
Code Analysis and Optimization

Pat Morin

COMP 3002

2

Outline

• Basic blocks and flow graphs

• Local register allocation

• Global register allocation

• Selected optimization topics

3

The Big Picture
• By now, we know enough to compile a

programming language into machine code

• But the machine code isn't terribly efficient

syntactic
analyzer

code
generator

interm.
rep.

machine
indep. opts.

basic
code gen.

interm.
rep.

machine
dep. opts.

4

Today's Lecture
• We will look at different kinds of

optimizations a compiler can perform

• Different optimizations apply to different
architectures or at different times
– Virtual stack machines
– 3-Address instructions
– Register-based machines

5

Basic Blocks
• A basic block is a block of (machine or

intermediate) code that always runs
straight through without interruption

• A block head is
– the target of a (conditional or unconditional) jump, or
– the code immediately after a jump or function call, or
– the first line of code in a function

• A basic block starts at a block head and
continues to the next block head (or the
end of the code/function)

6

Basic Block Example

 getstatic java/lang/System/out Ljava/io/PrintStream;
 iload 0
 ifeq false_label

 ldc "true"
 goto print_it

false_label:
 ldc "false"

print_it:
 invokevirtual
java/io/PrintStream/println(Ljava/lang/String;)V

 return

7

Basic Block Example

 ldc 0.0
 fstore 1
start:
 fload 1 ; load i
 fload 0 ; load n
 fcmpl
 ifge done
 fload 1
 invokestatic SimpleTest/printFloat(F)V
 fload 1
 ldc 1.0
 fadd
 fstore 1
 goto start
done:
 return

• Identify the basic blocks in the following

8

Why Basic Blocks?
• Because basic blocks always run straight

through, without interruption
– We are free to modify a lot of the code within a basic

block
– If a variable is set within a basic block then we know

the value of that variable for the remainder of the
block

9

Transformations on Basic Blocks
• Common subexpression elimination

– Works because we know the values of all variables
that have been set within that block

a := b+c
b := a-d
c := b+c
d := a-d ; replace with d := b

10

Transformations on Basic Blocks
• Useless code elimination

– We can determine that some statements have no
effect outside the basic block and can be eliminated

iload 0
ldc 1
iadd
istore 0
iload 0 ; eliminate
pop ; eliminate

11

Transformation on Basic Blocks
• Renaming temporary variables (3-address

codes) and reordering instructions can be
useful

t1 := b+c
t2 := x+y ; can reorder if b,c!=t2 and x,y!=t1

12

Transformations on Basic Blocks
• We can use algebraic identities to simplify

code or use less expensive instructions
– Usually applies when one of the operands is a

constant

x := x + 0 ; eliminate
x := x * 1 ; eliminate

x := y + 0 ; x := y
x := y * 1 ; x := y

x := y * 2 ; x := y + y might be faster

13

Register Machines

14

Register Machines
• A typical computer has a fixed number of

registers

• All operations require that the operands be
contained in these registers

• Reading data from memory into registers
(load) and writing it back (store) is slow

• We want to minimize the number of loads
and stores

• Problem: Many functions will have more
variables than available registers

15

Next-Use Information
• When inspecting a basic block, it can be

helpful to know when each variable will be
used next

; code for x := y + z
mov y, R0 ; put y into register 0
mov z, R1 ; put z into register 1
add R0, R1 ; store result of add in R0
mov R0, x ; store x

; code for p := y * 2
mov y, R0 ; put y into register 0
ld 2, R1 ; put 2 into register 1
add R0, R1 ; store result of add in R0
mov R0, p ; store p

16

Next-Use Information (Cont'd)
• An improved use of registers

; code for x := y + z
mov y, R0 ; put y into register 0
mov z, R1 ; put z into register 1
add R1, R0 ; store result of add in R1
mov R1, x ; store x

; code for p := y * 2
 ; y is still in R0
ld 2, R1 ; put 2 into register 1
add R0, R1 ; store result of add in R0
mov R0, p ; store p

17

Computing Next Use Information
• By scanning backwards we can compute

next-use information for each variable used
in each line of a basic block

• With each variable, we know
– the next time it is used in an expression
– the next time its value is changed

• Aliasing (pointers and references) can
complicate matters

18

Next-Use Information – Example

1. t1 := b * b ; t1(5) b(never)
2. t2 := 4 * a ; t2(3) a(6)
3. t3 := t2 * c ; t3(4) t2(never) c(never)
4. t4 := sqrt(t3) ; t4(5) t3(never)
5. t5 := t1 – t4 ; t5(7) t1(never) t4(never)
6. t6 := 2 * a ; t6(6) a(never)
7. t7 := t5 / t6 ; t7(8) t5(never) t6(never)

19

Generating Code From Next-Use
• Scan the block from beginning to end,

keeping track of where each variable is
stored (in which register or in memory)

• To generate code for x := y + z
– Assume x, y, and z are distinct
– if x is in a register Ri then mark Ri as free
– If y and z are not in registers, then bring them into

registers
– Do the addition (now x is stored in a register)

