
Assignment 2 Solutions

COMP2804 Fall 2019

October 15, 2019

1 ID

Name: Lenny Learning Combinatorics
Student ID: 100000000

2 Arrangements of MOOSONEE

1. We will use the product rule. The final string will have 8 letters.

(a) Choose the locations of the three Os in one of
(
8
3

)
ways (5 empty positions remain).

(b) Choose the locations of the two Es in one of
(
5
2

)
ways (3 empty positions remain).

(c) Choose the location of the M in one of
(
3
1

)
ways (2 empty positions remain).

(d) Choose the location of the S in one of
(
2
1

)
ways (1 empty position remains).

(e) Place the N in the last remaining empty position in on of
(
1
1

)
ways.

Therefore, the number of distinct orderings of the letters in MOOSONEE is(
8

3

)
×
(

5

2

)
×
(

3

1

)
×
(

2

1

)
×
(

1

1

)
= 3 360 .

3 Self-Inverting Functions

1. Let B ⊂ S be the set of fixed points of f and let A = S \ B. Then, for every x ∈ A, x 6= f(x) but
x = f(f(x)). Therefore, the elements of A can be partitioned into two disjoint sets A1 and A2 such
that f is a bijection from A1 onto A2. By the bijection rule, |A1| = |A2|. Therefore,

|S| − k = |A| = |A1|+ |A2|+ 2|A1| .

Since |A1| is an integer, 2|A1| is even.

2. Let S be an n-element set and let X be the set of self-inverting functions f : S → S.

The hard part is counting the number of self-inverting functions with no fixed points, so let’s count
those first. The hardest part of this is avoiding double-counting (counting the same function more
than once). Using the notation above, let A ⊂ S have even size and let XA be the set of self-inverting
functions f : A → A with no fixed points. We want to determine |XA|. Consider the following
procedure:

1

(a) Choose a set A1 ⊂ A of |A|/2 elements in A and let A2 = A \ A1. By the definition of binomial

coefficients, there are
(|A|
|A|/2

)
ways to do this.

(b) Choose a one-to-one function f : A1 → A2. We’ve seen several times that there are (|A|/2)! ways
to do this. (For example, it’s a consequence of Theorem 3.1.2 when n = m = |A|/2.)

(c) For each x ∈ A1, let y = f(x) and define f(y) = x. There is only one way to do this.

Therefore there are
(|A|
|A|/2|

)
× (|A|/2)!× 1 ways to execute this procedure.

This procedure produces a self-inverting function f : A → A with no fixed points. In other words, it
produces an element of XA. However, for a particular f ∈ XA, there is more than one execution of
this procedure that generates f . Indeed, if f is the function defined by f(xi) = yi and f(yi) = xi for
i ∈ {1, . . . , |A|/2}, then any execution of the procedure above that, for each i ∈ {1, . . . , |A|/2}

(a) item puts xi in A1 and yi in A2 and set f(xi) = yi; or

(b) puts xi in A2 and yi in A1 and sets f(yi) = xi,

will produce the function f . Therefore, there are exactly 2|A|/2| executions of the procedure that
generate f , so (

|A|
|A|/2

)
× (|A|/2)! = 2|A|/2|XA|

so

|XA| =
(

1

2|A|/2

)(
|A|
|A|/2

)
(|A|/2)! .

Now we can easily finish up using the Product Rule and the Sum Rule. If we want a function f : S → S
with exactly 2k fixed points, then we choose the set B ⊂ S of 2k fixed points, let A = S \B and then
choose a self-inverting function f : A→ A with no fixed points. There are

(
n
2k

)
ways to perform the first

step and, from the preceding discussion, there are |XA| ways to perform the second step. Therefore,
the number of self-inverting functions f : S → S with exactly 2k fixed points is(

n

2k

)(
1

2n/2−k

)(
n− 2k

n/2− k

)
(n/2− k)!

Finally, for each k ∈ {0, . . . , n/2}, let Xk be the set of self-inverting functions f : S → S with exactly
2k fixed points.1 By the Sum Rule,

|X| =
n/2∑
k=0

|Xk| =
n/2∑
k=0

(
n

2k

)(
1

2n/2−k

)(
n− 2k

n/2− k

)
(n/2− k)! ,

as required.

4 Pigeonholing

1. If we look at what lossless compression means, it is that there is a compression function f and an
uncompression (decompression) function g such that g(f(x)) = x for any valid input x.

In this case, the set of valid inputs, S1024, of 1024-bit strings has size 21024. For any n < 0, the set Sn

of n-bit strings has size 2n. Therefore the set S<1024 of bitstrings of length at most 1023 is

1023∑
n=0

|Sn| =
1023∑
n=0

2n = 21024 − 1

The set S1023 of 1023-bit strings has size 21023 < 21024. Therefore, by the Pigeonhole Principle, there
is no one-to-one function f : S1024 → S<1024. This means that, if f is the compression function that

1Note that, since n is even, any self-inverting function f : S → S has an even number of fixed points.

