
Bounds for Frequency Estimation of Packet
Streams∗

P. BOSE
Carleton University, Canada

E. KRANAKIS
Carleton University, Canada

P. MORIN
Carleton University, Canada

Y. TANG
Carleton University, Canada

Abstract

We consider the problem of approximating the frequency of frequently
occurring elements in a stream of lengthn using only a memory of size
m� n. This models the process of gathering statistics on Internet packet
streaming using a memory that is small relative to the number of classes
(e.g.IP addresses) of packets. We show that when some data itema occurs
αn times in a stream of lengthn, the FREQUENTalgorithm of Demaineet al.
[4], can approximatea’s frequency with an error of no more than(1−α)n/m.
We also give a lower-bound of(1−α)n/(m+1) on the accuracy of any deter-
ministic packet counting algorithm, which implies the FREQUENTalgorithm
is nearly optimal. Finally, we show that randomized algorithms can not be
significantly more accurate since there is a lower bound of(1−α)Ω(n/m)
on the expected accuracy of any randomized packet counting algorithm.

1 Introduction

We consider the problem of processing a data streamx1, . . . ,xn of packet classesin
one pass. This models the process of gathering statistics on Internet packet streams
using a memory that is small relative to the number of classes or categories of
packets.

∗This work was partly funded by NSERC (Natural Sciences and Engineering Research Council of
Canada) and MITACS (Mathematics of Information Technology and Complex Systems) grants.

1

2 Proceedings in Informatics

More formally, we considerpacket counting algorithmsthat process the stream
x1, . . . ,xn one item at a time. A packet counting algorithm has a memory of fixed-
size and has access tom integer counters, each of which can be labelled with a
packet class. If a counter is labelled with some packet classa then we say that
counter ismonitoring a. While processing an item, the algorithm may modify its
memory, perform equality tests on packet classes, increment or decrement coun-
ters and change the labels of counters. However, other than comparing packet
classes and storing them as counter labels, the algorithm may not do any other
computations on storage of packet classes. After the algorithm completes, the
counter valuefor a packet classa is the value of the counter monitoringa. If no
counter is monitoringa then the counter value fora is defined to be zero.

The problem of accurately maintaining frequency statistics in a data stream
has applications in Internet routers and gateways, which must handle continuous
streams of data that are much too large to store and postprocess later. As an ex-
ample, to implement fairness policies one might like to ensure that no user (IP
address) of a router or gateway uses more than 1% of the total available band-
width. Keeping track of the individual usage statistics would require (at least)
one counter per user and there may be tens of thousands of users. However, the
results in this paper imply that, using only 99 counters, we can identify a set of
users, all of whom are using more than 1% of the available bandwidth and which
contains every user using more than 2% of the bandwidth. If more accuracy is
required, we could use 990 counters, and the threshold values become 1% and
1.1%, respectively.

1.1 Related Work

Motivated mainly by applications like the one described above, there is a growing
body of literature on algorithms for processing data streams [1, 2, 3, 5, 6, 8, 9,
10, 11, 13]. An early work, particularly relevant to the current paper, is the work
of Fischer and Salzberg [7] who showed that, using one counter and making one
pass through a data stream, it is possible to determine a classa such that, if any
element occurs more thann/2 times, then it isa.

Demaineet al.[4] showed that Fischer and Salzberg’s algorithm generalizes to
an algorithm which they call FREQUENT. The same algorithm was also indepen-
dently discovered by Karpet al. [12]. The FREQUENTalgorithm usesmcounters
and determines a set ofm candidates that contain all elements that occur more
thann/(m+ 1) times. The output of FREQUENT is therefore a list of elements
including all of these heavy users and possibly some light users (false positives).
To determine all heavy users, Karpet al. [12] point out that we cannot do better
than keeping a counter for each user, which results inΩ(c) memory, wherec is
the number of different users. In the case of Internet packet stream, the number
of users (IP addresses) is substantially larger thanm. Hence, the algorithm needs
much more space than the size of the output. The difficulty of determining all

Bose et al.: Bounds for Frequency Estimation of Packet Streams 3

heavy users is that at any point of time, many users may have nearly equal num-
ber of occurrences, and therefore equal chances to be a heavy user, the algorithm
must remember the exact count of each user.

