Want to Write a Compiler?

Pat Morin
COMP 3002

M Carleton

UNIVERSITY
Canada’s Capital University

What is a Compiler?
* From Day 1:

— A compiler is a program that translates
— from a source language S

— into a target language T

— while preserving semantics

e Often (but not always)

— Sis a programming language
Carleton — T is a machine language
w

UNIVERSITY

Canada’s Capital University

Want to Write a Compiler?

A compiler has 3 main parameter

— Source language (S)
* What kind of input does the compiler take?
* C, C++, Java, Python,

— Implementation language (I)
 What language is the compiler written in?
* C, Java, i386, x84 64

— Target language (T)

¥l
QNE.HV‘!GRE(.)R « What is the compiler's target language
Canada’s Capital University ° |386, X86_64, PPC, MIPS, .

source compiled

——code—»' S T code >
(in S) I (in T)

Source Language Issues

 Complexity

— Is a completely handwritten compiler feasible?
- Stability

— |Is the language definition still changing?
* Novelty

— Do there already exist compilers for this language?

Complicated, or still-changing languages

Carleton

UNIVERSITY

promote the use of compiler generation
tools

Target Language Issues
* Novelty

— |Is this a new architecture?
— Are there similar architectures/instruction sets?

* Available tools
— Is there an assembler for this language?
— Are there other compilers for this language?

Carleton

UNIVERSITY

Canada’s Capital University

Performance criteria
* Speed

— Does it have to be a fast compiler?
— Does it have to be a small compiler?
— Does it have to generate fast code?

» Portability

— Should the compiler run on many different
architectures (rehostability)

7, leton — Should the compiler generate code for many
gqyeens(-)w different architectures (retargetability)

Canada’s Capital University

Possible Workarounds

Rewrite an existing front end
— when the source is new
— reuse back (code generation) end of the compiler

Rewrite an existing back end
— when the target architecture is new
— retarget an existing compiler to a new architecture

What happens when both the source

T
96@299 language and target language are new?

Canada’s Capital University

— Write a compiler from scratch?
— Do we have other options?

Composing Compilers

« Compilers can be composed and used to
compile each other

 Example:

— We have written a Java to JVM compiler in C and we
want to make it to run on two different platforms
1386 and x86 64

— both platforms have C compilers

Carleton Java JVM Java JVM
canadas comt et C C 1386 1386
1386
Java JVM Java JVM
C C x64 1386
x64

Example PRM JVM

* Assignment 3: Java
 Assignment 4: jvm VM

Java

JVM fib.prm PRM IVM aj

Java Java JVM JVM
Carleton 1386
JVM JVM' aj JVM JVM' aj
Java Java JVM JVM

1386

Example

 Show how to
— To take your PRM compiler and make it faster
— To take your Jasmin optimizer and make it faster

PRM JVM
Java
PRM PRM'
Carleton Java
Canada’s Capital University
Java JVM
1386

10

Bootstrapping by cross-compiling

 Sometimes the source and implementation

language are the same
— E.g. A C compiler written in C

* |In this case, cross compiling can be useful

x64

Ll
Carleton =

Canada’s Capital University

1386

11

Bootstrapping Cont'd
« Bootstrapping by reduced functionality

— Implement, in machine language, a simplified
compiler

* A subset of the target language
* No optimizations

— Write a compiler for the full language in the reduced
language

Carleton

UNIVERSITY

Canada’s Capital University

asm

12

Bootstrapping for Self-

Improvement
* If we are writing a good optimizing compiler

with I=S then

— We can compile the compiler with itself
— We get a fast compiler

* gcc does this (several times)

1386

Rl
Carleton = T e

Canada’s Capital University

1386

13

Summary

 When writing a compiler there are several
techniques we can use to leverage existing

technology

— Reusing front-ends or back ends

— Cross-compiling

— Starting from reduced instruction sets
— Self-compiling

Carleton

UNIVERSITY

Canada’s Capital University

14

	Title of presentation
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14