2

Pied Piper claims to implement and g is the uncompression function, then there must be two different
1024-bit strings x1 and x2 such that f(x1) = y = f(x2). Since the compression is lossless this means
that g(y) = x1 and g(y) = x2. But this isn’t possible, since x1 6= x2.

2. Let S ⊆ {1, . . . , n} have size k. Consider the set X consisting of the
(
k
2

)
pairs of elements in S and let

f : X → {3, . . . , 2n− 1} be defined as f({a, b}) = a+ b. Notice that

|X| =
(
k

2

)
=
k(k − 1)

2
≥ 2n− 1

since k(k−1) ≥ 4n−2 is stated as part of the question. Therefore, by the Pigeonhole Principle f is not
one-to-one (its range only has size 2n− 2), so there are two pairs {a, b} ⊂ S and {x, y} ⊂ S such that
f({a, b}) = f({x, y}), i.e., a+ b = x+ y. Now, since a 6= b, x 6= y, {a, b} 6= {x, y}, and a+ b = x+ y,
it must be the case that a 6= x, a 6= y, b 6= x, and b 6= y so {a, b, x, y} is a 4-element subset of S with
a+ b = x+ y.

3. Every midpoint has an x and y coordinate that each come from the set M = {k/2 : k ∈ {2, . . . , 2n},
which has size |M | = 2n−1. Therefore, the number of possible midpoints is at most |M |2 = (2n−1)2 =
4n2 − 2n+ 1.

Let S be a subset of G with |S| = k. Consider the set X consisting of the
(
k
2

)
pairs of elements in S.

We want to apply the Pigeonhole Principle to the midpoint function m : X →M2, so let’s check:(
k

2

)
=
k(k − 1)

2
> (2n− 1)2 = |M2|

since k(k + 1) > 2(2n − 1)2 is stated as part of the question. Therefore, by the Pigeonhole Principle,
f is not one-to-one, so there are two pairs {a, b} ∈ X and {x, y} ∈ X such that m(a, b) = m(x, y).
Again, we can check that a, b, x, and y are all distinct, so {a, b, x, y} is a 4-element subset of S with
m(a, b) = m(x, y), as required.

4. Partition Q into n2 1 × 1 (unit) squares using the vertices lines x = i for i ∈ {1, . . . , n − 1} and
the horizontal lines y = i for i ∈ {1, . . . , n − 1}. The points of S are pigeons and the squares are
holes. In each unit square the maximum distance between any pair of points is

√
2. By the Pigeonhole

Principle, there are two distinct points p, q ∈ S that are contained in the same unit square, so the
distance between p and and q is at most

√
2, as required.

(Note: We were a bit sloppy here with the word “partition” since the n2 unit squares overlap on their
boundaries. For a point is on the boundary of 2 or more squares we can assign that point, arbitrarily,
to one of those squares.)

5. Let f be the function that counts the number of zeroes in a binary string. Then f : {0, 1}n → {0, . . . , n}.
Thus, if S is a set of n + 2 binary strings of length n then, by the Pigeonhole Principle f(x) = f(y)
for two distinct strings x, y ∈ S. So the number of zeroes in x is equal to the number of zeroes in y.
But the number of ones in x and y is n− f(x) = n− f(y). Therefore x and y are anagrams.

6. For any string s over the alphabet {a, b, c, d}, let sa, sb, sc and sd denote the number of a’s, b’s, c’s
and d’s in s, respectively. Notice that two strings s and t are anagrams if and only if sa = ta, sb = tb,
sc = tc, and sd = td. Next, observe that, if s has length 12 then

sa + sb + sc + sd = 12 .

Let
R = {(a, b, c, d) : a, b, c, d ∈ Z≥0, a+ b+ c+ d = 12} .

We saw in class that |R| =
(
12+3

3

)
= 455. (This is Theorem 3.9.1 in the textbook with n = 12 and

k = 4.)

Now let S be any set of 456 12-character strings over {a, b, c, d} and let f be the function defined by
f(s) = (sa, sb, sc, sd), so f : S → R. Since |S| = 456 > 455 = |R|, the Pigeonhole Principle implies
that there are distinct s, t ∈ S such that f(s) = f(t), so s and t are a pair of anagrams, as required.

3

5 Recurrences

1. The proof is by induction on n. For the base case n = 0 we have

f(0) = 1 = 20
2

,

as required. Now assume f(n− 1) = 2(n−1)
2

. Then, for n ≥ 1,

f(n) =
1

2
× 4n × f(n− 1) (by definition of f(n))

=
1

2
× 4n × 2(n−1)

2

(by the inductive hypothesis)

=
1

2
× 4n × 2n

2−2n+1 (since (n− 1)2 = n2 − 2n+ 1)

=
1

2
× 22n × 2n

2−2n+1 (since 4n = (22)n = 22n)

= 2−1 × 22n × 2n
2−2n+1 (since 1/2 = 2−1)

= 2n
2

.

