
Assignment 3 Solutions

COMP2804 Fall 2019

November 8, 2019

Name: Lenny Learning Combinatorics
Student ID: 100000000

1 Probabilities of Poker Hands

Let S be the set of
(
52
5

)
possible hands we are dealt.

1. Let A be the event “the hand is a flush”. We just need to figure out |A|, the number of flushes. We
do that using the Product Rule with the following procedure:

(a) Choose one of the four suits for all the cards in the flush. There are 4 ways to do this step.

(b) Choose the ranks for the 5 cards in the flush. Since there are 13 cards whose suit matches the
one we chose in the first step, there are

(
13
5

)
ways to do this step.

Therefore, the number of flushes is |A| = 4 ·
(
13
5

)
= 5148. So

Pr(A) =
|A|
|S|

=
4 ·
(
13
5

)(
52
5

) =
5148

2598960
≈ 0.0019807923169267707

2. Let A be the event “the hand is a straight”. We just need to figure out |A|, the number of straights.
We do that using the Product Rule with the following procedure:

(a) Select the lowest rank that takes part in the straight. This must be one of 2, 3, 4, 5, 6, 7, 8, 9, 10,
so there are 9 ways to do this step.

(b) Select the suits of the five cards in the straight. There are five cards and 4 options for each card,
so there are 45 ways to do this step.

Therefore, the number of straights is |A| = 9× 45 = 9216. So,

Pr(A) =
|A|
|S|

=
9 · 45(
52
5

) =
9216

2598960
≈ 0.0035460337981346383

3. Let A be the event “the hand is a pair”. The question doesn’t specify whether we should count hands
that contain more than one pair, so we can accept either answer.

(a) In case we require that the hand contains exactly one pair, we can count |A| using the Product
Rule as follows:

i. Choose the rank of the pair. There are 13 options for this step.

1

ii. Choose the suits of the pair. There are
(
4
2

)
ways to do this.

iii. Choose the remaining three cards. None of these cards should have the same rank chosen in
the first step or else we will get a triple. Each of these cards should have a distinct rank or
else will get a second pair. Therefore there are

(
12
3

)
ways to select the ranks {r1, r2, r3} of

these three cards and and 43 ways of choosing their suits respective suits (s1, s2, s3).

Therefore, |A| = 13 ·
(
4
2

)
·
(
12
3

)
· 43. So

Pr(A) =
|A|
|S|

=
13 ·

(
4
2

)
·
(
12
3

)
· 43(

52
5

) =
1098240

2598960
=

352

833
≈ 0.4225690276110444

(b) The case in which we require that the hand contain one or more pairs is (surprisingly) a little
trickier. From Part (a) we know how many hands contain exactly one pair (but no triple). Now
we need to add in the hands that contain two pairs (but no triple). Let B be the event “the hand
contains two pairs but no triple”. We can count |B| using the Product Rule with the following
Procedure:

i. Choose two ranks {r1, r2} for the pairs. There are
(
13
2

)
ways to do this.

ii. Choose the two suits for the pair with rank r1. There are
(
4
2

)
ways to do this.

iii. Choose the two suits for the pair with rank r2. There are
(
4
2

)
ways to do this.

iv. Choose the last card in the hand. The rank of this card must be different from r1 and r2 and
can be any suit, so there are 11 · 4 = 44 ways to do this.

Therefore

|B| =
(

13

2

)
·
(

4

2

)
·
(

4

2

)
· 44 = 123552 .

Now the probability we want is given by

|A|+ |B|(
52
5

) =
1221792

2598960
=

1958

4165
≈ 0.47010804321728694

These calculations require some care and it’s easy to make a mistake, so we can check them with a bit of
Python code:

#!/usr/bin/python3

from collections import defaultdict

from math import factorial

import random

import itertools

def is_flush(hand):

suit = hand[0][1]

for card in hand:

if card[1] != suit:

return False

return True

def is_straight(hand):

hand = sorted(hand)

for i in range(len(hand)-1):

if hand[i+1][0] != hand[i][0] + 1:

return False

return True

2

def count_pairs(hand):

d = defaultdict(int)

pairs = 0

for card in hand:

d[card[0]] += 1

if d[card[0]] == 2:

pairs += 1

if d[card[0]] == 3:

return -1

return pairs

def has_pair_a(hand):

return count_pairs(hand) == 1

def has_pair_b(hand):

return count_pairs(hand) >= 1

ranks = range(2, 15)

suits = [x for x in "HDCS"]

deck = list(itertools.product(ranks, suits))

c = 0

flushes = 0

straights = 0

pairs_b = 0

pairs_a = 0

for hand in itertools.combinations(deck, 5):

flushes += is_flush(hand)

straights += is_straight(hand)

pairs_a += has_pair_a(hand)

pairs_b += has_pair_b(hand)

c += 1

print("flushes = {}".format(flushes))

print("straights = {}".format(straights))

print("pairs(a) = {}".format(pairs_a))

print("pairs(b) = {}".format(pairs_b))

