
COMP2402: Mid-term Review Questions

October 20, 2010

1 Java Collections Framework – Interfaces

All of these questions should be considered in the context of the interfaces in the Java Collections Framework

1. Explain the differences and similarities between a Set and a List

2. Explain the difference between a Collection and a Map. Could it also make sense to have Map be a
subclass of Collection?

3. Which of the JCF interfaces would be the most useful if we want to store a collection of students
enrolled in COMP2402 so that we can quickly check if a student is enrolled in COMP2402?

4. How does your answer to the previous question change if we also want to be able to quickly output a
list of students, sorted by (lastname,firstname)

5. How does your answer to the previous question change if we also want to store some auxiliary infor-
mation (e.g., a mark) with each student.

6. A Bag is like a set except that elements can be stored more than once. Explain how you could implement
a Bag using a Map.

7. Explain the differences between an Iterator and a ListIterator.

2 Java Collections Framework – Implementations

1. Explain why it is important that elements that are stored in a Set or Map aren’t modified in a way
that affects the outcome of the equals() method.

2. Explain why you would choose a LinkedHashSet (or LinkedHashMap) over a HashSet (or HashMap,
respectively).

3. Describe the running time of the methods get(i) and set(i,x) for an ArrayList versus a LinkedList

4. Describe the running time of the method add(i,x) for an ArrayList versus a LinkedList

5. Explain why it is possible to quickly make a lot of modifications in the interior (not near either end)
of a LinkedList but this is not possible in an ArrayList.

6. For each of the following methods, decide if it is fast or slow when (a) l is an ArrayList and (b) when
l is a LinkedList.

1

public static void frontGets(List<Integer> l, int n) {

for (int i = 0; i < n; i++) {

l.get(0);

}

}

public static void backGets(List<Integer> l, int n) {

for (int i = 0; i < n; i++) {

l.get(l.size()-1);

}

}

public static void randomGets(List<Integer> l, int n) {

Random gen = new Random();

for (int i = 0; i < n; i++) {

l.get(gen.nextInt(l.size()));

}

}

public static void insertAtBack(List<Integer> l, int n) {

for (int i = 0; i < n; i++) {

l.add(new Integer(i));

}

}

public static void insertAtFront(List<Integer> l, int n) {

for (int i = 0; i < n; i++) {

l.add(0, new Integer(i));

}

}

public static void insertInMiddle(List<Integer> l, int n) {

for (int i = 0; i < n; i++) {

l.add(new Integer(i));

}

for (int i = 0; i < n; i++) {

l.add(n/2+i, new Integer(i));

}

}

public static void insertInMiddle2(List<Integer> l, int n) {

for (int i = 0; i < n; i++) {

l.add(new Integer(i));

}

ListIterator<Integer> li = l.listIterator(n/2);

for (int i = 0; i < n; i++) {

li.add(new Integer(i));

}

}

2

3 Lists as Arrays

These questions are all about implementing the List interface using arrays.

3.1 ArrayStacks

Recall that an ArrayStack stores n elements in a backing array a at locations a[0],. . . ,a[n-1]:

public class ArrayStack<T> extends AbstractList<T> {

T[] a;

int n;

...

}

1. Describe the implementation and running times of the operations get(i) and set(i,x) in an ArrayStack.

2. Recall that the length of the backing array a in an ArrayStack doubles when we try and add an
element and n+1 > a.length. Explain, in general terms why we choose to double rather than just
add 1 or a constant.

3. Recall that, immediately after an ArrayStack is resized by grow() or shrink it has a.length = 2*n.

(a) If are currently about to grow the backing array a, what can you say about the number of add()
and remove() operations since the last time the ArrayStack was resized?

(b) Recall that we shrink the back array a when 3*n < a.length. If are currently about to shrink
the backing array a, what can you say about the number of add() and remove() operations since
the last time the ArrayStack was resized?

4. From the previous question, what can you conclude about the total number of elemnts copied by grow()

and shrink() if we start with an empty ArrayStack and perform m add() and remove operations.

5. What the amortized (or average) running time of the add(i,x) and remove(i) operations, as a function
of i and size().

6. Why is the name ArrayStack a suitable name for this data structure?

4 ArrayDeques

Recall that an ArrayDeque stores n elements at locations a[j], a[(j+1)%a.length],. . . ,a[(j+n-1)%a.length]:

public class ArrayDeque<T> extends AbstractQueue<T> {

T[] a;

int j;

int n;

...

}

1. Describe, in words, how to perform an add(i,x) operation (a) if i < n/2 and (b) if i >= n/2

2. What is the running time of the add(i,x) and remove(i) operations, as a function of i and size()?

3. Describe, in words, why using System.arraycopy() to perform shifting of elements in the add(i,x)

and remove(i) operations is so much more complicated for an ArrayDeque than an ArrayStack.

