
COMP 3002: Compiler Construction

Pat Morin

School of Computer Science

2

Course Information

• Instructor: Pat Morin
morin@scs.carleton.ca
– Just "Pat"

• Office Hours: Tuesdays 9:00-10:00, 13:30-
14:30

• Webpage:
– http://cg.scs.carleton.ca/~morin/teaching/3002/
– Contains all information related to the course

• Texbook (not compulsory):
– Alfred V. Aho, Monica S. Lam, Ravi Sethi, and Jeffrey

D. Ullman, Compilers: Principles, Techniques, &
Tools. Second edition, Addison-Wesley, 2007.

http://cg.scs.carleton.ca/~morin/teaching/3002/

3

Course Information

• Grading Scheme:
– Assignments 4 * 20% = 80%
– End-of-term exam: 20%

• Grading:
– Assignments are graded by how well they work, not

how much work you put into them
– A buggy compiler is worse than a missing feature

• Collaboration:
– Students may discuss assignments, but when it

comes time to write code they should do so on their
own. No student should ever show another student
their code.

4

Course Information

• Languages and Tools:
– Programming in Java
– SSCC parser generator
– Jasmin JVM assembler

• Environment
– Examples will be compiled under Linux on the

command line
– I/O will be through System.in/System.out
– Assignments will generate command line tools

5

Definition of a Compiler

• What is a compiler?
– Input: text in language A
– Output: text in language B

• In this course, A is a programming language
and B is a computer (machine) language
– Programming languages: Java, C, C++, C#, Eiffel,

Lisp, Pascal, Haskell, ...
– Machine languages: i386, x86_64, PPC, JVM, ...

6

Structure of a Compiler

• Compilation usually works in (at least) two
steps
– Syntax analysis (tokenization and parsing)
– Code generation and optimization

• Between the two is an intermediate
representation
– Sometimes called a parse tree or pseudo instructions

syntactic
analyzer

code
generator

program
text

interm.
rep.

machine
code

7

Syntax Analysis

• Syntax analysis has two parts
– tokenization and parsing

syntactic
analyzer

code
generator

program
text

interm.
rep.

machine
code

tokenizer parser
token
stream

8

Tokenization

• Converts a character stream into a token
stream

tokenizer

int main(void) {
 for (int i = 0;
 i < 10;
 i++) { ...

9

Parsing

• Converts a token stream into an
intermediate representation
– Captures the meaning (instead of text) of the

program

token stream

parse tree

parser

10

Compiler Structure

• This structure allows us to reuse compiler
components
– By writing n syntax analyzers and m code generators

we get a nm compilers

C parser

Java parser

Eiffel parser

Pascal parser

interm. rep.
(parse tree)

i386 code gen.

PPC code gen.

ARM code gen.

Code Generation

• Code generation and optimization is the
really hard part (to do well)

syntactic
analyzer

code
generator

machine
code

program
text parse tree

12

Code Generation

• Code generation can be done in several
phases
– Machine independent optimizations optimize code,

without making use of machine-dependent details
– Basic code generation makes no attempt to optimize

code
– Machine dependent optimizations optimize code for a

specific machine architecture
– Can be several iterations of each kind of optimization

machine
indep. opts.

basic
code gen.

machine
dep. opts.

interm.
rep. 1

interm.
rep. 2

machine
code

13

A Brief History of Compiler
Construction
• 1945-1960: Code generation

• 1960-1975: Parsing

• 1975-Present
– Code optimization
– Programming language design
– New programming paradigms

14

Why Study Compilers?

• A great success story from theoretical
computer science

• You may have to write a compiler or
interpreter some day

• Parsers appear in a lot of applications

• Translators (file converters) are often
required

• Code optimization is still a challenging and
active field of research

15

Why Study Compilers?

• Understanding compiler optimization can
improve a programmer's code writing skills

• A programmer will eventually run into a
compiler bug, limitation, or "quirk"
– understanding compilers will help understand what is

wrong

• And many more reasons...

http://xkcd.com/371/

	Title of presentation
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15

