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2 Arrangements of MOOSONEE

1. We will use the product rule. The final string will have 8 letters.
(a) Choose the locations of the three Os in one of (§) ways (5 empty positions remain).
(b) Choose the locations of the two Es in one of (g) ways (3 empty positions remain).

)

)

(¢) Choose the location of the M in one of (‘I’) ways (2 empty positions remain).

(d) Choose the location of the S in one of (f) ways (1 empty position remains).
)

(e) Place the N in the last remaining empty position in on of G) ways.

Therefore, the number of distinct orderings of the letters in MOOSONEE is
8 5 3 2 1
(3) ) < () () < () oo
3 Self-Inverting Functions

1. Let B C S be the set of fixed points of f and let A = S\ B. Then, for every x € A, x # f(x) but
x = f(f(x)). Therefore, the elements of A can be partitioned into two disjoint sets A; and As such
that f is a bijection from A; onto As. By the bijection rule, |A;| = |Az2|. Therefore,

|S| — k= |A| = |A1]| + |A2] +2]A4] .
Since |A;] is an integer, 2|A;| is even.

2. Let S be an n-element set and let X be the set of self-inverting functions f : S — S.

The hard part is counting the number of self-inverting functions with no fixed points, so let’s count
those first. The hardest part of this is avoiding double-counting (counting the same function more
than once). Using the notation above, let A C S have even size and let X 4 be the set of self-inverting
functions f : A — A with no fixed points. We want to determine |X4|. Consider the following
procedure:



(a) Choose a set A1 C A of |A|/2 elements in A and let A3 = A\ A;. By the definition of binomial
coefficients, there are (|1|41?/|2) ways to do this.

(b) Choose a one-to-one function f : Ay — As. We've seen several times that there are (|A|/2)! ways
to do this. (For example, it’s a consequence of Theorem 3.1.2 when n = m = |A|/2.)

(¢) For each x € Ay, let y = f(x) and define f(y) = x. There is only one way to do this.

Therefore there are (‘Af‘/lm) x (|A]/2)! x 1 ways to execute this procedure.

This procedure produces a self-inverting function f : A — A with no fixed points. In other words, it
produces an element of X 4. However, for a particular f € X 4, there is more than one execution of
this procedure that generates f. Indeed, if f is the function defined by f(z;) = y; and f(y;) = z; for
i€ {l,...,]A|/2}, then any execution of the procedure above that, for each i € {1,...,|A|/2}

(a) item puts x; in Ay and y; in Ay and set f(z;) = y;; or

(b) puts z; in Ay and y; in Ay and sets f(y;) = =,

will produce the function f. Therefore, there are exactly 2/41/2l executions of the procedure that
generate f, so

(1hysa) = /2= 24721,

0 k) (o

Now we can easily finish up using the Product Rule and the Sum Rule. If we want a function f : S — S
with exactly 2k fixed points, then we choose the set B C S of 2k fixed points, let A =S\ B and then
choose a self-inverting function f : A — A with no fixed points. There are (272) ways to perform the first
step and, from the preceding discussion, there are | X 4| ways to perform the second step. Therefore,

the number of self-inverting functions f : S — S with exactly 2k fixed points is

(2) (zoms) (0 22 )0z o

Finally, for each k € {0,...,n/2}, let Xj be the set of self-inverting functions f : S — S with exactly
2k fixed points.! By the Sum Rule,

SO

n/2 n/2

X1= 310 = 3 () () (a2 2=

k=0

as required.

Pigeonholing

1. If we look at what lossless compression means, it is that there is a compression function f and an
uncompression (decompression) function g such that g(f(z)) = « for any valid input z.

In this case, the set of valid inputs, Syg24, of 1024-bit strings has size 2'°24, For any n < 0, the set S,
of n-bit strings has size 2. Therefore the set S.1g24 of bitstrings of length at most 1023 is

1023 1023

Z |Sn‘ _ ZQn — 91024 _
n=0 n=0

The set Sigo3 of 1023-bit strings has size 21023 < 21924 Therefore, by the Pigeonhole Principle, there
is no one-to-one function f : Sigo4 — S<1024. This means that, if f is the compression function that

INote that, since n is even, any self-inverting function f : S — S has an even number of fixed points.



