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Abstract. We consider the problem of testing the roundness of a man-
ufactured ball, using the finger probing model of Cole and Yap [4]. When
the center of the object is known, a procedure requiring O(nz) probes
and O(n”) computation time is described. (Here n = |1/q|, where g is the
quality of the object.) When the center of the object is not known, the
procedure requires O(n?) probes and O(n*) computation time. We also
give lower bounds that show that the number of probes used by these
procedures is optimal.

1 Introduction

The field of metrology is concerned with measuring the quality of manufactured
objects. A basic task in metrology is that of determining whether a given manu-
factured object is of acceptable quality. Usually this involves probing the surface
of the object using a measuring device such as a coordinate measuring machine
to get a set S of sample points, and then verifying, algorithmically, how well S
approximates an ideal object.

A special case of this problem is determining whether an object is round,
or spherical. For our purposes, an object I is good if there exists two concentric
spheres Ij, and I, of radius 1 —e and 1+¢, respectively, such that I, is entirely
contained in I and I is entirely contained in I,yt, and bad otherwise. We call the
problem of deciding whether an object is good or bad the roundness classification
problem. See Figure 1 for examples of good and bad objects.

In the field of computational geometry, the algorithmic side of the roundness
classification problem has received considerable attention and efficient algorithms
for testing the roundness of a set of 2D [1, 5, 6, 7, 9, 10, 12, 13, 14, 15] and 3D [6]
sample points are known. However, very little research has been done on probing
strategies for the roundness classification problem. Notable exceptions are the
work by Mehlhorn, Shermer, and Yap [11], in which planar objects (disks) are
considered, Bose and Morin [3], in which disks and cylinders are considered,
and Fu and Yap [8] in which a probing strategy for finding the near-center of a
d-dimensional ball using d(d + 1) probes is presented.

In this paper we describe strategies for testing the roundness of manufactured
balls. (A ball is a solid object whose surface is a sphere.) We use the finger probing
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Fig. 1. Examples of (a) good and (b,c) bad objects.

model of Cole and Yap [4]. In this model, the measurement device can identify
a point in the interior of I and can probe along any ray, i.e., determine the first
point on the ray that intersects the boundary of I. The finger probing model is
a reasonable abstract model of a coordinate measuring machine [16].

We describe a procedure for testing the roundness of a manufactured ball T
using O(1/qual(I)?) finger probes. Here |qual(I)| measures how far the object I
is from the boundary between good and bad. When the center of I is known in
advance, the procedure requires O(1/qual(I)?) computation time. When a center
of I is not known, the procedure requires O(1/qual(I)*) computation time. As
part of this procedure, we describe a technique for finding a near-center of a
3-dimensional ball that requires only 10 probes, thus providing an alternative to
the procedure of Fur and Yap for the for case d = 3. We also give a lower bound
that shows our procedures are optimal, up to constant factors, in terms of the
number of probes used.

The remainder of the paper is organized as follows: Section 2 gives definitions
and notation used throughout the remainder of the paper. Section 3 describes
a procedure for find a point near the center of an object. Section 4 discusses
procedures for testing the roundness of an object. Section 5 gives a lower bound
on the number of probes needed for this problem. Section 6 summarizes and
suggests directions for future work.

2 Definitions, Notation, and Assumptions

In this section, we introduce definitions and notation used throughout the re-
mainder of this paper, and state the assumptions we make on the object be-
ing tested. For the most part, notation and definitions are consistent with, or
analagous to, [3, 11].

For a point p, we use the notation x(p), y(p), and z(p) to denote the z, y, and
z coordinates of p, respectively. The letter O is used to denote the origin of the
coordinate system. We use the notation dist(a,b) to denote Euclidean distance



between two objects. When a and b are not points, dist(a,b) is the minimum
distance between all pairs of points in @ and b. The angle formed by three points
a, b, and ¢, is denoted by Zabc, and we always mean the smaller angle unless
stated otherwise.

A sphere (ball) of radius r centered at a point ¢ is the set of all points p such
that dist(p,c) = r (dist(p,c) < r). A sphere (ball) of with radius r = 1 is called
a unit sphere (unit ball). Two spheres or balls are said to be concentric if they
are centered at the same point.