In applications like network traffic measurement and accounting, it is impor-
tant to not only identify all large flows but also to estimate the frequencies of these
large flows. Mankuet al. [13] proposed two algorithms for computing frequen-
cies of all large flows above a user-specified threshold. TheSticky Samplingalgo-
rithm is probabilistic and with probability 1−δ, the algorithm identifies all items
whose true frequency exceeds a user specified thresholds∈ (0,1) using at most
2
ε log(s−1δ−1) expected number of counters, whereε ∈ (0,s) is the maximum er-
ror in the output. The other algorithm calledLossy Countingis deterministic in
the sense that it outputs all flows above the threshold. Regardless of the threshold
s, it achieves the same accuracyε using at most1ε log(εn) counters.

Other work on the particular problem of estimating frequencies in packet
streams includes the work of Fanget al.[6] who propose heuristics to compute all
values above a certain threshold. Charikaret al.[2] give algorithms for computing
the topk candidates under the Zipf distribution. Estan and Varghese [5] attempt
to identify a set of packet classes that are likely to contain the most frequently
occurring packet classes, and give probabilistic estimates of the expected count
value in terms of a user selected threshold.

1.2 Results of the Paper

In this paper we are concerned with the accuracy of packet counting algorithms.
We say that a packet counting algorithm isk-accurateif, for any classa that ap-
pearsna times, the algorithm terminates with a counter valueca for a that satisfies

ca ≤ na ≤ ca +k . (1)

Therefore, both the Sticky Sampling and Lossy Counting algorithms areεn-
accurate. We show that the FREQUENT algorithm isn/(m+1)-accurate. In gen-
eral, withmcounters, no algorithm is better thann/(m+1) accurate since, ifm+1
classes each occursn/(m+1) times then one of those classes will have a counter
value of 0 when the algorithm terminates.

However, this argument breaks down when we consider the case when some
particular packet classa occursna ≥ αn times, for someα > 1/(m+ 1). In this
case, it may be possible for the algorithm to report the number of occurrences
of a (and other elements) more accurately. We explore this relationship between
accuracy andα. Our results are outlined in the next paragraph.

In Section 2 we show that the FREQUENT algorithm of Demaineet al. is
(1−α)n/m-accurate, whereαn is the number of times the most frequently oc-
curring packet class appears in the stream. In Section 3 we give a lower-bound of
(1−α)n/(m+1) on the accuracy of any deterministic packet counting algorithm
and a lower bound of(1−α)Ω(n/m) on the accuracy of any randomized packet

4 Proceedings in Informatics

counting algorithm. This latter result solves an open problem posed by Demainet
al. [4] about whether randomized packet counting algorithms can be more accu-
rate than deterministic ones. In Section 4 we summarize and conclude with open
problems.

2 The FREQUENT Algorithm

The FREQUENTalgorithm of Demaineet al. [4] usesm counters. When process-
ing stream itemxi , the following rules are applied in order:

1. If there is a counter monitoring classxi then increment that counter, other-
wise

2. if some counter is equal to 0 then set that counter to 1 and have it monitor
classxi , otherwise

3. decrement all counters by 1.

A nice way to visualize this algorithm is to imagine a set ofm buckets that
hold colored balls. When a new ball arrives we either place it in the bucket that
contains balls of the same color (Case 1), place it in an empty bucket (Case 2) or
discard one ball from every bucket as well as the new ball (Case 3).

To analyze the accuracy of this algorithm, we first provide a rough upper-
bound on the accuracy and then use this upper-bound to bootstrap a better analy-
sis. Letd be the total number of times Case 3 of the algorithm occurs. No counter
is ever less than 0, and each of Case 1 and Case 2 increments exactly one counter.
Therefore, ifC is the total sum of all counters when the algorithm terminates, then

C = n− (m+1)d≥ 0 ,

so that
d≤ n

m+1
.

It follows immediately that for any classa that occursna times, the counter mon-
itoring a has a value of at least

ca ≥ na−d≥ na−
n

m+1
.