Pied Piper claims to implement and g is the uncompression function, then there must be two different
1024-bit strings x1 and a2 such that f(x1) = y = f(x2). Since the compression is lossless this means
that g(y) = z1 and g(y) = x2. But this isn’t possible, since x1 # xa.

. Let S C {1,...,n} have size k. Consider the set X consisting of the (g) pairs of elements in .S and let
f:X —{3,...,2n — 1} be defined as f({a,b}) = a + b. Notice that

|X|:<§):k(k2l>22n—1

since k(k—1) > 4n—2 is stated as part of the question. Therefore, by the Pigeonhole Principle f is not
one-to-one (its range only has size 2n — 2), so there are two pairs {a,b} C S and {z,y} C S such that
f{a,b}) = f({z,y}), ie., a+b=2a+y. Now, since a £ b, x # vy, {a,b} # {z,y}, and a + b=z + y,
it must be the case that a # x, a # y, b # x, and b # y so {a,b,z,y} is a 4-element subset of S with
a+b=x+y.

. Every midpoint has an = and y coordinate that each come from the set M = {k/2: k € {2,...,2n},
which has size |[M| = 2n—1. Therefore, the number of possible midpoints is at most |M|? = (2n—1)% =
4n? —2n + 1.

Let S be a subset of G with |S| = k. Consider the set X consisting of the (’;) pairs of elements in S.

We want to apply the Pigeonhole Principle to the midpoint function m : X — M?2, so let’s check:

(g) = k(kT_l) > (2n —1)% = |[M?|

since k(k + 1) > 2(2n — 1)? is stated as part of the question. Therefore, by the Pigeonhole Principle,
f is not one-to-one, so there are two pairs {a,b} € X and {x,y} € X such that m(a,b) = m(x,y).
Again, we can check that a, b, z, and y are all distinct, so {a,b,x,y} is a 4-element subset of S with
m(a,b) = m(zx,y), as required.

. Partition Q into n? 1 x 1 (unit) squares using the vertices lines x = i for i € {1,...,n — 1} and
the horizontal lines y = ¢ for ¢ € {1,...,n — 1}. The points of S are pigeons and the squares are
holes. In each unit square the maximum distance between any pair of points is v/2. By the Pigeonhole
Principle, there are two distinct points p,q € S that are contained in the same unit square, so the
distance between p and and ¢ is at most v/2, as required.

(Note: We were a bit sloppy here with the word “partition” since the n? unit squares overlap on their
boundaries. For a point is on the boundary of 2 or more squares we can assign that point, arbitrarily,
to one of those squares.)

. Let f be the function that counts the number of zeroes in a binary string. Then f : {0,1}" — {0,...,n}.
Thus, if S is a set of n + 2 binary strings of length n then, by the Pigeonhole Principle f(z) = f(y)
for two distinct strings z,y € S. So the number of zeroes in x is equal to the number of zeroes in y.
But the number of ones in z and y is n — f(z) = n — f(y). Therefore x and y are anagrams.

. For any string s over the alphabet {a,b,c,d}, let s,, Sp, s. and sq denote the number of a’s, b’s, ¢’s
and d’s in s, respectively. Notice that two strings s and ¢ are anagrams if and only if s, = t,, sp = tp,
Se = te, and sq = t4. Next, observe that, if s has length 12 then

Sq+Sp+Se+sq=12 .
Let
R={(a,b,¢,d):a,bc,d€Z>9, a+b+c+d=12} .

We saw in class that |R| = (12;'3) = 455. (This is Theorem 3.9.1 in the textbook with n = 12 and
k=4.)

Now let S be any set of 456 12-character strings over {a,b,c,d} and let f be the function defined by
f(s) = (Sa, Sb, Sey Sd), so f : S — R. Since |S| = 456 > 455 = |R|, the Pigeonhole Principle implies
that there are distinct s,t € S such that f(s) = f(t), so s and ¢ are a pair of anagrams, as required.



