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Abstract

Let V be a set of n points in R2. The θ-graph of V is a geometric graph with vertex
set V that has been studied extensively and which has several nice properties.
We introduce a new variant of θ-graphs which we call ordered θ-graphs. These are
graphs that are built incrementally by inserting the vertices one by one so that
the resulting graph depends on the insertion order. We show that careful insertion
orders can produce graphs with desirable properties including low spanning ratio,
logarithmic maximum degree and logarithmic diameter.

1 Introduction

Let V be a set of n points in the plane. A t-spanner of V is a geometric graph
G = (V, E) whose edges are weighted by the distance between their endpoints
and which has the property

max

{
‖uv‖G
‖uv‖

: u, v ∈ V, u 6= v

}
≤ t ,

where ‖uv‖, respectively ‖uv‖G, denotes the Euclidean distance, respectively
the length of the shortest path in G, between u and v. We call a path P from
u to v a t-path if ‖uv‖P /‖uv‖ ≤ t. Thus, G is a t-spanner if and only if every
pair of vertices in G has a t-path between them.

It has long been known that, for any constant t > 1, every point set V has a
t-spanner with O(n) edges. One such construction is the θ-graph of V [6,7].
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Fig. 1. Different orderings lead to different ordered θ-graphs.

Let θ < π/4 be a value such that kθ = 2π/θ is a positive integer. The θ-graph
of V is obtained by drawing kθ = 2π/θ non-overlapping cones around each
p ∈ S, each spanning an angle of θ, and connecting p to the point in each cone
whose orthogonal projection onto one of the walls of the cone is closest to p.
The result is a tθ-spanner with at most nkθ edges. Here, and throughout the
rest of the paper,

tθ = 1/(cos(θ)− sin(θ)) .

This paper studies a variant of θ-graphs that we call ordered θ-graphs. An
ordered θ-graph of V is obtained by inserting the points of V in some order.
When a point p is inserted, we draw the same cones around p and connect p
to its closest previously-inserted neighbour in each cone. An ordered θ-graph
is dependent on the order imposed on V ; different orderings of V can produce
different graphs (see Figure 1). Nevertheless, in Section 2 we show that ordered
θ-graphs are also tθ-spanners, regardless of the ordering used.

We also study different properties that can be obtained by carefully choosing
orderings of V . In Section 3 we show that every point set has an ordering
such that the ordered θ-graph has maximum degree O(kθ log n). In Section 4
we show that for every point set there exists an ordering such that, in the
resulting ordered θ-graph, there is a tθ-path with O(log n) edges between every
pair of vertices. We say that such a graph has O(log n) spanner diameter.

The two results described above are not new. Sink spanners [1] are a trans-
formation of θ-graphs that achieve a somewhat stronger result, namely a tθ-
spanner with degree at most kθ

2+kθ. Skiplist spanners [2] use random-sampling
of vertices to obtain a graph with spanner diameter O(log n), and O(nkθ)
edges. However, ordered θ-graphs show the existence of spanners with small
degree and spanners with small diameter using a unified approach. Also, in the
case of small diameter, the proof improves the constants in skiplist spanners
since an ordered θ-graph of n points contains at most nkθ edges.

In Section 5 we show that two generalizations of θ-graphs also apply to or-
dered θ-graphs. Finally, in Section 6 we summarize and conclude with open
problems.
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2 Ordered θ-Graphs

In this section, we give a formal definition of ordered θ-graphs and prove some
basic properties about them. Let V be a set of n points in the plane and let
θ < π/4 be an angle such that kθ = 2π/θ is a positive integer. Define any
total order π on V so that πv is the rank of v in this order. Let Pv denote the
predecessors of v in π, i.e., Pv = {u ∈ V : πu < πv} and let Sv denote the
successors of v in π, i.e., Sv = V \ ({v} ∪ Pv).

The π-ordered θ-graph of V is obtained by repeating the following for each
point v ∈ V (see Figure 2). Partition the plane into kθ cones each spanning
an angle of θ and having their apexes on v. Next, project each point of Pv or-
thogonally onto the counterclockwise wall of the cone that contains it. Finally,
make an edge joining v to the point in each cone whose projection is closest
to v. We call the vertices connected to v in this way the θ-neighbours of v.