Suppose thatna = αn for someα≥ 1/(m+1). Now we can repeat the above
argument, since we have just shown that

C = n− (m+1)d≥ αn− n
m+1

,

so that

d≤ (1−α)n
m+1

+
n

(m+1)2 .

Bose et al.: Bounds for Frequency Estimation of Packet Streams 5

and the value ofca satisfies

ca ≥ αn−d≥ αn−
(

(1−α)n
m+1

+
n

(m+1)2

)
.

In general, we can repeat the above argumentk times to show that

ca ≥ αn−
k

∑
i=1

(1−α)n
(m+1)i −

n
(m+1)k+1 .

In particular, ask→∞, we obtainca≥ αn− (1−α)n/m. Now, sinceca is clearly
never greater thanna, we have

ca ≤ na ≤ ca +
(1−α)n

m
,

so the outputca is (1−α)n/m-accurate.
Finally, we observe that the above analysis gives an upper-bound ond, and

this gives an upper bound on the accuracy of the counter value fora. However,
the upper bound ond also gives an upper bound on the accuracy ofanycounter,
not just the counter fora. This implies our first result.

Theorem 1 For any stream in which some element occurs at leastαn times, the
FREQUENTalgorithm is(1−α)n/m-accurate.

3 Lower-Bounds on Accuracy

In this section we give lower bounds on the accuracy of deterministic and ran-
domized packet counting algorithms.

3.1 A Deterministic Lower-Bound

Here we give a lower bound for deterministic packet counting algorithms by us-
ing an adversary argument. Our adversary builds two distinct streams that the
algorithm cannot distinguish between.

Our adversary usesm+ 2 packet classes and builds its streams in two parts
(see Figure 1). The first part of both streams is of length(1−α)n and consists of
the firstm+ 1 packet classes each occurring the same number of times, so that
each class occurs(1−α)n/(m+1) times. At this point the two streams diverge.
In the first stream, the adversary addsαn occurrences of the unique packet class
a of the m+ 1 first classes that is not being monitored by the algorithm after
processing the first part of the stream. In the second stream, the adversary adds
αn occurrences of the unique packet classz that does not appear in the first part
of the stream.

6 Proceedings in Informatics

abcd· · ·yabcd· · ·y · · · abcd· · ·yaaaaaa· · ·a
abcd· · ·y︸ ︷︷ ︸abcd· · ·y︸ ︷︷ ︸ · · · abcd· · ·y︸ ︷︷ ︸ zzzzzz· · ·z︸ ︷︷ ︸

m+1 m+1 m+1 αn

Figure 1: The adversary’s two streams.

Observe that, since neithera norz is stored in any of the algorithm’s counters
after processing the first part of the stream, the only information the algorithm
obtains by reading the last element of the stream is that it is not being monitored.
Therefore, since the algorithm is deterministic, its counter valueca for a on the
first stream will be equal to its counter valuecz for z on the second stream. How-
ever, in the first streama occursna = (1−α)n/(m+ 1) + αn times and in the
second stream,z occursnz = αn times. In order to be accurate at all (refer to (1))
the algorithm must terminate with a counter valueca = cz≤ nz. But in this case,
the algorithm is not better than(1−α)n/(m+1)-accurate for the first stream.

Theorem 2 For any deterministic algorithm, there exists a stream in which some
symbol a occurs na ≥ αn times, but the algorithm reports a value ca such that
ca > na or ca ≤ na− (1−α)n/(m+1).

3.2 A Randomized Lower-Bound

Next we give a lower bound for randomized algorithms. We do this by provid-
ing a probability distribution on input streams such that the expected accuracy
of anydeterministic algorithm on this distribution is at least(1−α)cn/m. Since
any randomized algorithm is just a probability distribution on deterministic algo-
rithms, the lower-bound therefore holds for randomized algorithms as well.1 The
distribution we use is a probabilistic version of our deterministic construction.

Our distribution uses two constants 1< c1 < c2 that will be specified later.
Each stream of our distribution is a two part data stream made up ofc2m packet
classes. The first part of all streams is identical. As before, it is of length(1−α)n,
and it consists of the firstc1m packet classes each occurring an equal number of
times, so that each class occurs(1−α)n/c1m times. For the second part of the
sequence, we select a packet class uniformly at random from allc2m classes and
make that class occurαn times.