An object I is defined to be any compact simply connected subset of 3-space,
with boundary denoted by bd(I). For a point p, we use R(p,I) and r(p, I) to
denote the maximal and minimal distance, respectively, from p to a point in
bd(I). Le.,

R(p,I) = max{dist(p,p’) : p' € bd(I)} (1)
r(p,I) = min{dist(p,p’) : p' € bd(I)} . (2)
For a point p, let
qual(p, I) = min{r(p,I) — (1 —€),(1+¢€) — R(p,I)} (3)
and let
qual() = max qual(p,I) . (4)

Any point ¢y with qual(er,I) = qual([) is called a center of I. Note that
there may be more than one point with this property, i.e., the center of I is not
necessarily unique.

The value qual(]) is called the guality of the object I, since it measure the
maximum deviation of I from a ball of unit radius. An object I with qual(l) >0
is good while an object I with qual(I) < 0 is bad. A procedure that determines
whether an object is good or bad is called a roundness classification procedure.

In order to have a roundness classification procedure that is correct and that
terminates, it is necessary to make some assumptions about the object I being
tested. The following assumption is referred to as the minimum gquality assump-
tion, and refers to the fact that the manufacturing process can guarantee that
manufactured objects have a minimum quality (although perhaps not enough
to satisfy our roundness criteria). The constant 1/30 in the assumption is easily
met by current manufacturing processes.

Assumption 1 There exists two concentric balls, I;, and Iy, with radii 1 — 6
and 1+ ¢, respectively, such that Iin, C I C Iy, for some § < 1/30.

The minimum quality assumption alone is not sufficient. If the object under
consideration contains oddly shaped recesses, then it may be the case that these
recesses can not be probed using finger probes. We say that an on object I is
star-shaped if there exists a point k € I such that for any point p € I, the line
segment joining k and p is a subset of I. We call the set of all points with this
property the kernel of I. There is a region about the center ¢; of I that is of



particular interest. The following assumption ensures that all points in bd(I)
can be probed by directing probes at a point close to c;.

Assumption 2 Let ¢; be any center of I. I is a star-shaped object, and its
kernel contains all points p such that dist(cr,p) < «, for some constant 1 — § >
a > 26.

3 Finding a Near-Center

In this section we describe a procedure for finding a point close to the center, ¢y,
of I . A near-center of I is any point ¢g such that dist(cg, cr) < 2§. Our procedure
uses three simple subroutines X (p), Y (p) and Z(p). These subroutines perform
two probes directed at p. The two probes come from opposite directions, and
are parallel to the z, y, and z axes, respectively. If the two probes contact I at
points a and b, then the subroutines return (a+b)/2, i.e., the midpoint between
a and b. If the probes do not contact I then the routines return the point p.
Pseudocode is given in Procedure 1.

Procedure 1 Returns a near-center given a point pg € 1.

: p1 < X(po)
P2 — Y(p1)
p3  Z(p2)
P+ X(ps3)
: ps < Y(pa)
: return ps

Theorem 1 Let I be an object with center cy and satifying Assumption 1. Then
10 probes and constant computation time suffice to find a point co such that
dist(cr,c) < 24.

Proof. The proof involves using Assumption 1 to bound the values of the z, y and
z coordinates of p;_5 and is rather long. It is omitted due to space constraints
but can be found in the full version of the paper [2]. a

4 Testing Quality

Once a center or near-center of I is known, we can obtain an approximation of
the surface of I by directing probes at this (near) center. In this section, we first
describe a strategy for directing probes at the (near) center. We then describe
the entire quality testing procedure for the case when the center of I is known
in advance. Finally, we describe the procedure for the case when the center of
I is not known in advance. Proving the correctness of our procedures involves
bounding the maximum error in our approximation of the surface.



4.1 The Probing Strategy

In this section, we describe a probing strategy for taking ©(n?) probes directed
at a point p, where n is an even positive integer. The strategy is designed so
that for any direction d, there is a probe in some direction “not too far” from d.
Refer to Figure 2 for an illustration of what follows.

Fig. 2. Illustration of (a) sperical coordinates and (b) partioning the sphere into slices
and pieces.

