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Outline

• Optimal code generation
– For expressions
– By dynamic programming

• Data-Flow Analysis
– Examples and Applications
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Code Generation Using Ershov 
Numbers

Andrei Petrovych Ershov - Computer Science God
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Optimal Code Generation for 
Expressions
• When a basic block consists of a single 

expression in which each operand appears 
only once, we can generate "optimal" code
– Uses the minimum number of registers, or
– Uses minimum possible stack space

• We will label each node v of the expression 
tree with the smallest number of registers 
required to evaluate v's subtree without 
using temporary variables
– These labels are called Ershov numbers
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Ershov Numbers

• We use the following rules to put a number 
on each node:
– The label of a leaf is 1
– The label of a unary node is equal to the label of its 

child
– The label of a binary node is
• The larger of the labels of its two children, if they 

are different, or
• One plus the label of its two children, if they are 

the same
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Understanding Ershov Numbers

• Ershov variables tell us the minimum 
number of registers required to evaluate an 
expression without requiring extra 
load/store operations

• The key rule with Ershov numbers happens 
with binary operators
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Ershov Number (Cont'd)

• If left child requires n registers and right 
child requires m >= n registers

• Compute right child first, using m registers and 
store its value
• Computer left child using n registers and store its 

value 
– requires n + 1 registers because of stored value

• Combine two results and store in 1 register
– Total number of registers required in max(m, n+1)
• Equal to m if m != n
• Otherwise equal to m+1 = n+1
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Ershov Number Example

• The following expression tree can be 
computed using two registers

a,1 b,1

+,2 c,1

*,2 d,1

/,2 mov a, R0
mov b, R1
add R0, R1 ; result in R0
mov c, R1
mul R0, R1 ; result in R0
mov d, R1
div R0, R1 ; result in R0

2 registers

((a+b)*c)/d
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Ershov Number Example

• Compute the Ershov numbers for the 
following

a b

+

* -

/

c d

+

e f

+
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Register Shortages

• If the root's Ershov number k is greater 
than the number of registers r, then we 
need a different strategy
1.Recursively generate code for the child with larger 

Ershov number
2.Store the result in memory
3.Recursively generate code for the smaller child
4.Load the stored result from Step 2
5.Generate code for the root

● It is possible to prove that this does the 
minimum number of possible load/store 
operations
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Ershov Number Example

• Generate code on a 2-register machine for 
the following:

a b

+

* -

/

c d

+

e f

+
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Code Generation by Dynamic 
Programming
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Dynamic Programming and 
Ershov Numbers
• Ershov's algorithm produces an optimal 

result when
– Every operand is distinct
– Operands operate on two registers
– Cost of every instruction is the same

• It is a special case of dynamic programming
– To solve for a binary node T:
• First solve each subtree of T independently
• Try all different ways of combining T's subtrees

• This can be generalized to less restrictive 
assumptions
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Dynamic Programming

• Main idea:
– Compute the cost of generating each subtree if
• 1 register is available
• 2 registers are available
• 3 registers are available ...

– To compute subtree v with 2 children using i 
registers we can
• use i registers for left(v) and i-1 registers for 

right(v), or
• use i-1 registers for left(v) and i registers for 

right(v), or
• use i registers for left(v) and i registers for right(v) 

– In Case 3, we'll have to store left(v) while we 
compute right(v) and then load it
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Dynamic Programming Algorithm

1. For each node v of T, compute the cost 
vector  C[1],...,C[r]:
– C[i] is the cost of evaluating v if i registers are 

available

• Cost of a leaf is 1 load

• For a node v of T with two children u and w 

we can compute C
v
[1],...,C

v
[r] using the 

rules
– C

v
[i] <= C

u
[i] + C

w
[i-1] + op(v)        [1]

– C
v
[i] <= C

w
[i] + C

u
[i-1] + op(v)        [2]

– C
v
[i] <= C

w
[i] + store + C

u
[i] + load + op(v)  [3]

– C
v
[i] = min{ [1], [2], [3] }



Dynamic Programming Example

a b

+

* -

/,3

c d

+

e f

+

1 2 3
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Dynamic Programming 
Extensions
• For more complicated machines, just make 

more rules

• Can accommodate several variations:
– Parse trees whose nodes can have d children
• Just try all d! different possible orders

– Different possible instructions
– Instructions that allow one (or both) operands to be 

in memory
– ....

