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Outline

• Basic blocks and flow graphs

• Local register allocation

• Global register allocation

• Selected optimization topics
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The Big Picture
• By now, we know enough to compile a 

programming language into machine code

• But the machine code isn't terribly efficient
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Today's Lecture
• We will look at different kinds of 

optimizations a compiler can perform

• Different optimizations apply to different 
architectures or at different times
– Virtual stack machines
– 3-Address instructions
– Register-based machines
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Basic Blocks
• A basic block is a block of (machine or 

intermediate) code that always runs 
straight through without interruption

• A block head is 
– the target of a (conditional or unconditional) jump, or
– the code immediately after a jump or function call, or
– the first line of code in a function

• A basic block starts at a block head and 
continues to the next block head (or the 
end of the code/function)
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Basic Block Example

   getstatic java/lang/System/out Ljava/io/PrintStream;
   iload 0
   ifeq false_label

   ldc "true"
   goto print_it

false_label:
   ldc "false"

print_it:
   invokevirtual 
java/io/PrintStream/println(Ljava/lang/String;)V

   return
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Basic Block Example

   ldc 0.0
   fstore 1
start:
   fload 1     ; load i
   fload 0     ; load n
   fcmpl
   ifge done
   fload 1
   invokestatic SimpleTest/printFloat(F)V
   fload 1
   ldc 1.0
   fadd
   fstore 1
   goto start
done:
   return

• Identify the basic blocks in the following
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Why Basic Blocks?
• Because basic blocks always run straight 

through, without interruption
– We are free to modify a lot of the code within a basic 

block
– If a variable is set within a basic block then we know 

the value of that variable for the remainder of the 
block
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Transformations on Basic Blocks
• Common subexpression elimination

– Works because we know the values of all variables 
that have been set within that block

a := b+c
b := a-d
c := b+c
d := a-d   ; replace with d := b
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Transformations on Basic Blocks
• Useless code elimination

– We can determine that some statements have no 
effect outside the basic block and can be eliminated

iload 0
ldc 1
iadd
istore 0
iload 0         ; eliminate
pop             ; eliminate
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Transformation on Basic Blocks
• Renaming temporary variables (3-address 

codes) and reordering instructions can be 
useful

t1 := b+c
t2 := x+y  ; can reorder if b,c!=t2 and x,y!=t1



12

Transformations on Basic Blocks
• We can use algebraic identities to simplify 

code or use less expensive instructions
– Usually applies when one of the operands is a 

constant

x := x + 0    ; eliminate
x := x * 1    ; eliminate

x := y + 0    ; x := y
x := y * 1    ; x := y

x := y * 2    ; x := y + y  might be faster
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Register Machines
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Register Machines
• A typical computer has a fixed number of 

registers

• All operations require that the operands be 
contained in these registers

• Reading data from memory into registers 
(load) and writing it back (store) is slow

• We want to minimize the number of loads 
and stores

• Problem: Many functions will have more 
variables than available registers 
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Next-Use Information
• When inspecting a basic block, it can be 

helpful to know when each variable will be 
used next

; code for x := y + z
mov y, R0     ; put y into register 0
mov z, R1     ; put z into register 1
add R0, R1    ; store result of add in R0
mov R0, x     ; store x

; code for p := y * 2
mov y, R0     ; put y into register 0
ld  2, R1     ; put 2 into register 1
add R0, R1    ; store result of add in R0
mov R0, p     ; store p
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Next-Use Information (Cont'd)
• An improved use of registers

; code for x := y + z
mov y, R0     ; put y into register 0
mov z, R1     ; put z into register 1
add R1, R0    ; store result of add in R1
mov R1, x     ; store x

; code for p := y * 2
              ; y is still in R0
ld  2, R1     ; put 2 into register 1
add R0, R1    ; store result of add in R0
mov R0, p     ; store p



17

Computing Next Use Information
• By scanning backwards we can compute 

next-use information for each variable used 
in each line of a basic block

• With each variable, we know
– the next time it is used in an expression
– the next time its value is changed

• Aliasing (pointers and references) can 
complicate matters



18

Next-Use Information – Example

1. t1 := b * b    ; t1(5) b(never)
2. t2 := 4 * a    ; t2(3) a(6)
3. t3 := t2 * c   ; t3(4) t2(never) c(never)
4. t4 := sqrt(t3) ; t4(5) t3(never)
5. t5 := t1 – t4  ; t5(7) t1(never) t4(never)
6. t6 := 2 * a    ; t6(6) a(never)
7. t7 := t5 / t6  ; t7(8) t5(never) t6(never)
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Generating Code From Next-Use
• Scan the block from beginning to end, 

keeping track of where each variable is 
stored (in which register or in memory)

• To generate code for x := y + z
– Assume x, y, and z are distinct
– if x is in a register Ri then mark Ri as free 
– If y and z are not in registers, then bring them into 

registers
– Do the addition (now x is stored in a register)
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Bringing a Variable into a 
Register
• To load a variable y into a register

