
The Gnu Compiler Collection
(GCC)

COMP 3002

2

Outline

• History

• Capabilities

• Design
– Parsing
– Intermediate representations
– Code generation

• Additional tools

3

Sometimes a few of the users try to hold total power
over all the rest. For example, in 1984, a few users at
the MIT AI lab decided to seize power by changing the
operator password on the Twenex system and keeping
it secret from everyone else. (I was able to thwart this
coup and give power back to the users by patching the
kernel, but I wouldn't know how to do that in Unix.)

However, occasionally the rulers do tell someone.
Under the usual `su' mechanism, once someone learns
the root password who sympathizes with the ordinary
users, he or she can tell the rest. The "wheel group"
feature would make this impossible, and thus cement
the power of the rulers.

I'm on the side of the masses, not that of the rulers. If
you are used to supporting the bosses and sysadmins
in whatever they do, you might find this idea strange at
first.

4

History

• The Free Software Foundation
– Non-profit corporation
– Founded in 1985 by Richard Stallman (RMS)
– Initially founded to support the GNU Project

• GNU Project
– Goal: to develop “a sufficient body of free software

[…] to get along without any software that is not
free.”

– GNU Operating System
• First released in 1992 with a Linux kernel
• Debian GNU/Hurd (available in unstable)

– Recent developments: GNOME and Gnash
– Needed development tools to get started

5

RMS

xkcd.com

6

Ancient History

• Richard Stallman started GCC (1985)
– Extended an existing Pastel compiler

• Rewritten in C by Stallman and Len Tower
(1987)
– Became the compiler for the GNU Project

• Development supervised by the Free
Software Foundation (FSF)

• First stable release in 1991 GCC 1.x

7

The EGCS Project

• From 1992-1997, official GCC code was
carefully controlled by FSF
– Getting changes submitted was frustrating for many

• In 1997, EGCS merged several experiment
forks of GCC
– Included g77 (Fortran), PGCC (Pentium-optimized

GCC), C++ improvements, new architectures and
operating systems

• In 1999, EGCS became the official GCC 2.95
compiler

8

GCC Today (GCC 4.4)

• Architectures
– Alpha, ARM, Atmel, AVR, Blackfin, HC12, H8/300, IA-

32, (x86), x86-64, IA-64, Motorola, 68000, MIPS, PA-
RISC, PDP-11, PowerPC, R8C/M16C/M32C, SPU,
System/390/zSeries, SuperH, SPARC, VAX, A29K,
ARC, ETRAX CRIS, D30V, DSP16xx, FR-30, FR-V, Intel
i960, IP2000, M32R, 68HC11, MCORE, MMIX,
MN10200, MN10300, Motorola 88000, NS32K, ROMP,
and more

• Non FSF
– Cortus APS3, D10V, LatticeMico32, MeP, Motorola

6809, MicroBlaze, MSP430, Nios II and Nios,
OpenRISC 1200, PDP-10, TIGCC (m68k variant),
Z8000, PIC24/dsPIC, NEC SX architecture[18]

9

GCC Today

• Languages (standard)
– C (gcc), C++ (g++), Java (gcj), Ada (GNAT),

Objective-C (gobjc), Objective-C++ (gobjc++),
Fortran (gfortran)

• Non-Standard
– Modula-2, Modula-3, Pascal (gpc), PL/I, D (gdc),

Mercury, VHDL (ghdl).[15] A popular parallel
language extension, OpenMP

10

Structure

• gcc is a driver program
– interprets arguments
– decides which language compiler to

use for each input file
– runs the assembler on outputs
– runs the linker on object files

a.c

a.asm

a.o

a(.exe)

C compiler

assember

linkerC std library
linker

11

GCC Language Compilers

• All language compilers
– Read source code
– Output assembly code

• Language compilers have different front
ends
– Each front end parses input and produces an

abstract syntax tree

• AST is converted to a common middle-end
format
– GENERIC
– GIMPLE

12

GCC Front Ends

• All GCC front ends are currently hand-coded
recursive descent parsers
– (Version 2 of the C compiler was based on a bison

grammar)

• C, C++, and Java front ends produce
GIMPLE directly

• Other front ends convert AST into GENERIC

source code

GENERICAST?

GIMPLE RTL

language indep.
architecture indep.

13

GENERIC

• A standardized form of abstract syntax tree
– Types: offset_type, enumeral_type, boolean_type,

char_type, integer_type, real_type, reference_type, ...
– Language constructs: identifier_node, block,
– Constants: integer_cst, real_cst, vector_cst, …
– Declarations: function_decl, label_decl, field_decl,..
– References: component_ref, indirect_ref,

array_ref,...
– Expressions: compound_expr, modify_expr,

cond_expr, plus_expr, mul_expr, convert_expr, …

14

GENERIC

• GENERIC is a useful standard intermediate
representation

• Expressions can be too complicated for
easy optimization

• GENERIC trees are gimplified into GIMPLE
– GIMPLE expressions are three address codes
– More complicated expressions generate temporary

variables

15

GIMPLE

• Grammar and Example
– gimple.g
– gimple.eg

16

Middle-end Optimizations

• GIMPLE code gets optimized
– dead code elimination
– partial redundancy elimination
– global value numbering
– sparse-conditional constant propagation
– Loop optimization
– Jump threading (control-flow optimization)
– Common subexpression elimination
– Instruction scheduling (reordering)

17

RTL

• Register transfer language (RTL)
– A Scheme-like language based on virtual registers

• Initial RTL is generated with hints about the
target machine

• RTL is refined through many (58) passes

• Final passes use target machine registers
and instructions

• From there, conversion to machine-specific
assembly language is easy

18

RTL

• gcc -fdump-tree-all -fdump-rtl-all -S test.c

• less `ls -c test.c.???t*`

19

Finishing Up

• Finally, assembly-language output is
assembled into an object

• gcc runs the linker on all object files and C
libraries to produce an executable file

20

Building GCC

• The bootstrapping process:
– Build tools necessary to build the compiler.
– Perform a 3-stage bootstrap of the compiler.
• Includes building three times the target tools for

use by the compiler such as binutils (bfd, binutils,
gas, gprof, ld, and opcodes)

– Perform a comparison test of the stage2 and stage3
compilers.

– Build runtime libraries using the stage3 compiler
from the previous step.

C

C

x86gcc

C

i386

i386

C

x86

x86gcc1

C

C

x86gcc

C

x86

x86sys

C

x86

x86gcc2

21

Summary

• GCC
– a real open-source success story
– libre and gratis
– the world's most versatile compiler
– production strength
– gcc can make or break a hardware platform

• Compiling to GIMPLE is not much work
– Offers a quick way to make an optimizing compiler

	Title of presentation
	Heading of presentation
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21