2 Drinking Warm Beer

1. Let X = {M1, . . . ,M10, L1, L2, L3} denote the set of bottles in the trunk of the car. Then the elements
of S are the ordered 2-element subsets (b1, b2) of X. That is

S = {(b1, b2) : b1, b2 ∈ X, b1 6= b2}

Note that we easily determine that |S| = 13 ·12 = 156 since we have 13 choices for b1 and (after picking
b1) we have 12 choices for b2.

2. This is a uniform probability space and the set S has size 13× 12 = 156. Therefore Pr(ω) = 1/156 for
every ω ∈ S.

3

3. By a straightforward application of the Product Rule, |A| = 10 · 12 = 120 and |B| = 3× 12 = 36, so

Pr(A) =
|A|
|S|

=
120

156
=

10

13

Pr(B) =
|B|
|S|

=
36

156
=

3

13

4. To compute Pr(A | B) we need to know |A ∩B|. Again, a straightforward application of the Product
Rule tells us that |A ∩B| = 10 · 3 = 30. So

Pr(A | B) =
Pr(A ∩B)

Pr(B)

|A ∩B|/|S|
|B|/|S|

=
30

36
=

5

6
6= 10

13
= Pr(A)

Therefore A and B are not independent.

3 Three Dice of a Kind

1. For this question, the sample spaces S = {d1, . . . , d6) : d1, . . . , d6 ∈ {1, 2, 3, 4, 5, 6}} has size |S| = 66

and the probability space is uniform, so Pr(ω) = 1/|S| for every ω ∈ S.

Let A be the event “you win this game”. It’s easier to consider the complementary event A and break
it down into pieces:

(a) A set A1 of outcomes in which no number appears more than once. For example (1, 3, 5, 4, 2, 6).
This means that d1, . . . , d6 is a permutation of {1, 2, 3, 4, 5, 6}, so

|A1| = 6! .

(b) A set A2,1 of outcomes in which exactly one number appears twice. For example (2, 1, 3, 4, 3, 6).
There are

(
6
2

)
choices for the locations of this number, 6 choices for the value of this number, and

then 5 · 4 · 3 · 2 choices for the values of the other 4 dice. Therefore

|A2,1| =
(

6

2

)
· 6 · 5 · 4 · 3 · 2 .

In the example (2, 1, 3, 4, 3, 6) we first choose the locations 3 and 5 so we have (·, ·, x, ·, x, ·). Then
we choose the value 3 so we have (·, ·, 3, ·, 3, ·). Then we choose the values 2, 1, 4, 6 so we have
(2, 1, 3, 4, 3, 6).

(c) A set A2,2 of outcomes in which exactly two numbers x1, x2 appear twice. For example (1, 3, 5, 1, 4, 3).
There are

(
6
2

)
choices for the the values of these two numbers. Call these values x1 and x2 where

x1 > x2. There are
(
6
2

)
choices for the locations of x1 after which there are

(
4
2

)
choices for the

locations of x2. Finally, there 4×3 choices for the values of the numbers that go in the remaining
two locations. Therefore,

|A2,2| =
(

6

2

)
·
(

6

2

)
·
(

4

2

)
· 4 · 3 .

In the example (1, 3, 5, 1, 4, 3) we first choose the values x1 = 3 and x2 = 1. Then we choose the
locations 2 and 6 for x1 giving (·, 3, ·, ·, ·, 3). Then we choose the locations 1 and 4 for x2 giving
(1, 3, ·, 1, ·, 3). Finally we choose the values 5, 4 giving (1, 3, 5, 1, 4, 3).