• Does not make optimal use of common 
subexpressions
– In a tree with i subtrees we would have to try 

something like ri+1 combinations
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Data-Flow Analysis
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Data-Flow Analysis

• Data-flow analysis studies execution paths 
of programs and the evolution of data 
through these paths

• Program points are the spaces between 
instructions
– A basic block with k instructions contains k+1 

program points 
• one before each instruction
• one after the last instruction



20

Program Paths

• A program path p
1
,...,p

t
 is a sequence of 

program points
– Within a basic block a program point pi comes before 

a statement and pi+1 comes after the statement
– The last program point in a basic block B can be 

followed by the first program point of any basic block 
that is a successor of B.

• We want to reason about the state of the 
program at program points
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Program Points

  -- p1 --
mov a, R0
  -- p2 --
mov b, R1
  -- p3 --
add R0, R1
  -- p4 --
mov c, R1
  -- p5 --
mul R0, R1
  -- p6 --
mov d, R1
  -- p7 --
div R0, R1
  -- p8 --
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Example: Reaching Definitions

• For a variable a used in an instruction L 
– An instruction L'  is a reaching definition of a at L if 
• L' sets the value of a
• there is a program path P  from the point after L' 

to the point before L and 
• P contains no statement that kills (redefines) a 

• Reaching definitions can be very useful
– In debugging, if a takes on an incorrect value, we 

would like to know where this could have happened
– In optimization if L computes an expression with a 

then knowing about a may simplify this expression

• Notice: different applications require 
different information
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Reaching Definitions

• The definition of a at L' reaches L

a := 23  [L']

x := a + 24  [L]

P
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Data-Flow Schema

• With each program point we associate a 
data-flow value
– represents all possible program states at that 

program point

• For an instruction L
– in[L] is the data-flow value at the point before L
– out[L] is the data-flow value at the point after L

• For a block B
– in[B] is data-flow value before B's first instruction
– out[B] is data-flow value after B's last instruction

• To speed things up, we sometimes only 
specify in and out for the basic blocks
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Control-Flow

• Within a basic block with two consecutive 
statements L1 and L2, we have
– in[L2] = out[L1]

• The first line of a basic block B is more 
complicated
– in[L] = function(out[L1], out[L2], ..., out[Lk])
– L1,...,Lk are the last instructions in the basic blocks 

B1,...,Bk that have B as a successor
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Example: Reaching Definitions

• At each point, we want to know all reaching 
definitions of variable a

• Within a basic block
– out[L] = in[L] if L does not define a
– out[L] = L if L does define a

• For the first line L of a basic block B that 
follows blocks B1,...,Bk
– in[L] = union(out[B1],..., out[Bk]);
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Computing Reaching Definitions

• We now have a set of equations for 
reaching definitions
– How do we solve them?

• Iterative algorithm: 
1.initialize in[B] = out[B] = ∅ for every block B
2.repeat

1.for each block B with predecessors B1,...,Bk
1.in[B] = union(out[B1],...,out[Bk])
2.process each line of B using the equations

1.out[L] = in[L] if L does not define a
2.out[L] = L if L does define a

3.until out[B] does not change for any block B
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Reaching Definitions Example

ENTRY

d1: i = m-1
d2: j = n
d3: a = u1

d4: i = i+1
d5: j = j-1

d6: a = u2

d7: i = u3

• Compute reaching definitions of a
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Applications of Reaching 
Definitions
• All kinds of optimizations

– In a statement that uses variable a, if only there is 
only one reaching definition of a (or all reaching 
definitions agree) then we may be able to 
• use reduction in strength 
– b*a = b*2 = b+b

• use algebraic simplification 
– b*a = b*1 = b

• convert a conditional into an unconditional jump 
– if a then goto Li = if 1 then goto Li = goto Li

• perform constant folding
– 2 + a = 2 + 2 = 4
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Undefined Variables

