
Optimal Code Generation
(for Expressions) and

Data-Flow Analysis

Pat Morin

COMP 3002

2

Outline

• Optimal code generation
– For expressions
– By dynamic programming

• Data-Flow Analysis
– Examples and Applications

3

Code Generation Using Ershov
Numbers

Andrei Petrovych Ershov - Computer Science God

4

Optimal Code Generation for
Expressions
• When a basic block consists of a single

expression in which each operand appears
only once, we can generate "optimal" code
– Uses the minimum number of registers, or
– Uses minimum possible stack space

• We will label each node v of the expression
tree with the smallest number of registers
required to evaluate v's subtree without
using temporary variables
– These labels are called Ershov numbers

5

Ershov Numbers

• We use the following rules to put a number
on each node:
– The label of a leaf is 1
– The label of a unary node is equal to the label of its

child
– The label of a binary node is
• The larger of the labels of its two children, if they

are different, or
• One plus the label of its two children, if they are

the same

6

Understanding Ershov Numbers

• Ershov variables tell us the minimum
number of registers required to evaluate an
expression without requiring extra
load/store operations

• The key rule with Ershov numbers happens
with binary operators

7

Ershov Number (Cont'd)

• If left child requires n registers and right
child requires m >= n registers

• Compute right child first, using m registers and
store its value
• Computer left child using n registers and store its

value
– requires n + 1 registers because of stored value

• Combine two results and store in 1 register
– Total number of registers required in max(m, n+1)
• Equal to m if m != n
• Otherwise equal to m+1 = n+1

8

Ershov Number Example

• The following expression tree can be
computed using two registers

a,1 b,1

+,2 c,1

*,2 d,1

/,2 mov a, R0
mov b, R1
add R0, R1 ; result in R0
mov c, R1
mul R0, R1 ; result in R0
mov d, R1
div R0, R1 ; result in R0

2 registers

((a+b)*c)/d

9

Ershov Number Example

• Compute the Ershov numbers for the
following

a b

+

* -

/

c d

+

e f

+

10

Register Shortages

• If the root's Ershov number k is greater
than the number of registers r, then we
need a different strategy
1.Recursively generate code for the child with larger

Ershov number
2.Store the result in memory
3.Recursively generate code for the smaller child
4.Load the stored result from Step 2
5.Generate code for the root

● It is possible to prove that this does the
minimum number of possible load/store
operations

11

Ershov Number Example

• Generate code on a 2-register machine for
the following:

a b

+

* -

/

c d

+

e f

+

12

Code Generation by Dynamic
Programming

13

Dynamic Programming and
Ershov Numbers
• Ershov's algorithm produces an optimal

result when
– Every operand is distinct
– Operands operate on two registers
– Cost of every instruction is the same

• It is a special case of dynamic programming
– To solve for a binary node T:
• First solve each subtree of T independently
• Try all different ways of combining T's subtrees

• This can be generalized to less restrictive
assumptions

14

Dynamic Programming

• Main idea:
– Compute the cost of generating each subtree if
• 1 register is available
• 2 registers are available
• 3 registers are available ...

– To compute subtree v with 2 children using i
registers we can
• use i registers for left(v) and i-1 registers for

right(v), or
• use i-1 registers for left(v) and i registers for

right(v), or
• use i registers for left(v) and i registers for right(v)

– In Case 3, we'll have to store left(v) while we
compute right(v) and then load it

15

Dynamic Programming Algorithm

1. For each node v of T, compute the cost
vector C[1],...,C[r]:
– C[i] is the cost of evaluating v if i registers are

available

• Cost of a leaf is 1 load

• For a node v of T with two children u and w

we can compute C
v
[1],...,C

v
[r] using the

rules
– C

v
[i] <= C

u
[i] + C

w
[i-1] + op(v) [1]

– C
v
[i] <= C

w
[i] + C

u
[i-1] + op(v) [2]

– C
v
[i] <= C

w
[i] + store + C

u
[i] + load + op(v) [3]