Let a be the packet class chosen to make up the second part of the sequence.
Immediately after the first part of the sequence has been processed by the algo-
rithm, there are three cases to consider:

1. The algorithm has a counter that is monitoringa. Since the algorithm has

1Technically, this is an application ofYao’s Principle[14].

Bose et al.: Bounds for Frequency Estimation of Packet Streams 7

only mcounters, this happens with probability at most

p1 ≤
m

c2m
=

1
c2

,

and the number of occurrences ofa is n1 = (1−α)n/c1m+αn.

2. The algorithm does not have a counter monitoringa anda comes from the
first c1mpacket classes. This happens with probability at least

p2 ≥
(c1−1)m

c2m
=

c1−1
c2

,

and the number of occurrences ofa is alson2 = (1−α)n/c1m+αn.

3. The classa does not come from the firstc1m packet classes (so the algo-
rithm is not monitoringa). This happens with probability

p3 = 1− c1

c2
,

and the number of occurrences ofa is n3 = αn.

Let ca be the value output by the algorithm for classa. Since we are proving
a lower-bound, we can assume that in Case 1, the algorithm answers with perfect
accuracy, i.e.,ca = (1−α)n/c1m+ αn. However, if the algorithm is not moni-
toring classa (Cases 2 and 3) then it cannot distinguish between Cases 2 and 3.
Since the algorithm is deterministic, it must output the same counter valueca in
both cases. Therefore, the expected error made by the algorithm is at least

E [|ca−na|] ≥ p1×0+ p2×|ca−n2|+ p3×|ca−n3|

≥ p2×
∣∣∣∣ca−

(
(1−α)n

c1m
+αn

)∣∣∣∣+ p3×|ca−αn|

= p2×
∣∣∣∣xa−

(
(1−α)n

c1m

)∣∣∣∣+ p3×|xa|

≥ c1−1
c2

×
∣∣∣∣xa−

(
(1−α)n

c1m

)∣∣∣∣+(
1− c1

c2

)
×|xa| ,

wherexa = ca−αn. Settingc1 = 1+
√

2/2, c2 = 1+
√

2, and simplifying we
obtain

E [|ca−na|] ≥
√

2

2(1+
√

2)
×

(∣∣∣∣xa−
(

(1−α)n
(1+

√
2/2)m

)∣∣∣∣+ |xa|
)

≥
√

2

2(1+
√

2)
×

(
(1−α)n

(1+
√

2/2)m

)
≥ 0.17157(1−α)n/m

8 Proceedings in Informatics

Theorem 3 For any randomized algorithm, there exists a stream in which some
symbol a occurs na≥ αn times, but the algorithm has a counter value ca such that
E |na−ca| ≥ 0.17157(1−α)n/m.

We observe that the proof of Theorem 3 extends to a slightly more powerful
model in which the packet counting algorithm is allowed to periodically output
class/value pairs of the form(a,ca) whose meaning is “a has occurredca times”
and the counter value fora is considered to be the last such value output. A similar
model is used by Demaineet al. [4] to study probabilistic packet streams. To see
that the lower-bound carries over, observe that the last such pair(a,ca) is either
output before the second part of the stream begins, or after. In the latter case, the
argument above shows thatE [na−ca] = Ω((1−α)n/m). In the former case, the
algorithm outputs the valueca without having seen the finalαn occurrences ofa.
An argument similar to the one above shows that, in this case, there is a packet
classa such thatE [na−ca] = Ω(αn).

4 Conclusions

We have studied the problem of approximating the frequency of items in a data
stream using a fixed number,m, of counters. We have shown that when some data
item a occursαn times in a stream of lengthn, then the FREQUENTalgorithm of
Demaineet al. [4] is (1−α)n/m-accurate. This is nearly optimal for a determin-
istic algorithm since we have shown that no deterministic algorithm is better than
(1−α)n/(m+ 1)-accurate. Finally, we have shown that randomized algorithms
can not be significantly more accurate since any randomized algorithm has an
expected accuracy of at least(1−α)Ω(n/m).