Lemma 1 For any point set V and any ordering π, the π-ordered θ-graph
G = (V, E) of V is a tθ-spanner with at most kθn edges.

Proof. It follows immediately from the definition that G has at most kθn edges.

To prove that G is a tθ-spanner, consider any pair of points u, v ∈ V . We
use induction on max{πu, πv}. Without loss of generality, assume πu > πv. If
πu = 2 then πv = 1 and there is a direct edge from u to v so the claim is
trivial. Otherwise, consider the θ-cone c of u that contains v and let w be the
θ-neighbour of u in c. If w = v then we are done. Otherwise, the projection of
w onto the counterclockwise wall of c is closer than the projection of v onto
the counterclockwise wall of c. Simple trigonometry shows that

‖uw‖+ tθ‖wv‖ ≤ tθ‖uv‖ . (1)

Since πw < πu we have

‖uv‖G ≤ ‖uw‖+ ‖wv‖G ≤ ‖uw‖+ tθ‖wv‖ ≤ tθ‖wv‖ ,

where the second inequality follows from the inductive hypothesis and the
third follows from (1). This completes the proof. 2

Note that the above proof gives an algorithm for finding a path between u and
v that works by constructing the path from both ends. If πu > πv then the
second vertex in the path from u to v is the neighbour w of u that is contained
in the same θ-cone of u as v. Otherwise, the second last vertex in the path
from u to v is the neighbour w of v that is contained in the same θ-cone of v
as u. We call the path produced by this algorithm the θ-path from u to v.
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Fig. 2. The θ-cones of v.

4



Fig. 3. Finding the neighbour of u in c is equivalent to finding the point in the upper
right quadrant of u with minimum y coordinate.

While it is nice to know that ordered θ-graphs have good spanning properties,
it is still important to be able to compute them efficiently.

Lemma 2 For any set V of n points in R2 and any ordering π on V , the
π-ordered θ-graph of V can be computed in O(kθn log n) time.

Proof. The crucial part of the construction algorithm is finding the neighbours
of each point v ∈ S. For this, we use kθ range trees [3], one for each cone direc-
tion. In each tree we store the points of V with their coordinates represented
in terms of the walls of one of the cones, i.e., in a coordinate system in which
the x and y axes meet at an angle of θ (see Figure 3).

Once this coordinate transformation is done, finding the neighbour of u in
a cone c is equivalent to finding the point with minimum y coordinate that
has both x and y coordinates larger than the x and y coordinates of u. These
dominance queries are exactly the types of queries that are answered by range
trees.

To construct the π-ordered θ-graph we work backwards through the sequence
π. We first choose the point v ∈ V such that πv = n, delete v from all range
trees and then use the range trees to find the neighbours of v. We continue in
this manner for the point u ∈ V such that πu = n− 1 and so on until we have
computed the entire π-ordered θ-graph of V .

Thus, computing the neighbours of each point v involves kθ deletions and
searches in range trees. A version of range trees that supports construction
in O(n log n) time, and queries and deletions in O(log n) amortized time is
given by Mehlhorn and Näher [9]. Using this implementation of range trees,
the above algorithm constructs the π-ordered θ-graph in O(kθn log n) time. 2
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3 Ordered θ-Graphs with Low Degree

So far, we have established that ordered θ-graphs have the same spanning
properties as θ-graphs and can be constructed efficiently. In this section, we
show that a carefully chosen ordering π yields a π-ordered θ-graph in which
each vertex has small degree.

Theorem 3 Every point set V of size n has an ordered θ-graph in which each
vertex has degree at most kθ(Hn−1 + 1). 1 Furthermore, this ordered θ-graph
can be constructed in O(kθn log n) time.