– C
v
[i] = min{ [1], [2], [3] }

Dynamic Programming Example

a b

+

* -

/,3

c d

+

e f

+

1 2 3

17

Dynamic Programming
Extensions
• For more complicated machines, just make

more rules

• Can accommodate several variations:
– Parse trees whose nodes can have d children
• Just try all d! different possible orders

– Different possible instructions
– Instructions that allow one (or both) operands to be

in memory
–

• Does not make optimal use of common
subexpressions
– In a tree with i subtrees we would have to try

something like ri+1 combinations

18

Data-Flow Analysis

19

Data-Flow Analysis

• Data-flow analysis studies execution paths
of programs and the evolution of data
through these paths

• Program points are the spaces between
instructions
– A basic block with k instructions contains k+1

program points
• one before each instruction
• one after the last instruction

20

Program Paths

• A program path p
1
,...,p

t
 is a sequence of

program points
– Within a basic block a program point pi comes before

a statement and pi+1 comes after the statement
– The last program point in a basic block B can be

followed by the first program point of any basic block
that is a successor of B.

• We want to reason about the state of the
program at program points

21

Program Points

 -- p1 --
mov a, R0
 -- p2 --
mov b, R1
 -- p3 --
add R0, R1
 -- p4 --
mov c, R1
 -- p5 --
mul R0, R1
 -- p6 --
mov d, R1
 -- p7 --
div R0, R1
 -- p8 --

22

Example: Reaching Definitions

• For a variable a used in an instruction L
– An instruction L' is a reaching definition of a at L if
• L' sets the value of a
• there is a program path P from the point after L'

to the point before L and
• P contains no statement that kills (redefines) a

• Reaching definitions can be very useful
– In debugging, if a takes on an incorrect value, we

would like to know where this could have happened
– In optimization if L computes an expression with a

then knowing about a may simplify this expression

• Notice: different applications require
different information

23

Reaching Definitions

• The definition of a at L' reaches L

a := 23 [L']

x := a + 24 [L]

P

24

Data-Flow Schema

• With each program point we associate a
data-flow value
– represents all possible program states at that

program point

• For an instruction L
– in[L] is the data-flow value at the point before L
– out[L] is the data-flow value at the point after L

• For a block B
– in[B] is data-flow value before B's first instruction
– out[B] is data-flow value after B's last instruction

• To speed things up, we sometimes only
specify in and out for the basic blocks

25

Control-Flow

• Within a basic block with two consecutive
statements L1 and L2, we have
– in[L2] = out[L1]

• The first line of a basic block B is more
complicated
– in[L] = function(out[L1], out[L2], ..., out[Lk])
– L1,...,Lk are the last instructions in the basic blocks

B1,...,Bk that have B as a successor

26

Example: Reaching Definitions

• At each point, we want to know all reaching
definitions of variable a

• Within a basic block
– out[L] = in[L] if L does not define a
– out[L] = L if L does define a

• For the first line L of a basic block B that
follows blocks B1,...,Bk
– in[L] = union(out[B1],..., out[Bk]);

27

Computing Reaching Definitions

• We now have a set of equations for
reaching definitions
– How do we solve them?

• Iterative algorithm:
1.initialize in[B] = out[B] = ∅ for every block B
2.repeat

1.for each block B with predecessors B1,...,Bk
1.in[B] = union(out[B1],...,out[Bk])
2.process each line of B using the equations

1.out[L] = in[L] if L does not define a
2.out[L] = L if L does define a

3.until out[B] does not change for any block B

28

Reaching Definitions Example

ENTRY

d1: i = m-1
d2: j = n
d3: a = u1

d4: i = i+1
d5: j = j-1

d6: a = u2

d7: i = u3

• Compute reaching definitions of a

29

Applications of Reaching
Definitions
• All kinds of optimizations

– In a statement that uses variable a, if only there is
only one reaching definition of a (or all reaching
definitions agree) then we may be able to
• use reduction in strength
– b*a = b*2 = b+b

• use algebraic simplification
– b*a = b*1 = b

• convert a conditional into an unconditional jump
– if a then goto Li = if 1 then goto Li = goto Li