– If some register is free then use that register
– Otherwise, consider registers that store values also 

stored in memory and use one of those
– Otherwise, write a register into memory and use it

• In the case of ties, write the register holding 
the variable whose next use information is 
farthest into the future

• At the end of the basic block, generate code 
to write all registers back to memory



Code Generation - Example
• Generate code for this on  a 2-register 

machine
1. t1 := b * b    ; t1(5) b(never)
2. t2 := 4 * a    ; t2(3) a(6)
3. t3 := t2 * c   ; t3(4) t2(never) c(never)
4. t4 := sqrt(t3) ; t4(5) t3(never)
5. t5 := t1 – t4  ; t5(7) t1(never) t4(never)
6. t6 := 2 * a    ; t6(6) a(never)
7. t7 := t5 / t6  ; t7(8) t5(never) t6(never)
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The Pains of Pointers
• In languages with pointers, basic register 

allocation becomes much more difficult
– This is especially true in languages, like C and C++ 

with very flexible pointers

• For this reason, many languages 
outperform even the best optimizing C 
compilers

int *a;
int x, y, z, w;

...
*a = 23; // this may have modified x, y, z, or w
         // a C compiler has to work hard to
         // know that it doesn't
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The Control Flow Graph
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The Control Flow Graph
• The (control) flow graph is a directed graph 

whose vertices are the basic blocks

• An edge goes from block A to block B if
– A terminates with a (conditional) jump to B, or
– B comes after A and A's last statement is anything 

other than a goto or return (unconditional jump)

• The flow graph tells us, for every block, 
which blocks we might visit next



   getstatic java/lang/System/out Ljava/io/PrintStream;
   iload 0
   ifeq false_label

   ldc "true"
   goto print_it

false_label:
   ldc "false"

print_it:
   invokevirtual 
java/io/PrintStream/println(Ljava/lang/String;)V

   return



   ldc 0.0
   fstore 1
start:
   fload 1     ; load i
   fload 0     ; load n
   fcmpl
   ifge done
   fload 1
   invokestatic SimpleTest/printFloat(F)V
   fload 1
   ldc 1.0
   fadd
   fstore 1
   goto start
done:
   return

Flow Graph Example
• Construct the control flow graph:



27

Global Register Allocation
• We have seen an efficient algorithm for 

managing registers within a block
– Summary:

• Keep track of which values are in which registers
• Only store a register when necessary
• Store all “dirty” registers at the end of a block

• Problem:
– It's often worth keeping registers in variables across 

blocks
• loop indices are a common example
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Example

       i := 0
start: i := i + 1
       ...
       if i < 1000 goto start

       ldc R0, 0
start: inc R0
       ...
       ldc R1, 1000
       sub R1,R0
       jmplt R1, start

       ldc R0, 0
       mov R0, o     ; store i
start: mov i, R0     ; load i
       inc R0
       ...
       ldc R1, 1000
       sub R1, R0
       mov R0, i     ; store i
       jmplt R1, start
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Global Register Allocation
• Designate one or more registers as 

“variable registers” that will be used to 
store local variables

• Analyze loops and decide which variables 
get to become “register” variables
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Assigning “Register” Variables
• Easy case: 1 block in a loop

– Calculate the savings for each variable
• save 1 load if the variable is accessed
• save 1 store if the variable is modified

• Example:
– i used and modified (1 load + 1 store)
– a is modified but not used (1 store)
– b and c are used but not modified (1 load)
– putting i in a register yields the greatest savings

start: i := i + 1
       a := b + c
       ... 
       if i < 1000 goto start
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More Complicated Variants
• A cycle with an if statement

– Only count savings by half as much in the red boxes
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More Complicated Variants
• Nested Cycles

– Pay a penalty for choosing a different variable to use 
in the inner cycle
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Other Control Flow Graph Tricks
• The control flow graph allows several other 

useful optimizations based on reachability 
analysis

• Can we get to a basic block B from a  basic 
block A?

• This question is answered by computing the 
transitive closure of the control flow graph
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Dead Code Elimination
• A piece of code is dead if it can not be 

reached in any execution path

• For a function
– look at the first basic block of the function (A)
– code B is dead if A->B is not in the transitive closure

• Dead code never executes and can 
therefore be eliminated
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No Longer Used Variables
• At some point during the execution of a 

function, a local variable may never be 
used again
– We can avoid unnecessarily storing this variable

• If variable i is modified in basic block A
– Check if there is any block B such that

• i is used in block B, and
• A -> B in the transitive closure

– If not, then i is never used again after visiting A
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When to Construct the Flow 
Graph
• The best time to construct the control flow 

graph is after some optimizations have 
been done on the basic blocks

• This may reduce the number of edges in 
the graph

start: 
       ...
       t0 = 1 < 3
       if t0 goto start



37

Summary
• Basic blocks and control flow graphs 

represent a compiler's understanding of 
how a program executes

• Basic blocks always run right through
– We understand enough about values in basic blocks 

to optimize agressively

• Flow graphs represent execution paths
– Give more information about data in basic blocks
– Allow for reachability analysis
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