM for the following:

```
digit = [0-9]
digits = digit+
number = digits (. digits)? ((E|e) digits)?
```


NumReader.java

- Look at NumReader.java example
 - Implements a token recognizer using a switch statement

The Story So Far

- We can write tokens types as regular expressions
- We want to convert these REs into (deterministic) finite automata (DFAs)
- From the DFA we can generate code
 - A single while loop containing a large switch statement
 - Each state in S becomes a case
 - A table mapping $S \times \Sigma \rightarrow S$
 - (current state,next symbol)→(new state)
 - A hash table mapping $S \times \Sigma \rightarrow S$
 - Elements of Σ may be grouped into character classes

NumReader2.java

- Look at NumReader2.java example
 - Implements a tokenizer using a hashtable

Automatic Tokenizer Generators

- Generating FSMs by hand from regular expressions is tedious and error-prone
- Ditto for generating code from FSMs
- Luckily, it can be done automatically

Non-Deterministic Finite Automata

- An NFA is a finite state machine whose edges are labelled with subsets of Σ
- Some edges may be labelled with ε
- The same labels may appear on two or more outgoing edges at a vertex
- An NFA accepts a string s if s defines any path to any of its accepting states

NFA Example

NFA that accepts apple or ape

NFA Example

 NFA that accepts any binary string whose 4 last value is 1

From Regular Expression to NFA

Going from a RE to a NFA with one accepting state is easy

Union

Concatenation

rs

Kleene Closure

r*

NFA to DFA

- So far
 - We can express token patterns as RE
 - We can convert REs to NFA
- NFAs are hard to use
 - Given an NFA F and a string s, it is difficult to test if F accepts s
- Instead, we first convert the NFA into a deterministic finite automaton
 - No ε transitions
 - No repeated labels on outgoing edges

Converting an NFA into a DFA

- Converting an NFA into a DFA is easy but sometimes expensive
- Suppose the NFA has n states 1,...,n
- Each state of the DFA is labelled with one of the 2ⁿ subsets of {1,...,n}
- The DFA will be in a state whose label contains i if the NFA could be in state i
- Any DFA state that contains an accepting state of the NFA is also an accepting state

NFA 2 DFA - Sketch of Algorithm

• Step 1 - Remove duplicate edge labels by using ϵ transitions

NFA 2 DFA

- Step 2: Starting at state 0, start expanding states
 - State i expands into every state reachable from i using only ϵ -transitions
 - Create new states, as necessary for the neighbours of already-expanded states
 - Use a lookup table to make sure that each possible state (subset of {1,...,n}) is created only once

Example

Convert this NFA into a DFA

Example

Convert this NFA into a DFA

From REs to a Tokenizer

- We can convert from RE to NFA to DFA
- DFAs are easy to implement
 - Using a switch statement or a (hash)table
- For each token type we write a RE
- The lexical analysis generator then creates a NFA (or DFA) for each token type and combines them into one big NFA

From REs to a Tokenizer

- One giant NFA captures all token types
- Convert this to a DFA
 - If any state of the DFA contains an accepting state for more than 1 token then something is wrong with the language specification

Summary

- The Tokenizer converts the input character stream into a token stream
- Tokens can be specified using REs
- A software tool can be used to convert the list of REs into a tokenizer
 - Convert each RE to an NFA
 - Combine all NFAs into one big NFA
 - Convert this NFA into a DFA and the code that implements this DFA

Other Notes

- REs, NFAs, and DFAs are equivalent in terms of the languages they can define
- Converting from NFA to DFA can be expensive
 - An n-state NFA can result in a 2ⁿ state DFA
- None of these are powerful enough to parse programming languages but are usually good enough for tokens
 - Example: the language $\{a^nb^n: n=1,2,3,...\}$ is not recognizable by a DFA (why?)