• perform constant folding
– 2 + a = 2 + 2 = 4

30

Undefined Variables

• Reaching definitions can also be used to
check if the value of a is defined before it is
used
– Place a "fake" definition at line -1 (entry)
– If this definition reaches any use of a then a is

potentially used before it is defined

• Useful for catching programmer errors

31

Live-Variable Analysis

• For each point p we would like to know if
the value of variable a at p is ever used

• We use backward data-flow
– in[L] = true if L uses a
– in[L] = false if L defines but does not use a
– in[L] = out[L] if L does not define or use a

• For a block B with successors B1,...,Bk
– out[B] = OR(in[B1],...,in[Bk])

• in[entry] = 0

32

Live-Variable Analysis Example

• Determine where variables i and j are live
ENTRY

d1: i = m-1
d2: j = n
d3: a = u1

d4: i = i+1
d5: j = j-1

d6: a = u2

d7: i = u3

33

Applications of Live-Variable
Analysis
• Live-variable analysis is used in code

generation for basic blocks:
– dead variables don't need their values stored
– a dead variable in a register should be overwritten

before a live variable

34

Available Expressions

• x+y is available at a point p if
– every path from entry to p evaluates x+y
– no path changes the values of x or y after the

evaluation

• For an instruction L,
– out[L] = true if L computes x+y
– out[L] = false if L modifies x or y
– out[L] = in[L] otherwise

• For a block B with predecessors B1,...,Bk,
– in[B] = AND(out[B1],...,out[Bk])

• Initially, out[B] = true for every block B
except the entry block out[entry] = false

35

Available Expressions

• Where are the expressions m-1 and i+1
available? ENTRY

d1: i = m-1
d2: j = n
d3: a = u1

d4: i = i+1
d5: j = j-1

d6: a = u2

d7: i = u3

36

Partial Redundancy Elimination

• Redundancy occurs when the same
expression is evaluated more than once
(with the same input values) along an
execution path

• If an expression computed at instruction L
is available then it is (fully) redundant

• If an expression computed at instruction L
might be available then is (partially)
redundant

37

Fully-Redundant Expressions

• Fully redundant expressions can be stored
and used (sometimes the store is
unnecessary)
x = b + c y = b + c

z = b + c

x = b + c
t = x

y = b + c
t = y

z = t

38

Partially-Redundant Expressions

• If an expression is available in some (but
not all) predecessors B then it is partially
redundant (see Section 9.5.5)
x = b + c y = v + w

z = b + c

x = b + c
t = x

y = v + w

z = t

t = b + c

39

Loop-Invariant Expressions

• The expression b+c is loop invariant if
neither b nor c is redefined within the loop
– All reaching definitions of b and c are outside the

loop

x = b + c
i = i + 1
j = j - 1 x = t

i = i + 1
j = j - 1

t = b + c

40

Loop-Invariant Expressions

• Note: A loop is any strongly connected
component of the flow graph

• We have to be careful to cover all loop
entry points

x = b + c

41

Loop-Invariant Expressions

x = t

t = b + c

t = b + c

42

Summary of Data Flow Analysis

• Data-flow analysis lets the compiler reason
about program state at various points in
time
– Can check reaching definitions, live variables, and

available expressions (among others)
– Has real theoretical underpinnings (see Sec. 9.3)

• For live variables and available expressions:
– we chose in[L] and out[L] are in the set {true, false}

and we combine them with AND and OR
– to compute all live variables or all available

subexpressions in and out can be sets that are
combined with intersection and union

43

Neat Application

• Smartphones apps have access to
– Personal information
– Network

• We want to avoid personal information
being sent over the network
– Define 'tainted variables'
• Any variable from a syscall that retrieves personal

information
• taint spreads to other variables (and files) by

dataflow analysis
– No network routine should be given a tainted

variable as an argument

44

What We Didn't See

• Speed of convergence of iterative algorithm
– Using depth-first order makes the algorithm more

efficient
– Number of iterations is at most the length of the

longest path in the flow graph

• Loop analysis and dominance

• Induction variables

• Theoretical foundations
– Abstraction, monotone frameworks, and distributive

frameworks, semilattices

	Title of presentation
	Heading of presentation
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44