2. To get a feel for the recurrence, we write out the first few values
n 0 1 2 3 4 5 6 7 8 9

f(n) 1 1 3 3 9 9 27 27 81 81

So it looks like the sequence is just powers of 3 with each power occuring twice. So f(n) = 3bn/2c a
natural guess and we can prove this by induction on n.

For the base cases we have f(0) = 1 = 30 = 3b0/2c and f(1) = 1 = 30 = 3b1/2c, so those check out.
Now assume f(k) = 3bk/2c for all k ∈ {1, . . . , n− 1}. So,

f(n) = 3× f(n− 2) (by definition of f(n))

= 3× 3b(n−2)/2c (by the inductive hypothesis)

= 3× 3bn/2−1c (since (n− 2)/2 = n/2− 1)

= 3× 3bn/2c−1 (since bx− 1c = bxc − 1)

= 3bn/2c

as required.

3. For n ≥ 2, any string in Sn either

(a) begins with b followed by a string in Sn−1;

(b) begins with c followed by a string in Sn−1;

(c) begins with ab followed by a string in Sn−2;

(d) begins with ac followed by a string in Sn−2.

Therefore, for n ≥ 2,
|Sn| = 2|Sn−1|+ 2|Sn−2|

or, in you prefer the notation we’ve been using, define f(n) = |Sn|, so we have

f(n) =


1 if n = 0

3 if n = 1

2f(n− 1) + 2f(n− 2) if n ≥ 2

4

The question gives us the solution to this recurrence, we just have to verify, using induction on n, that
it’s correct. Let a =

√
3/3 + 1/2, b =

√
3/2 − 1/2, α = 1 +

√
3 and β = 1 −

√
3. We think that the

solution is
f(n) = aαn − bβn .

First we check the two base cases, starting with n = 0

aα0 − bβ0 = a− b

=
√

3/3 + 1/2−
√

3/3 + 1/2

= 1 = f(0)

and then n = 1

aα1 − bβ1 = aα− bβ

= (
√

3/3 + 1/2)(1 +
√

3)− (
√

3/3− 1/2)(1−
√

3)

= (
√

3/3 + 1 + 1/2 +
√

3/2)− (
√

3/3− 1/2− 1 +
√

3/2)

= 3 = f(1) .

Now we assume that f(k) = aαk − bβk for all k ∈ {0, . . . , n− 1}. Then, for n ≥ 2,

f(n) = 2f(n− 1) + 2f(n− 2) (by definition)

= 2
(
aαn−1 − bβn−1)+ 2

(
aαn−2 − bβn−2)

= 2
(
aαn−1 + aαn−2)− 2

(
bβn−1 − bβn−2)

= 2a
(
αn−1 + αn−2)− 2b

(
βn−1 − βn−2)

= 2a
(
αn−2(α+ 1)

)
− 2b

(
βn−2(β + 1)

)
= a

(
αn−2(2α+ 2)

)
− b

(
βn−2(2β + 2)

)
= a

(
αn−2α2

)
− b

(
βn−2β2

)
= aαn − bβn ,

as required.

4. Any string in Sn either

(a) begins with a b followed by any string in Sn−1; or
(b) begins with a b followed by any string in Sn−1; or
(c) begins with with k − 1 a’s followed by a c followed by a string in Sn−k (for some k ∈ {2, . . . , n});

or
(d) consists entirely of a’s.

Therefore

|Sn| =


1 if n = 0

3 if n = 1

2|Sn−1|+
∑n

k=2 Sn−k−1 + 1 if n ≥ 2

5. Here is some nave Python code to compute this sequence:

def f(n):

if n == 0: return 1

if n == 1: return 3

return 2*f(n-1) + sum([f(n-k) for k in range(2,n+1)]) + 1

print(",".join([str(f(n)) for n in range(21)]))

5

and it produces the sequence 1,3,8,21,55,144,377,987,2584,6765,17711,46368,121393,317811,832040,2178309,
5702887,14930352,39088169,102334155,267914296. This is sequence A001906 in the OEIS (https:
//oeis.org/A001906).

6. This recurrence solves to

f(n, k) =

(
n

k

)
We can prove this by induction on n + k. If n + k = 0, then n = k = 0 and f(n, k) = 1 by definition
and

(
0
0

)
= 1, also by definition. When n+ k ≥ 2 then there are two cases to consider:

(a) n > k. In this case

f(n, k) = f(n− 1, k) + f(n− 1, k − 1) =

(
n− 1

k

)
+

(
n− 1

k − 1

)
=

(
n

k

)
where the last step is an application of Pascal’s Identity.

(b) n = k. In this case

f(n, n) = f(n− 1, n) + f(n− 1, n− 1) = 0 +

(
n− 1

n− 1

)
= 1 =

(
n

n

)
as required.

6