Proof. We construct the ordering incrementally. Initally we choose an arbitrary
vertex vn ∈ V , mark vn and set πvn ← n. This determines up to kθ edges of
the π-ordered θ-graph. In the second step we choose some unmarked vertex
vn−1 ∈ V of degree 1 (this will be a neighbour of vn), mark vn−1 and set
πvn−1 ← n − 1. In general, in the ith step (beginning at i = 0) we choose an
unmarked vertex v of maximum degree, mark v and set πv ← n − i, thereby
fixing up to kθ more edges of π-ordered θ-graph.

To prove that the above algorithm gives the desired degree bound, we relate it
to the following game: Imagine we have a set of n buckets and two players P1

and P2. In one round, P1 removes a bucket containing the maximum number
of balls and P2 adds a total of at most kθ balls to some subset of buckets. The
game ends after n rounds. Dietz and Sleator [4] show that, no matter what
P2’s strategy is, the maximum number of balls contained in any bucket at any
point during the execution of the game does not exceed kθ(Hn−1 + 1). This
game and the above algorithm for constructing π are completely analagous if
we think of the buckets as V , P1 as our algorithm and P2 as the geometry of
V that determines which edges that are fixed each time we fix the rank of a
vertex in π. Thus, the result of Dietz and Sleator implies that the degree of
a vertex in the resulting π-ordered θ-graph does not exceed kθ(Hn−1 + 1), as
required.

As in the proof of Lemma 2, the above algorithm is easily implemented to
run in O(kθn log n) time using the deletion only range tree data structure of
Mehlhorn and Näher [9]. 2

While the bound in the proof of Theorem 3 is optimal for the pebble game
used in the proof, we have no example of a point set for which every ordering
produces an ordered θ-graph with ω(kθ) degree at some vertex.

1 Here, and throughout, Hm =
∑m

i=1 1/i denotes the mth harmonic number. It is
well known that lnm ≤ Hm ≤ lnm + 1 [5].
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Before continuing, we remark that the algorithm in the proof of Theorem 3
can produce a graph with diameter n − 1. This happens, for example if the
point set V lies on a line and the algorithm begins by choosing one of the
extreme points of V .

4 Ordered θ-Graphs with Logarithmic Diameter

In this section, we show that an ordered θ-graph constructed by choosing a
random ordering has θ-paths that use only O(log n) edges.

Theorem 4 Let G = (V, E) be an ordered θ-graph of V obtained by taking
the points of V in random order. Then the probability that there exists a pair
u, v ∈ V such that the θ-path from u to v has more than c log n edges is n−Ω(c).

Proof. Consider two consecutive steps of the algorithm for finding a θ-path
from u to v. These steps either complete the path, or reduce the problem
of finding a path between u, v ∈ V to a problem of finding a path between
w, x ∈ V . We say that two consecutive steps are successful if they complete
the path, or if max{πw, πx} < α max{πu, πv}, for some constant 0 < α < 1. A
simple cases analysis shows that the probability that two consecutive steps are
successful is at least α2, and this statement is true regardless of any previous
steps taken by the algorithm.

Observe that, since the length of a path is bounded by n, any run of the
algorithm for finding a θ-path has at most log1/α2 n successes. Therefore, if we
let X denote the number of edges in the θ-path from u to v and let B denote
a binomial(2c log1/α2 n, α2) random variable then

Pr
{
X ≥ 2c log1/α2 n

}
≤Pr

{
B ≤ 2 log1/α2 n

}
= Pr

{
B ≤ 1

α2c
EB

}
≤n−(1− 1

α2c
)
2
α2c/ ln(1/α2)

= n−Ω(c) ,

where the second inequality follows from Chernoff’s bound on the head of
the binomial distribution. Thus, the probability that there exists any pair of
vertices u, v ∈ V such that the θ-path from u to v has more than 2c log1/α2 n

edges is at most
(

n
2

)
n−Ω(c) = n−Ω(c), as required. 2

We remark that, unfortunately, a random ordering does not necessarily pro-
duce an ordered θ-graph in which every vertex has low degree. For example,
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consider a point set V such that the (unordered) θ-graph of V has a vertex v
of degree n−1. In this case, the expected degree of v in the randomly ordered
θ-graph is

1

n

n∑
i=1

(n− i) = (n− 1)/2 .