5 Recurrences

1. The proof is by induction on n. For the base case n = 0 we have
F0)=1=2"

as required. Now assume f(n —1) = 9(n—1)%, Then, for n > 1,

fln) = % 4" x f(n—1) (by definition of f(n))

= % x 2(n=1)° (by the inductive hypothesis)

= % x 47 x g 2t (since (n — 1) =n? —2n + 1)

%x2%x2”_%“ (since 4" = (2%)" = 22")

=271 x 92n i gn -2l (since 1/2 = 271)
=’

2. To get a feel for the recurrence, we write out the first few values
n 01 2 3 4 5 6 7 8 9
fr) 1 1 3 3 9 9 27 27 81 81
So it looks like the sequence is just powers of 3 with each power occuring twice. So f(n) = 3"/2) a
natural guess and we can prove this by induction on n.

For the base cases we have f(0) = 1 = 3% = 3192 and f(1) = 1 = 3% = 311/2] 50 those check out.
Now assume f(k) = 3%/2) for all k € {1,...,n —1}. So,

f(n) =3x f(n—-2) (by definition of f(n))
= 3 x 3L(n=2)/2] (by the inductive hypothesis)
= 3 x glv/2-1 (since (n —2)/2=n/2-1)
= 3 x gln/2-1 (since |z — 1) = [z] — 1)
— 3ln/2]

as required.
3. For n > 2, any string in S, either

(a) begins with b followed by a string in S, _1;
(b) begins with ¢ followed by a string in S,,_1;
(¢) begins with ab followed by a string in S,,_o;
(d) begins with ac followed by a string in S, _s.
Therefore, for n > 2,
|Sn| = 2|Sn—1] + 2[Sn—2|

or, in you prefer the notation we've been using, define f(n) = |S,|, so we have
1 ifn=0

fln) =43 if n=1
2f(n—1)+2f(n—2) ifn>2



The question gives us the solution to this recurrence, we just have to verify, using induction on n, that
it’s correct. Let a = \/§/3 +1/2, b= \/3/2 -1/2, a =1+ V3 and B =1 — /3. We think that the

solution is
f(n) = aa™ —bp" .
First we check the two base cases, starting with n =0
aa® — b8 =a—b
=V3/3+1/2—-V3/3+1/2
=1=f(0)
and then n =1

aat —bB = aa — b
= (V3/3+1/2) (1 +V3) — (V3/3-1/2)(1 - V3)
= (V3/3+1+1/2+V3/2) — (V3/3-1/2—-1+3/2)
=3=f(1) .

Now we assume that f(k) = aa® — bB* for all k € {0,...,n — 1}. Then, for n > 2,

fn)=2f(n—1)+2f(n—-2) (by definition)
=2 (aa”fl — bﬂ"il) +2 (a0¢"72 - bﬁ"d)
=2 (aa”_l + aa”_Q) —2(pt - bﬁn_2)
=2a ("' +a"7%) =26 (B - 5" 7)
=2a(a"?(a+1)) —2b (8" *(B+1))
=a(a"?(2a+2)) —b (8" *(28+2))
— o (a7a?) - b(5"-25?)
=aa" — A" |

as required.

4. Any string in S, either
(a) begins with a b followed by any string in S,,_1; or
(b) begins with a b followed by any string in S, _1; or
(¢) begins with with k — 1 a’s followed by a ¢ followed by a string in S, _ (for some k € {2,...,n});

or
(d) consists entirely of a’s.
Therefore
1 ifn=20

2|Sn—1| + EZZQ Sn—k—l +1 ifn Z 2

5. Here is some nave Python code to compute this sequence:

def f(n):
if n == 0: return 1
if n == 1: return 3

return 2xf(n-1) + sum([f(n-k) for k in range(2,n+1)]) + 1

print(",".join([str(f(n)) for n in range(21)]))



and it produces the sequence 1,3,8,21,55,144,377,987,2584,6765,17711,46368,121393,317811,832040,2178309,
5702887,14930352,39088169,102334155,267914296. This is sequence A001906 in the OEIS (https:

//oeis.org/A001906).
f(n.k) = (Z)

We can prove this by induction on n+ k. If n+ &k = 0, then n = k = 0 and f(n,k) = 1 by definition
and (8) =1, also by definition. When n + k > 2 then there are two cases to consider:

. This recurrence solves to

(a) n > k. In this case

s = =10+ s k-0 = (" )+ (1) = (7)

where the last step is an application of Pascal’s Identity.
(b) n = k. In this case

f(n,n)=f(n—17n)+f(n—1=n—1):0+(n_l) =1= (n>

n—1 n

as required.



