
CarletonWide_Tag_K_186

Static Checking
and Intermediate Code Generation

Pat Morin

COMP 3002

2

CarletonWide_Tag_K_186

Parse tree representation

Static Checking and Intermediate
Code Generation

Parser
Static

Checker

Intermediate
Code

Generator

Intermediate
Code

Generator

3

CarletonWide_Tag_K_186

Why Static Checking?
• Parsing finds syntactic errors

– An input that can't be derived from the grammar

• Static checking finds semantic errors
– Calling a function with the wrong number/kind of

arguments
– Applying operators to the wrong kinds of arguments
– Using undeclared variables
– Warnings about common errors

• if (a = b) { ... }
– Invalid conditions (not boolean) in conditionals
– Instantiation of virtual classes
– inappropriate instruction

• return, break, continue used in wrong place
– ...

4

CarletonWide_Tag_K_186

Why Static Checking?
• Parsing finds syntactic errors

– An input that can't be derived from the grammar

• Static checking finds semantic errors
– Calling a function with the wrong number/kind of

arguments
– Applying operators to the wrong kinds of arguments
– Using undeclared variables
– Warnings about common errors

• if (a = b) { ... }
– Invalid conditions (not boolean) in conditionals
– Instantiation of virtual classes
– inappropriate instruction

• return, break, continue used in wrong place

• Typechecking errors

5

CarletonWide_Tag_K_186

The Need for Type Inference
• We want to generate machine code

• Memory layout
– Different data types have different sizes

• In C, char, short, int, long, float, double usually
have different sizes

• Need to allocate different amounts of memory for
different types

• Choice of instructions
– Machine instructions are different for different types

• add (for i386 ints)
• fadd (for i386 floats)

6

CarletonWide_Tag_K_186

Type Checking
• One important kind of static checking is

type checking
– Do operators match their operands?
– Do types of variables match the values assigned to

them
– Do function parameters match the function

declarations
– Have called function and variable names been

declared?

• Not all languages can be completely type
checked

• All compiled languages must be at least
partially type checked

7

CarletonWide_Tag_K_186

Type Checking (Cont'd)
• Type checking can be done bottom up

using the parse tree

• For convenience, we may create one or
more pseudo-types for error handling
purposes
– Error type can be generated when a type checking

error occurs
• e.g., adding a number and a string

– Unknown type can be generated when the type of an
expression is unknown

• e.g., an undeclared variable

8

CarletonWide_Tag_K_186

Type Checking Operators
• For each operator, create a table

– TypeA op TypeB = TypeC

• This allows us to assign a type to an
operation if we know the types of its
operands

+ String Number Boolean Error

String String String String String

Number String Number Error Number

Boolean String Error Error Boolean

Error String Number Boolean Error

9

CarletonWide_Tag_K_186

Type Checking Function Calls
• To type-check function calls we need to

– Check that the arguments to a function match the
function's declaration

• The return type of a function call is
specified by its declaration

10

CarletonWide_Tag_K_186

Determining Types of Constants
• Determining the types of constants is

usually done by the tokenizer

• The type of a constant determines the type
of the node in the parse tree

11

CarletonWide_Tag_K_186

Determining the Types of
Variables
• To determine the type of a variable, we

need to keep track of the current
environment.

• Usually, an environment is a stack of
frames, where each frame maps variable
names onto types
– Starting a new code block or new function definition

creates a new frame
– Closing a code block pops a frame
– Declaring a variable or function adds a new mapping

to the current frame

12

CarletonWide_Tag_K_186

Environment Example
• Show the environment at lines 0, 2, 4, 6,

and 8
 0
 1 int x, y;
 2
 3 if (x > y) {
 4 int p = x * y;
 5 } else {
 6 int q = x + y;
 7 }
 8
 9

13

CarletonWide_Tag_K_186

Object-Oriented Languages
• Object-oriented languages are a little more

complicated

• In addition to the usual environment, there
is an environment containing all the
object's variables and methods

• And objects inherit environments from their
superclasses.