5 Generalizations

In this section we discuss two generalizations of ordered θ-graphs that follow
from the corresponding generalizations of (unordered) θ-graphs.

5.1 Higher Dimensions

Ruppert and Seidel [10] give a natural generalization of θ-graphs to d-dimensions
that can be constructed in O(n logd−1 n) time and yield a tθ-spanner with
O(kd,θn) edges, where kd,θ = (d/θ)O(d). A close inspection of the proofs in Sec-
tions 3 and 4 will reveal that they make no use of the dimension of the point
set V . Thus, Theorems 1 and 2 hold also in d dimensions, with kθ replaced by
kd,θ.

Theorem 5 Let V be any set of n points in Rd. Then V has an ordered θ-
graph in which each vertex has degree at most kd,θ(Hn−1 + 1). Furthermore,
this ordered θ-graph can be constructed in O(kd,θn logd−1 n) time.

Theorem 6 Let V be a set of n points in Rd and let G = (V, E) be an ordered
θ-graph of V obtained by taking the points of V in random order. Then the
probability that there exists a pair u, v ∈ V such that the θ-path from u to v
has more than c log n edges is n−Ω(c).

5.2 Fault-Tolerant Ordered θ-Graphs

We say that a graph G = (V, E) is an f fault-tolerant t-spanner if G \ V ′ is a
t-spanner for any subset V ′ ⊆ V of size at most f . Lukovszki [8] shows that, if
we modify the construction of θ-graphs so that each vertex connects to f + 1
vertices in each cone, then we obtain an f fault-tolerant tθ-spanner with at
most fkθn edges.

Applying the same modification to ordered θ-graphs, i.e., connecting the vertex
v to the nearest f + 1 elements of Pv in each cone, yields the same result for
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ordered θ-graphs. We call such graphs f -fault tolerant ordered θ-graphs. The
results of Sections 3 and 4 generalize immediately:

Theorem 7 Let V be any set of n points in Rd. Then V has an f -fault tolerant
ordered θ-graph in which each vertex has degree at most fkd,θ(Hn−1 + 1). Fur-
thermore, this ordered θ-graph can be constructed in O(fkd,θn logd−1 n) time.

Theorem 8 Let V be a set of n points in Rd and let G = (V, E) be an
ordered θ-graph of V obtained by taking the points of V in random order. For
any V ′ ⊂ V of at most f vertices in V , the probability that there exists a
pair u, v ∈ V \ V ′ such that the θ-path from u to v in G \ V ′ has more than
c log n edges is n−Ω(c). It follows that the probability that there exists any subset
V ′ ⊆ V such that the θ-path from u to v in G \ V ′ has more than c log n edges
is nf−Ω(c).

6 Summary and Conclusions

We have defined ordered θ-graphs, a variant of θ-graphs that allow some flex-
ibility in their construction. This flexibility allows us to construct spanners
with low degree and spanners with low spanner diameter, but is close enough
to the original definition θ-graphs that existing generalizations of θ-graphs
also hold for ordered θ-graphs.

We construct ordered θ-graphs by projecting points onto the walls of cones.
A better spanning ratio of (1/(1− 2 sin(θ/2)) < tθ can be obtained if, instead,
we project points onto the central axes of cones. While it is possible to do this,
the deletion only range tree data structure of Mehlhorn and Näher does not
support the types of queries we need to perform. Using standard range trees
increases the runnning time of the construction algorithm to O(kθn log2 n).

Open Problem 1 Give an O(kθn log n) time algorithm for constructing the
ordered θ-graph obtained by projecting points onto central axes of cones.

Although we have shown that every point set V of size n has an ordering in
which the maximum degree of a vertex in the ordered θ-graph is O(kθ log n)
we do not know if this result is tight.

Open Problem 2 Does every vertex set V have an ordering π such that the
π-ordered θ-graph of V has degree bounded by some function of kθ?

There are constructions of spanner that simultaneously have small spanner
diameter and small degree [1]. Is it possible to obtain similar results using
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only ordered θ-graphs?

Open Problem 3 Does every vertex set V have an ordering π such that the
π-ordered θ-graph has small degree and O(log n) spanner diameter?
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