20

Bringing a Variable into a
Register
• To load a variable y into a register

– If some register is free then use that register
– Otherwise, consider registers that store values also

stored in memory and use one of those
– Otherwise, write a register into memory and use it

• In the case of ties, write the register holding
the variable whose next use information is
farthest into the future

• At the end of the basic block, generate code
to write all registers back to memory

Code Generation - Example
• Generate code for this on a 2-register

machine
1. t1 := b * b ; t1(5) b(never)
2. t2 := 4 * a ; t2(3) a(6)
3. t3 := t2 * c ; t3(4) t2(never) c(never)
4. t4 := sqrt(t3) ; t4(5) t3(never)
5. t5 := t1 – t4 ; t5(7) t1(never) t4(never)
6. t6 := 2 * a ; t6(6) a(never)
7. t7 := t5 / t6 ; t7(8) t5(never) t6(never)

22

The Pains of Pointers
• In languages with pointers, basic register

allocation becomes much more difficult
– This is especially true in languages, like C and C++

with very flexible pointers

• For this reason, many languages
outperform even the best optimizing C
compilers

int *a;
int x, y, z, w;

...
*a = 23; // this may have modified x, y, z, or w
 // a C compiler has to work hard to
 // know that it doesn't

23

The Control Flow Graph

24

The Control Flow Graph
• The (control) flow graph is a directed graph

whose vertices are the basic blocks

• An edge goes from block A to block B if
– A terminates with a (conditional) jump to B, or
– B comes after A and A's last statement is anything

other than a goto or return (unconditional jump)

• The flow graph tells us, for every block,
which blocks we might visit next

 getstatic java/lang/System/out Ljava/io/PrintStream;
 iload 0
 ifeq false_label

 ldc "true"
 goto print_it

false_label:
 ldc "false"

print_it:
 invokevirtual
java/io/PrintStream/println(Ljava/lang/String;)V

 return

 ldc 0.0
 fstore 1
start:
 fload 1 ; load i
 fload 0 ; load n
 fcmpl
 ifge done
 fload 1
 invokestatic SimpleTest/printFloat(F)V
 fload 1
 ldc 1.0
 fadd
 fstore 1
 goto start
done:
 return

Flow Graph Example
• Construct the control flow graph:

27

Global Register Allocation
• We have seen an efficient algorithm for

managing registers within a block
– Summary:

• Keep track of which values are in which registers
• Only store a register when necessary
• Store all “dirty” registers at the end of a block

• Problem:
– It's often worth keeping registers in variables across

blocks
• loop indices are a common example

28

Example

 i := 0
start: i := i + 1
 ...
 if i < 1000 goto start

 ldc R0, 0
start: inc R0
 ...
 ldc R1, 1000
 sub R1,R0
 jmplt R1, start

 ldc R0, 0
 mov R0, o ; store i
start: mov i, R0 ; load i
 inc R0
 ...
 ldc R1, 1000
 sub R1, R0
 mov R0, i ; store i
 jmplt R1, start

29

Global Register Allocation
• Designate one or more registers as

“variable registers” that will be used to
store local variables

• Analyze loops and decide which variables
get to become “register” variables

30

Assigning “Register” Variables
• Easy case: 1 block in a loop

– Calculate the savings for each variable
• save 1 load if the variable is accessed
• save 1 store if the variable is modified

• Example:
– i used and modified (1 load + 1 store)
– a is modified but not used (1 store)
– b and c are used but not modified (1 load)
– putting i in a register yields the greatest savings

start: i := i + 1
 a := b + c
 ...
 if i < 1000 goto start

31

More Complicated Variants
• A cycle with an if statement

– Only count savings by half as much in the red boxes

32

More Complicated Variants
• Nested Cycles

– Pay a penalty for choosing a different variable to use
in the inner cycle

33

Other Control Flow Graph Tricks
• The control flow graph allows several other

useful optimizations based on reachability
analysis

• Can we get to a basic block B from a basic
block A?

• This question is answered by computing the
transitive closure of the control flow graph

34

Dead Code Elimination
• A piece of code is dead if it can not be

reached in any execution path

• For a function
– look at the first basic block of the function (A)
– code B is dead if A->B is not in the transitive closure

• Dead code never executes and can
therefore be eliminated

35

No Longer Used Variables
• At some point during the execution of a

function, a local variable may never be
used again
– We can avoid unnecessarily storing this variable

• If variable i is modified in basic block A
– Check if there is any block B such that

• i is used in block B, and
• A -> B in the transitive closure

– If not, then i is never used again after visiting A

36

When to Construct the Flow
Graph
• The best time to construct the control flow

graph is after some optimizations have
been done on the basic blocks

• This may reduce the number of edges in
the graph

start:
 ...
 t0 = 1 < 3
 if t0 goto start

37

Summary
• Basic blocks and control flow graphs

represent a compiler's understanding of
how a program executes

• Basic blocks always run right through
– We understand enough about values in basic blocks

to optimize agressively

• Flow graphs represent execution paths
– Give more information about data in basic blocks
– Allow for reachability analysis

	Title of presentation
	Heading of presentation
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37