(d) A set A2,3 of outcomes in which three numbers x1, x2, x3 each appear twice. For example
(1, 4, 4, 2, 1, 2). There are

(
6
3

)
choices for x1 > x2 > x3. Then there are

(
6
2

)
choices for the

locations of x1. Then
(
4
2

)
choices for the locations of x2. This leaves only

(
2
2

)
= 1 choices for the

locations of x3. Therefore,

|A2,3| =
(

6

3

)
·
(

6

2

)
·
(

4

2

)
.

4

In the example (1, 4, 4, 2, 1, 2) we choose x1 = 4, x2 = 2, and x1 = 1. Then we choose 2, 3
as the locations for x1 giving (·, 4, 4, ·, ·, ·). Then we choose 4, 6 as the locations for x2 giving
(·, 4, 4, 2, ·, 2). Then we have no choice but to place x3 at positions 1, 5 giving (1, 4, 4, 2, 1, 2).

Since A = A1 ∪A2,1 ∪A2,2 ∪A2,3 and A1, A2,1, A2,2 and A2,3 are pairwise disjoint, we get

|A| = |A1|+ |A2,1|+ |A2,2|+ |A2,3|

= 6! +

(
6

2

)
· 6 · 5 · 4 · 3 · 2 +

(
6

2

)
·
(

6

2

)
·
(

4

2

)
· 4 · 3 +

(
6

3

)
·
(

6

2

)
·
(

4

2

)
= 29520

Therefore,

Pr(A) = 1− Pr(A) =
66 − 29520

66
=

17136

46656
=

199

324
≈ 0.36728395061728397

This was an involved computation with lots of chances for calculation errors or double-counting, so
here’s some code to check it by exhaustive enumeration:

#!/usr/bin/python3

from collections import defaultdict

from math import factorial

from fractions import Fraction

import itertools

def binom(n, k):

return factorial(n)//(factorial(k)*factorial(n-k))

def win(a):

d = defaultdict(int)

for x in a:

d[x] += 1

if d[x] == 3:

return True

return False

def count_winners():

w = 0

die = [1, 2, 3, 4, 5, 6]

for p in itertools.product(die, die, die, die, die, die):

w += win(p)

return w

if __name__ == "__main__":

s = 6**6

w = count_winners()

print("Python: Pr(A) = {}/{} = {} ~ {}".format(w, s, Fraction(w,s), w/s))

nota = \

factorial(6) \

+ binom(6,2)*6*5*4*3*2 \

+ binom(6,2)*binom(6,2)*binom(4,2)*4*3 \

+ binom(6,3)*binom(6,2)*binom(4,2)

a = s - nota

5

pa = Fraction(a, s)

print("Brain: Pr(A) = {} ~ {} ".format(pa, float(pa)))

4 Dungeons and Pepys

1. Let A be the event “we win Game A”. For each i ∈ {1, . . . , 12}, let Ai be the event “the ith roll is a
12”. Then

Pr(A = Pr(A1 ∩A2 ∩ · · ·A12)

= Pr(A1) · Pr(A2) · · · · · Pr(A12)

=

(
11

12

)12

=
3138428376721

8916100448256

So

Pr(A) = 1− Pr(A) =
5777672071535

8916100448256
≈ 0.6480043719858629 .

2. Let B be the event “we win Game B” so B is the event “we lose Game B”. For each i ∈ {0, 1, 2}, let
Xi be the event “we roll exactly i twelves”. Then

Pr(B) = Pr(X0 ∪X1 ∪X2)

= Pr(X0) + Pr(X1) + Pr(X2)

=

(
11

12

)36

+ 36 · 1

12
·
(

11

12

)35

+

(
36

2

)
·
(

1

12

)2

·
(

11

12

)34

=
293031773315724475315019304286032305827

708801874985091845381344307009569161216

So

Pr(B) = 1− Pr(B) =
415770101669367370066325002723536855389

708801874985091845381344307009569161216
≈ 0.5865815488680983 .

(That number 0.5865815488680983 looks familiar. Maybe we’ll see it again. . .)

5 Random Pigeonholing

1. This is just the Birthday Paradox computation. The outcome set S consists of all functions from a set
of size 100 onto a set of size 500 and therefore |S| = 500100. Let A be the event “every hole contains
at most one pigeon”. Then A consists of all one-to-one functions from a set of size 100 onto a set of
size 500 and therefore |A| = 500!

400! . So

Pr(A) =
|A|
|S|

=
500!

400! · 500100
.

So
Pr(A) = 1− Pr(A) ≈ 0.9999758457295991 .