Consider the spherical coordinates (¢, p) of the unit sphere centered at p,
where angles ¢ and p are in the set [0, 27). We first divide the sphere into n par-
allel slices, sq, ..., 8n_1, such that slice s; contains all points where p € [in/n, (i+
1) /n]. Each slice s; is further subdivided into m; = [2n max{sin(i7/n), sin((i +
1)m/n)}] similar pieces, s, ---,8i(m;—1), such that piece s;; contains all points
in s; where ¢ € [jm/m;, (§ + 1)m/m;]. We define the center of a piece s;; as the
point with spherical coordinates ((2¢ + 1)7/2n, (25 + 1)7/2m;).

Lemma 1 Let a be any point in s;;, and let b be the center of s;;. Then Lapb <
w/n.

Proof. The proof is straightforward. It is omitted due to space constraints but
can be found in the full version of the paper [2]. ]

Lemma 2 Z?;OI m; € O(n?), i.e., the partitioning of the sphere described above
contains ©(n?) pieces.

Proof. That the number of pieces is O(n?) follows from the inequality sin(7) < 1.
That the number of pieces is 2(n?) follows from the inequality sin(7) > 27/,
for 7 € [0,7/2]. O

For some center or near center ¢, our probing strategy involves directing
probes along each of the half lines with an endpoint at ¢ and passing through



the center of each piece of the sphere centered at ¢. In the remainder of the
paper, we will use the notation probe(n,c) to denote the set of probes obtained
when using this strategy.

4.2 The Simplified Procedure

In this section we describe a simplified roundness classification procedure that
assumes that we know the object being tested is centered at the origin, 0. Our
roundness classification procedure (Procedure 2) tests the roundness of an object
I by taking a set S of probes in the manner described in the previous section.
The procedure repeatedly doubles the number of probes until either (1) a set
of sample points is found that proves that I is a bad object, in which case I is
rejected, or (2) the quality of the set of sample points is “significantly larger”
than 0, in which case we can prove that qual(I) > 0.

Procedure 2 Tests the roundness of the object I centered at the origin.
r+<1
R<+1
n < ng
A+ f(n) € O(1/n)
repeat
S < probe(n, O)
if 3p € S : dist(p, O) > 1+ € or dist(p,0) < 1 — € then
return REJECT
9: endif
100 r+l—e+A
11: R+ 14+e—A
122 n<+2n
13: A<« f(n)
14: until Vp € S : dist(p, O) < R and dist(p,0) > r
15: return ACCEPT

The function f(n) that appears in the procedure is defined as

1
2
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fy = (=

n

and the constant ng is defined as
ng = [n/arctan(a/(1 + 4))]

Lemma 3 Let I be an object with center c; = O. Let S = probe(n, cr), for any
n > ng. Then for any point p € bd(I), there exists a point p' € S such that
dist(p,p') < f(n).



Proof. We will bound |x(p) — x(p')], |y(p) — y(®')|, and |z(p) — z(p')|. Refer to
Figure 3 for an illustration of what follows.
By Lemma 1, there exists a point p' € S such that

lperp' < w/n . (5)

By orienting the coordinate system so that the plane z = 0 passes through p, p'
and ¢y, we can assume, wlog, that

|2(p) —2(p")| =0 . (6)

Fig. 3. Constraints on the position of p’. The point p' must be in the shaded region,
and dist(p,p’) is maximized when p’ is placed as shown.

Next note that we can rotate the coordinate system about the z-axis so that
we can assume, wlog, that x(p) = 0, and 1 — 6 < y(p) < 1 + . Assumption 1
ensures that dist(O,p") <1+ 4. So, by (5), an upper bound on |x(p) — x(p")| is

[x(p) —x(@")| = [x(»")] (7)
< (14 90)sin(m/n) (8)
<(Q+dn/n . (9)

Since Zpcrp' < mw/n, the point p' must lie in the cone defined by the inequality

(@) = x(p")| (cos(m/n)/ sin(w/n)) . (10)

Next we note that the slope of the line through p’ and p must be in the range
[—y(p)/a,y(p)/a], otherwise Assumption 2 is violated. If n > ng = w/ arctan(a/y(p)),
the region in which p’ can be placed is bounded, and |y(p) —y(p')| is maximized
when p' lies on one of the bounding lines

fi(z) = zy(p)/a+y(p)
fr(z) = —zy(p)/a + y(p)



Since both lines are symmetric about = 0 we can assume that x(p') lies on
fi, giving us

ly(p) —y(@)| < ly(p) — fi(x(®"))|
= [x(p")y(p)/al
< x(p)(1+9) /e
= (1+8)*r/an (11)

Plugging (9), (11), and (6) into the Euclidean distance formula and simpli-
fying yields the desired result. O

Theorem 2 There exists a roundness classification procedure that can correctly
classify any object I with center c; = O and satisfying Assumptions 1 and 2
using O(1/qual(I)?) probes and O(1/qual(I)?) computation time.