• Reaching definitions can also be used to 
check if the value of a is defined before it is 
used
– Place a "fake" definition at line -1 (entry)
– If this definition reaches any use of a then a is 

potentially used before it is defined

• Useful for catching programmer errors
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Live-Variable Analysis

• For each point p we would like to know if 
the value of variable a at p is ever used

• We use backward data-flow
– in[L] = true if L uses a
– in[L] = false if L defines but does not use a
– in[L] = out[L] if L does not define or use a

• For a block B with successors B1,...,Bk
– out[B] = OR(in[B1],...,in[Bk])

• in[entry] = 0
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Live-Variable Analysis Example

• Determine where variables i and j are live
ENTRY

d1: i = m-1
d2: j = n
d3: a = u1

d4: i = i+1
d5: j = j-1

d6: a = u2

d7: i = u3
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Applications of Live-Variable 
Analysis
• Live-variable analysis is used in code 

generation for basic blocks:
– dead variables don't need their values stored
– a dead variable in a register should be overwritten 

before a live variable
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Available Expressions

• x+y is available at a point p if
– every path from entry to p evaluates x+y
– no path changes the values of x or y after the 

evaluation

• For an instruction L,
– out[L] = true if L computes x+y
– out[L] = false if L modifies x or y
– out[L] = in[L] otherwise

• For a block B with predecessors B1,...,Bk,
– in[B] = AND(out[B1],...,out[Bk])

• Initially, out[B] = true for every block B 
except the entry block out[entry] = false
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Available Expressions

• Where are the expressions m-1 and i+1 
available? ENTRY

d1: i = m-1
d2: j = n
d3: a = u1

d4: i = i+1
d5: j = j-1

d6: a = u2

d7: i = u3
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Partial Redundancy Elimination

• Redundancy occurs when the same 
expression is evaluated more than once 
(with the same input values) along an 
execution path

• If an expression computed at instruction L 
is available then it is (fully) redundant

• If an expression computed at instruction L 
might be available then is (partially) 
redundant
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Fully-Redundant Expressions

• Fully redundant expressions can be stored 
and used (sometimes the store is 
unnecessary)
x = b + c y = b + c

z = b + c

x = b + c
t = x

y = b + c
t = y

z = t
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Partially-Redundant Expressions

• If an expression is available in some (but 
not all) predecessors B then it is partially 
redundant (see Section 9.5.5)
x = b + c y = v + w

z = b + c

x = b + c
t = x

y = v + w

z = t

t = b + c
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Loop-Invariant Expressions

• The expression b+c is loop invariant if 
neither b nor c is redefined within the loop
– All reaching definitions of b and c are outside the 

loop

x = b + c
i = i + 1
j = j - 1 x = t

i = i + 1
j = j - 1

t = b + c
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Loop-Invariant Expressions

• Note: A loop is any strongly connected 
component of the flow graph

• We have to be careful to cover all loop 
entry points

x = b + c



41

Loop-Invariant Expressions

x = t

t = b + c

t = b + c
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Summary of Data Flow Analysis

• Data-flow analysis lets the compiler reason 
about program state at various points in 
time
– Can check reaching definitions, live variables, and 

available expressions (among others)
– Has real theoretical underpinnings (see Sec. 9.3)

• For live variables and available expressions:
– we chose in[L] and out[L] are in the set {true, false} 

and we combine them with AND and OR
– to compute all live variables or all available 

subexpressions in and out can be sets that are 
combined with intersection and union
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Neat Application

• Smartphones apps have access to
– Personal information
– Network

• We want to avoid personal information 
being sent over the network
– Define 'tainted variables'
• Any variable from a syscall that retrieves personal 

information
• taint spreads to other variables (and files) by 

dataflow analysis
– No network routine should be given a tainted 

variable as an argument
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What We Didn't See

• Speed of convergence of iterative algorithm
– Using depth-first order makes the algorithm more 

efficient
– Number of iterations is at most the length of the 

longest path in the flow graph

• Loop analysis and dominance

• Induction variables

• Theoretical foundations
– Abstraction, monotone frameworks, and distributive 

frameworks, semilattices
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