• Typically use two environments, one for the
object and one usual environment
– The object environments are organized according to

the inheritance tree

14

CarletonWide_Tag_K_186

OO Environment Examples

class Book {
 String title;
};

class Novel
 extends Book {
 String author;
}

class Collection
 extends Book {
 String editor;
}

Book
title -> String

Novel
author -> String

Collection
editor -> String

15

CarletonWide_Tag_K_186

OO Type Inference
• To identify the type of a variable, we

usually
– Look first in the usual environment
– Next look in the object environment

• Many OO languages provide a method of
scope resolution

class Book {
 String title;

 public Book(String title) {
 this.title = title;
 }
}

16

CarletonWide_Tag_K_186

Scope Resolution (C++ style)

class Book {
 String title;
}

class Collection extends Book {
 String title;

 Collection (String title) {
 this.title = title;
 Book::title = title + " (collected works)";
 }
}

17

CarletonWide_Tag_K_186

Multiple Inheritance

• Object environment becomes more
complex

Person
name -> String

Musician
instruments -> String[]

Worker
employer -> String
salary -> int

WorkingMusician

18

CarletonWide_Tag_K_186

Typechecking Return Values
• Functions should only return values of the

correct type

• This is easily checked by introducing a
pseudovariable __retval to the function's
environment whose type is the function's
return type

• Return statements should check that the
returned value matches the type of __retval

program

function
name=dumb
rettype=int
param1=int y

=decl
int y

y x

return

y

function
name=main
rettype=int

decl
double j

fncall
name=dumb

10

decl
double d

double d;

int dumb(int x)
{
 int y;
 y = x;
 return y
}

int main()
{
 double j;
 j = dumb(10);
}

20

CarletonWide_Tag_K_186

Type Checking Summary
• A type checker includes

– Rules for deriving the types of operators given the
types of their operands

– Mapping from constant tokens onto types
– A mechanism (environments) for matching variables

and function names with their declarations to
determine their type

• The type inference mechanism gets reused
during code generation

21

CarletonWide_Tag_K_186

Other Static Checks
• A variety of other miscellaneous static

checks can be performed
– Check for return statements outside of a function
– Check for case statements outside of a switch

statement
– Check for duplicate cases in a case statement
– Check for break or continue statements outside of

any loop
– Check for goto statements that jump to undefined

labels
– Check for goto statements that jump to labels not in

scope

• Most such checks can be done using 1 or 2
traversals of (part of) the parse tree

22

CarletonWide_Tag_K_186

Intermediate Code Generation
• A compiler may have several levels of

intermediate code
– High level intermediate code is simpler
– Low level intermediate code is closer to machine

code

• The choice of intermediate representations
varies between compilers
– Parse tree
– Assembly-like language (e.g., 3-address codes, and

virtual stack machines)
– High level programming language (e.g., C)

23

CarletonWide_Tag_K_186

Parse DAGs
• The output of a parser is usually a parse

tree

• Often, this can be improved into a more
concise and meaningful directed acyclic
graph (DAG)

24

CarletonWide_Tag_K_186

Parse DAGs

a

a

b c

-

b c

- d

**

+

+

a

b c

- d

**

+

+

25

CarletonWide_Tag_K_186

Constructing a Parse Dag
• From a parse tree we can construct a parse

DAG using a hash table

• Do a post-order traversal of the parse tree:
– When encountering a new identifier (leaf node) add it

to the hash table, keyed by its name
– When encountering a new subexpression (internal

node) add a new key to the hash table that contains
the key of the left child, the operator name, and the
key of the right child.

– Never add the same key to the hash table twice (just
point to the existing nodes instead)

• This is most commonly done for simple
expressions

26

CarletonWide_Tag_K_186

Parse DAG Exercises
• Construct the parse DAG for

– (x+y)-((x+y)*(x-y))
– ((x1-x2)*(x1-x2))+((y1-y2)*(y1-y2))

• Construct a parse DAG of size n that
represents a parse tree of size 2n

• How do parse DAGs interact with operators
like ++ and --?