Proof. We begin by showing that the Procedure 2 is correct. We need to show
that the procedure never rejects a good object and never accepts a bad object.
The former follows from the fact that the procedure only ever rejects an object
when it finds a point on the object’s boundary whose distance is less than 1 — ¢
or greater than 1+ € from ¢;. To show the latter, we note that Lemma 3 implies
that there is no point in bd(I) that is of distance greater than f(n) from all
points in S. The procedure only accepts I when the distance of all points in §
from ¢y are in the range [1 — e + f(n),1+ 6 — f(n)]. Therefore, if the procedure
accepts I, the distance of all points in bd(7) from ¢; is in the range [1 —e€, 1+ 4],
i.e., the object is good.

Next we prove that the running time is O(1/qual(I)?). First we observe that
f(n) € O(1/n). Next, note that the computation time and number of probes
used during each iteration is linear with respect to the value of n, and the value
of n doubles after each iteration. Thus, asymptotically, the computation time
and number of probes used are dominated by the value of n? during the last
iteration. There are two cases to consider.

Case 1: Procedure 2 accepts I. In this case, the procedure will certainly termi-
nate once A < qual([). This takes O(log(1/qual(I))) iterations. During the final
iteration, n € O(1/qual([)).

Case 2: Procedure 2 rejects I. In this case, there is a point on bd(I) at distance
qual(I) outside the circle with radius 1 + € centered at O, or there is a point in
bd(I) at distance qual([) inside of the circle with radius 1 — e centered at O.
In either case, Lemma 3 ensures that the procedure will find a bad point within
O(log |1/qual(I)|) iterations. During the final iteration, n € O(|1/qual(I)|). O

4.3 The Full Procedure

In the more general (and realistic) version of the roundness classification prob-
lem, we do not know the center of the object being tested. However, Theorem 1
allows us to use this procedure anyhow. The significance of Theorem 1 is that it
allows us to find a near-center, cg, of I. As the following lemma shows, knowing



a near-center is almost as useful as knowing the true center. Before we state the
lemma, we need the following definitions.

4.2\ 2
fm) =+ ((1+35)27r2 + 7(1;_3‘;)5)2 )

ng = [/ arctan(a/(1 + 38))]

Lemma 4 Let I be an object with center ¢y and near-center ¢y, and satis-
fying Assumptions 1 and 2. Let S = probe(n,cg), for any n > n{, where
dist(co,cr) < 28. Then for any point p € bd(I), there exists a point p' € S
such that dist(p,p") < f'(n).

Proof. The proof is almost a verbatim translation of the proof of Lemma 3,
except that we assume, wlog, that ¢g = O. With this assumption we derive the
bounds

x(p) — x()| < (1 +30)(m/n)

ly(p) — y(@")| < (1 +38)*/n(a - 25)|
Substituting these values into the formula for the Euclidean distance and sim-
plifying yields the desired result. O

Lemma 5 Let I be an object with center c¢; and near-center cg and satisfying
Assumptions 1 and 2. Let S = probe(n,cg), for any n > n{, and let cs be a
center of S. Then

R(QS';‘S) S R(Cs,_[) S R(C-57S) +fl(n) )
T.(CSaS) - fl(n) < T(CS>I) < T(CSaS) .

Proof. The lemma follows from (1), (2) and Lemma 4. The proof is omitted due
to space constraints but can be found in the full version of the paper [2]. ]

Lemma 6 Let I be an object with center c¢; and near-center ¢ and satisfying
Assumptions 1 and 2. Let S = probe(n,cy), for any n > ny. Then qual(S) —
f'(n) < qual(I) < qual(S)

Proof. The lemma follows from (4) and Lemma 5. The proof is omitted due to
space constraints but can be found in the full version of the paper [2]. a

In [6], an algorithm is described that determines, given a set S of points in
3-space, the minimum value of € such that there exists two concentric closed
balls Ii, and Iy, with radii 1 — € and 1 + €, respectively, such that SN I, = (
and S N Iy, = S. The running time of the algorithm is O(|S|?). Combining
Lemma 4 with this algorithm, we obtain the following result.