2. Again, it’s easier (but not much) to work with the complimentary event. Let B be the event “at least
one hole contains at least 3 pigeons” so that B is the event “every hole contains at most 2 pigeons”.
For each k ∈ {0, . . . , 50}, let Bk denote the event “every hole contains at most 2 pigeons and exactly

6

k holes contain exactly two pigeons”. Notice that A = B0 (where A is defined in the answer to the
previous question). B0, . . . , B50 are pairwise-disjoint and B = B0 ∪B1 ∪ · · · ∪B50, so

|B| = |B0 ∪B1 ∪ · · · ∪B50| = |B0|+ |B1|+ · · ·+ |B50|

To figure out |Bk| we’ll use the Product Rule with a 2-step procedure.

(a) First, let’s choose the k-pairs of pigeons that will fly into holes together. The number of ways of
choosing k pigeons and pairing them off is exactly the number of self-inverting functions on a set
of size 100 that have exactly 100− 2k fixed points. From Assignment 2, we know there are(

100

2k

)(
1

2k

)(
2k

k

)
k!

ways to do this.

(b) Now that we’ve chosen the k pairs of pigeons we need to pick a distinct hole for each of the k
pairs and for each of the 100− 2k lonely pigeons. So we’re looking for a one-to-one function from
a set of size 100− k onto a set of size 500. There are 500!/(400 + k)! such functions.

So by the Product Rule,

|Bk| =
(

100

2k

)(
1

2k

)(
2k

k

)
k! · 500!

(400 + k)!

So

|B| =
50∑
k=0

|Bk|

=

50∑
k=0

(
100

2k

)(
1

2k

)(
2k

k

)
k! · 500!

(400 + k)!

= 44481511508 . . . 41760000000000000000000000000

(there are many digits missing under the . . .). We finish up with

Pr(B) = 1− Pr(B)

= 1− |B|
500100

= 344045790137374210681063079669235208013552981944670083024438656

121388671785793146115973227603655550881436337191949544498214132

213242698232512826673657699877358893414682809530670607049597169

395225504636092887960209661798867100039585802905442058240000000

000000000000000000/500100 ≈ 0.4361298523736379

6 Rolling Snake Eyes

1. This is a uniform probability space of the set S = {(d1, d2) : d1, d2 ∈ {1, 2, 3, 4, 5, 6}}. By the Product
Rule, |S| = 1/36. The event A = {(1, 1)} has size 1, so Pr(A) = 1/|S| = 1/36.

2. Let B be the event “at least one of our dice is a 1”. Then

B = {(1, 1), (1, 2), (1, 3), (1, 4), (1, 5), (1, 6), (2, 1), (3, 1), (4, 1), (5, 1), (6, 1)}

and |B| = 11. So

Pr(A | B) =
Pr(A ∩B)

Pr(B)
=

Pr({(1, 1)})
Pr(B)

=
1/36

11/36
=

1

11
.

7

3. Let C be the event “at least one of the dice came up 6”. Just like B, C has size 11. More importantly,
C ∩B = {(1, 6), (6, 1)}. So

Pr(C | B) =
Pr(B ∩ C)

Pr(B)
=

2/36

11/36
=

2

11
.

4. Here S = {(d1, d2, d3, d4) : d1, d2, d3, d4 ∈ {1, 2, 3, 4, 5, 6}} has size |S| = 64.

By an easy application of the Product Rule, |X| = |Y | = 36. Obviously X ∩ Y = {(1, 1, 1, 1)} has size
|X ∩ Y | = 1. Let Z = X ∪ Y . By principle of inclusion-exclusion:

|Z| = |X ∪ Y | = |X|+ |Y | − |X ∩ Y | = 36 + 36− 1 = 71 .

Let A be the event “d1 = d2 = 1” so that the question is asking us to compute Pr(A | Z).

So
A ∩ Z = {(1, 1, 1, d) : d ∈ {1, 2, 3, 4, 5, 6}} ∪ {(1, 1, d, 1) : d ∈ {1, 2, 3, 4, 5, 6}} .

By the Principle of Inclusion-Exclusion

|A ∩ Z| = 6 + 6− 1 = 11 .

Therefore,

Pr(A | Z) =
Pr(A ∩ Z)

Pr(Z)
=

11/64

71/64
=

11

71
.

7 Randomized Leader Election

1. For the case n = 2, we have we have a uniform probability space over the sample set S = {(1, 1), (1, 2), (2, 1), (2, 2)}.
If we let A2 denote the event “the algorithm succeeds” then A = {(1, 2), (2, 1)} so

Pr(A) =
|A|
|S|

=
2

4
=

1

2
.