27

CarletonWide_Tag_K_186

Directed Acyclic Graphs
• DAG - directed graph with no cycles

• DAGs can represent dependencies between
items

• Reversing all the edges of a DAG gives
another DAG

28

CarletonWide_Tag_K_186

Topological Sort
• Processes the nodes of a DAG in order

– Node i is not processed until all nodes j with edges
from j to i have been processed

For each i indeg(i) <- in-degree(i)

Q <- all nodes with no outgoing edges

while Q is not empty
i = Q.dequeue()
process(i)
for each edge i->j

indeg(j) <- indeg(j) - 1
if (indeg(j) = 0)
 Q.enqueue(j)

29

CarletonWide_Tag_K_186

Topological Sort Example

30

CarletonWide_Tag_K_186

Two Types of Intermediate
Representations
• 3-address codes:

– Each instruction operates on up to 3 addresses
– An address can be a name, a constant, a label, or a

compiler generated temporary variable

• Virtual stack machine
– We can push and pop items from a stack
– Various operators operate on the top few items of

the stack and leave the result of the operation on the
top of the stack

• These may be local to individual function
definitions

31

CarletonWide_Tag_K_186

3-Address Codes for Simple
Expressions
• Traverse the parse tree (or DAG) and assign

temporary names to the internal nodes

• Traverse the tree in post-order generating
the instructions

a

b c

- (t1) d

* (t4)* (t2)

+ (t5)

+ (t3)

t1 = b – c
t2 = a * t1
t3 = a * t2
t4 = t1 * d
t5 = t3 * t4

32

CarletonWide_Tag_K_186

3-Address Code Examples
• Generate the 3-address codes for this parse

tree:

a

a

b c

-

b c

- d

**

+

+

33

CarletonWide_Tag_K_186

Virtual Stack Machine for Simple
Expressions
• Traverse the parse tree in post-order,

making sure that each node leaves its
return value on the stack

push a [a]
push a [a,a]
push b [a,a,b]
push c [a,a,b,c]
subtract [a,a,b-c]
multiply [a,a*(b-c)]
add [a+a*(b-c)]
push b [a+a*(b-c),b]
push c [a+a*(b-c),b,c]
subtract [a+a*(b-c),b-c]
push d [a+a*(b-c),b-c,d]
multiply [a+a*(b-c),(b-c)*d]
add [a+a*(b-c)+(b-c)*d]

a

a

b c

-

b c

- d

**

+

+

34

CarletonWide_Tag_K_186

Conditional Statements
• Conditional statements use conditional and

unconditional jump instructions

a x b

=

x a

=

b

if

<
cond then else

3AI
 t1 = a < b
 if t1 then L1 else L2
L1: x = a
 jump L3
L2: x = b
L3:

VSM
 push a
 push b
 lessthan
 push L2
 jumpif
L1: push a
 pop x
 push L3
 jump
L2: push b
 pop x
L3:

35

CarletonWide_Tag_K_186

If-then-elsif-else statements
• Generate 3AI and VSM code for the

following parse tree

a x 0

=

x -1

=

b

if

<

cond then else

a b

>

elsif

x +1

=

then

36

CarletonWide_Tag_K_186

Looping
• Looping can be done using conditional and

unconditional jumps

• Exercise: Write the 3AI and VSM code for
the following parse tree:

a

a 1

+a

=

b

while

<
cond block

37

CarletonWide_Tag_K_186

Switch Statements
• Switch statements, like those in C, C++,

and Java

• For this, we introduce new 3-address
instruction
– 3AI: case A B : “if A is true then goto label b”
– VSM: case (A and B are the top two stack items)

• This instruction is treated as a candidate for
special treatment during the code
generation phase

38

CarletonWide_Tag_K_186

Function Calls
• In 3-address codes

– Function arguments are passed using the param
instruction

– Functions are called using the call instruction
– Return values are returned using the return

instruction

• In a virtual stack machine
– Function arguments are just pushed onto a stack
– Functions are called using the call instruction
– Return values are left on the stack
– A function should leave only its parameters and

return value on the stack when it returns

39

CarletonWide_Tag_K_186

Function Calls Example

int ack(n,m) {
 int x;
 ...
 return x;
}

{
 ...
 r = ack(d, d+4)
 ...
}

ack:
 ...
 return x

...
 param d
 t1 = d + 4
 param t1
 t2 = call ack
 r = t2

ack:
 ...
 push x
 return

...
 push d
 push d
 push 4
 add
 call ack
 pop r

40

CarletonWide_Tag_K_186

Where Do We Go From Here?
• After generating intermediate code there

are a few options
– We can optimize the intermediate code
– We can generate machine code

• Challenges
– To optimize intermediate representation code we

need to reason about it
• But this leads to undecidable problems

– To generate code we need to manage storage
• VSM hides this by giving us an infinite stack
• 3AI hides this by giving us an infinite number of

temporary variables

	Title of presentation
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40