Theorem 3 There exists a roundness classification procedure that can correctly
classify any object I satisfying Assumptions 1 and 2 using O(1/qual(I)?) probes
and O(1/qual(I)*) computation time.



Proof. We make the following modifications to Procedure 2. In Line 3, we set
the value of n to ng. In Lines 4 and 13, we replace f(n) with f'(n). In Line 6
we directed our probes at ¢o rather than O. In Lines 7 and 14, we replace the
simple test with a call to the algorithm of [6].

Lemma 6 ensures that the procedure never accepts a bad object and never
rejects a good object. i.e., the procedure is correct. The procedure terminates
once f'(n) < |qual(I)|. This happens after O(log |1/qual(I)|) iterations, at which
point n € O(|1/qual(I)|. |

5 Lower Bounds

In this section, we give a lower bound that shows that any correct roundness
classification procedure for spheres requires, in the worst case, 2(1/qual(I)?)
probes to determine if I is good or bad. The lower bound uses an adversary
argument to show that if a procedure uses o(1/qual(I)?) probes, then an adver-
sary can orient a bad object so that its defects are “hidden” from all the probes,
making the bad object indistigusihable from a similar good object.

Lemma 7 Let S be a set of n? points on the unit sphere. Then, there exists a
spherical cap ¢ with radius 1/n such that ¢ contains no points of S

Proof. Consider the convex hull of S, which has at most 2n? —4 faces. The plane
passing through a face defines a spherical cap, and the union of these caps cover
the entire sphere, a surface area of 4. By the pigeonhole principle, some face
f must define a cap ¢ with surface area at least 27 /n?. Furthermore, since f is
part of the convex hull, there are no other points of S in this cap. The surface
area of ¢ obeys the inequality sa(c) < 272, where r is the radius of c¢. Thus, we
have the inequalities
2mr? > sa(c) > 2x/n? |

yielding r > 1/n. O

Theorem 4 Any roundness classification procedure that is always correct re-
quires, in the worst case, £2(|1/qual(I)?|) probes to classify a object I with center
cr = O and satisfying Assumptions 1 and 2.

Proof. We prove the theorem by exhibiting two objects I and I' with qual(I) =
1 = —qual(I'), for any 0 < ¢ < ¢, such that I and I' cannot be distinguished
by any algorithm that uses o(|1/qual(I)|) probes.

The object I is a perfect circle with radius 1 — € + 9. The object I' is similar
to I, except that it contains a conic recess of depth 4¢ that removes a circle of
diameter 8% from the surface of I (see Figure 4). Note that qual(I) = ¢ and
qual(I') = —1, and that for = 1/9, § <1/21, and ¢ < e < §, I and I’ satisfy
Assumptions 1 and 2.

Assume by way of contradiction that there exists a roundness classification
procedure P that always accepts I and always rejects I' using o(1/1?) probes.
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Fig. 4. An example of two objects, T and I' that cannot be distinguished using
o(1/qual(I)?) probes.

Let S be the set of probes made by P in classifying I. By Lemma, 7, there exists
a spherical cap ¢ on the surface of I with radius w(¢) such that ¢ contains no
point of S.! Therefore, for sufficiently small 9, ¢ has diameter larger than a8
and an adversary can orient I’ so that P does not direct any probes at the conic
recess in I'. The results of probes performed by, and therefore the actions of P,
would be the same for I and I'. But this is a contradiction, since we assumed
that P always correctly classifies both I and I'. O

6 Conclusions

We have described the first roundness classification procedure for balls and given
lower bounds that show that the procedure is optimal in terms of the number of
probes used. In the case when the center of the object is known in advance, the
procedure is also optimal in terms of computation time.

When the center of the object is not known, our procedure would bene-
fit significantly from an improved algorithm for testing the roundness of a 3-
dimensional point set. The algorithm in [6], which we rely on, solves the prob-
lem by first constructing the Voronoi diagram of the point set, which can have
quadratic complexity in the worst case. A subquadratic time algorithm is still
an important open problem.
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