4. Explain why, using an example, if a.length is a power of 2 then x mod a.length == x & (a.length-1).
Why is this relevant when discussing ArrayDeques

3

4.1 DualArrayDeques

Recall that a DualArrayDeque implements the List interface using two ArrayStacks:

public class DualArrayDeque<T> extends AbstractList<T> {

ArrayStack<T> front;

ArrayStack<T> back;

...

}

1. If the elements of the list are x0, . . . , xn−1, describe how these are distributed among front and back

and in what order the appear.

2. Recall that we rebalance the elements among front and back when front.size()*3 < back.size()

or vice versa. After we rebalance, we have front.size() == back.size() ± 1. What does this
tell us about the number of add() and remove() operations between two consecutive rebalancing
operations. (See page 39 of arrays-ii.pdf).

4.2 RootishArrayStacks

Recall that a RootishArrayStack stores a list in a sequence of arrays (blocks) of sizes 1, 2, 3, 4,. . . .

public class RootishArrayStack<T> extends AbstractList<T> {

List<T[]> blocks;

int n;

...

}

1. If a RootishArrayStack has r blocks, then how many elements can it store?

2. Explain how this leads to the equation

b(b + 1)/2 ≤ i + 1 ≤ (b + 1)(b + 2)/2

that tells us the index of the block b that contains list element i.

3. In a RootishArrayStack that contains n elements, what is the maximum amount of space used that
is not dedicated to storing data?

5 Linked Lists

5.1 Singly-Linked Lists

Recall our implementation of a singly-linked list (SLList):

protected class Node {

T x;

Node next;

}

public class SLList<T> extends AbstractQueue<T> {

Node head;

Node tail;

int n;

...

}

4

1. Draw a picture of an SLList containing the values a,b,c, and d. Be sure to show the head and tail

pointers.

2. Consider how to implement a Queue as an SLList. When we enqueu (add(x)) an element, where does
it go? When we dequeue (remove()) an element, where does it come from?

3. Consider how to implement a Stack as an SLList. When we push an element where does it go? When
we pop an element where does it come from?

4. How quickly can we find the ith node in an SLList?

5. Explain why we can’t have an efficient implementation of a Deque as an SLList.

5.2 Doubly-Linked Lists

Recall our implementation of a doubly-linked list (DLList):

protected class Node {

Node next, prev;

T x;

}

public class DLList<T> extends AbstractSequentialList<T> {

protected Node dummy;

protected int n;

...

}

1. Explain the role of the dummy node. In particular, what are dummy.next and dummy.prev?

2. One of the following two functions correctly adds a node u before the node p in DLList, the other one
is incorrect. Which one is correct?

protected Node add(Node u, Node p) {

u.next = p;

u.prev = p.prev;

u.next.prev = u;

u.prev.next = u;

n++;

return u;

}

protected Node add(Node u, Node p) {

u.next = p;

u.next.prev = u;

u.prev = p.prev;

u.prev.next = u;

n++;

return u;

}

3. What is the running-time of add(i,x) and remove(i) in a DLList? Hint: It depends on i and size().

5

5.3 Memory-Efficient Doubly-Linked-Lists

Recall that a memory efficient doubly-linked list implements the List interface by storing a sequence of
blocks (arrays) each containing b±1 elements.

1. What is the running-time of get(i) and set(i) in a memory-efficient doubly-linked list? (Hint: It’s
a function of i, size(), and b.)

2. What is the amortized (or average) running time of the add(i) operation in a memory-efficient doubly-
linked list?

3. In a memory-efficient doubly-linked list containing n elements, what is the maximum amount of space
that is not devoted to storing data?

6 Hash tables

1. If we place n distinct elements into a hash table of size m using a good hash function, how many
elements do we expect to find in each table position?

2. Recall the multiplicative hash function hash(x) = (x.hashCode() * z) >>> w-d.

(a) In 32-bit Java, what is the value of w?

(b) How large is the table that is used with this hash function? (In other words, what is the range of
this hash function?)

(c) Write this function in more standard mathematical notation using the mod and div (integer
division) operators.

3. Explain the relationship between an class’ hashCode() method and its equals(o) method.

4. Explain, in words, what is wrong with the following hashCode() method:

public class Point2D {

Double x, y;

...

public int hashCode() {

return x.hashCode() ^ y.hashCode();

}

}

Give an example of many points that all have the same hashCode().

5. Explain, in words, what is wrong with the following hashCode() method:

public class Point2D {

Double x, y;

...

public int hashCode() {

return x.hashCode() + y.hashCode();

}

}

Give an example of 2 points that have the same hashCode().

6