2. For the case n = 3, we have a uniform probability space over S = {1, 2, 3}3, which has size 33 = 27.
Let A denote the event “the algorithm succeeds”. For each i ∈ {1, 2, 3}, let Ai denote the event “the
algorithm succeeds and the maximum is i”. Then A1 = ∅ since the algorithm does not succeed if all
three players choose 1. Next,

A2 = {(2, 1, 1), (1, 2, 1), (1, 1, 2)} ,

so |A2| = 3. Finally,

A3 = {(3, a, b) : a, b ∈ {1, 2}} ∪ {(a, 3, b) : a, b ∈ {1, 2}} ∪ {(a, b, 3) : a, b ∈ {1, 2}} ,

so A3 is the union of three disjoint sets, each of size 4. Therefore |A3| = 12. We finish up with

Pr(A) = Pr(A1 ∪A2 ∪A3) = Pr(A1) + Pr(A2) + Pr(A3) =
0 + 3 + 12

27
=

15

27
.

3. For the general case, we can proceed as we did for the Case n = 3. Let A be the event “the algorithm
succeeds”. For each i ∈ {1, . . . , n}, let Ai be the event “the algorithm succeeds and the maximum is
i”. Then

|Ai| = n× (i− 1)n−1 ,

8

since we need to choose a location for i to occur and then the remaining n − 1 locations need to be
filled with choices from 1, . . . , i− 1. So

Pr(A) = Pr(A1 ∪A2 ∪ · · · ∪An)

=

n∑
i=1

Pr(Ai)

=

n∑
i=1

|Ai|
|S|

=

n∑
i=1

n× (i− 1)n−1

nn

=

n∑
i=1

(
(i− 1)

n
)

)n−1

=

n−1∑
i=0

(
i

n

)n−1

=

n−1∑
i=1

(
i

n

)n−1

We can’t say anything more precise than this about Pr(A), and I don’t expect anyone to get beyond
this. In particular, there’s no closed form for the sum in the numerator, but we can approximate it
very closely. Consider

Pr(A) =

n−1∑
i=1

(i/n)n−1

=

(
n− 1

n

)n−1

+

(
n− 2

n

)n−1

+

(
n− 3

n

)n−1

+ · · ·+
(
n− (n− 1)

n

)n−1

= (1− 1/n)
n−1

+ (1− 2/n)
n−1

+ (1− 3/n)
n−1

+ · · ·+ (1− (n− 1)/n)
n−1

=

n−1∑
i=1

(1− i/n)n−1

=

n−1∑
i=1

((
(1− i/n)

n
i

)n−1
n

)i

≤
n−1∑
i=1

(
(1/e)

n−1
n

)i

≤
∞∑
i=1

(
(1/e)

n−1
n

)i

=
1

e
n−1
n − 1

Notice that, as n→∞, this converges to Pr(A) ≤ 1/(e− 1) ≈ 0.581976. If we want a matching lower

9

bound then, for large n, we can continue from partway down:

Pr(A) =

n−1∑
i=1

((
(1− i/n)

n
i

)n−1
n

)i

≥

√
n∑

i=1

((
(1− i/n)

n
i

)n−1
n

)i

≥

√
n∑

i=1

((
(1− 1/

√
n)
√
n
)n−1

n

)i

since f(k) = (1− 1/k)k is an increasing function. Now, limn→∞((1− 1/
√
n)
√
n)

n−1
n = 1/e and

√
n∑

i=1

(1/e)i =
1− 1/e

√
n

e− 1
→ 1

e− 1
as n→∞.

Doing this carefully enough, we can conclude that

lim
n→∞

Pr(A) =
1

e− 1
≈ 0.581976

So for large values of n the algorithm succeeds in electing a leader about 58% of the time.

We can also check the sanity of this result by simulation:

#!/usr/bin/python3

import random

import sys

if __name__ == "__main__":

n = 100

if len(sys.argv) > 1:

n = int(sys.argv[1])

print("Estimating Pr(A) for n={}".format(n))

i = 0

c = 0

while 1 < 2:

a = [random.randrange(n) for _ in range(n)]

m = max(a)

if len([x for x in a if x == m]) == 1:

c += 1

i += 1

print("{} {} {} \r".format(c, i, c/i), end='')

10