The main open problem left by our research is that of determining if the con-
stant factor in the accuracy of the FREQUENT algorithm can be improved by
somehow introducing randomization. It may well be the case that running FRE-
QUENT on a random sample of the original input stream is enough to foil an
adversary and improve its accuracy.

References

[1] N. Alon, Y. Matias, and M. Szegedy. The space complexity of approximat-
ing the frequency moments. InProceedings of the 28th ACM Symposium on
the Theory of Computing (STOCS’96), pages 20–29, 1996.

[2] M. Charikar, K. Chen, and M. Farach-Colton. Finding frequent items in data
streams. InProceedings of the 19th International Colloquium on Automata,
Languages and Programming, pages 693–703, 2002.

Bose et al.: Bounds for Frequency Estimation of Packet Streams 9

[3] M. Datar, A. Gionis, P. Indyk, and R. Motwani. Maintaining stream statis-
tics over sliding windows. InProceedings of the 13th Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA 2002), pages 635–644, 2002.

[4] E. D. Demaine, A. Ĺopez-Ortiz, and J. I. Munro. Frequency estimation
of internet packet streams with limited space. InProceedings of the 10th
Annual European Symposium on Algorithms (ESA 2002), pages 348–360,
2002.

[5] C. Estan and G. Varghese. New directions in traffic measurement and ac-
counting. InProceedings of the ACM SIGCOMM Internet Measurement
Workshop, 2001.

[6] M. Fang, S. Shivakumar, H. Garcia-Molina, R. Motwani, and J. Ullman.
Computing iceberg queries efficiently. InProceedings of the 24th Interna-
tional Conference on Very Large Databases, pages 299–310, 1998.

[7] M. J. Fischer and S. L. Salzberg. Finding a majority amongn votes: Solution
to problem 81-5 (Journal of Algorithms, june 1981).Journal of Algorithms,
3(4):362–380, 1982.

[8] P. Gupta and N. McKeown. Packet classification on multiple fields. In
Proceedings of ACM SIGCOMM, pages 147–160, 1999.

[9] P. J. Haas, J. F. Naughton, S. Sehadri, and L. Stokes. Samples-based estima-
tion of the number of distinct values of an attribute. InProceedings of the
21st International Conference on Very Large Databases (VLDB’95), pages
311–322, 1995.

[10] P. Indyk. Stable distributions, pseudorandom generators, embeddings, and
data stream computations. InProceedings of the 41st Annual IEEE Sym-
posium on Foundations of Computer Science (FOCS 2000), pages 189–197,
2000.

[11] P. Indyk, S. Guha, M. Muthukrishnan, and M. Strauss. Histogramming data
streams with fast per-item processing. InProceedings of the 19th Interna-
tional Colloquium on Automata, Languages and Programming, pages 681–
692, 2002.

[12] R. Karp, C. H. Papadimitriou, and S. Shenker. A simple algorithm for find-
ing frequent elements in streams and bags. Unpublished manuscript.

[13] G. Manku and R. Motwani. Approximate frequency counts over data
streams. InProceedings of the 28th International Conference on Very Large
Data Bases, 2002.

10 Proceedings in Informatics

[14] A. C. Yao. Probabilistic computations: Towards a unified measure of com-
plexity. In Proceedings of the 18th Annual Symposium on Foundations of
Computer Science (FOCS’77), pages 222–227, 1977.

Prosenjit Bose is with the School of Computing Science, Carleton University, Ottawa,
ON, Canada K1S 5B6. E-mail: jit@scs.carleton.ca

Evangelos Kranakis is with the School of Computing Science, Carleton University, Ot-
tawa, ON, Canada K1S 5B6. E-mail: kranakis@scs.carleton.ca

Pat Morin is with the School of Computing Science, Carleton University, Ottawa, ON,
Canada K1S 5B6. E-mail: morin@scs.carleton.ca

Yihui Tang is with the School of Computing Science, Carleton University, Ottawa, ON,
Canada K1S 5B6. E-mail: ytang@scs.carleton.ca

