
Packing Two Disks into a Polygonal
Environment

Prosenjit Bose,School of Computer Science, Carleton University.
E-mail: jit@cs.carleton.ca

Pat Morin,School of Computer Science, Carleton University.
E-mail: morin@cs.carleton.ca

Antoine Vigneron,Department of Computer Science, University of
Singapore. E-mail: antoine@comp.nus.edu.sg

ABSTRACT: We consider the following problem. Given a polygonP , possibly with holes,
and havingn vertices, compute a pair of equal radius disks that do not intersect each other,
are contained inP , and whose radius is maximized. Our main result is a simple randomized
algorithm whose expected running time, on any input, isO(n log n). This is optimal in the
algebraic decision tree model of computation.

Keywords: Disk packing, Computational geometry, Origami

1 Introduction

Let P be a polygon, possibly with holes, and havingn vertices. We consider the
following problem, which we call 2-DISK: Find a pair of disks with radiusr∗ that
do not intersect each other, are contained inP , and such thatr∗ is maximized. This
problem was introduced by Biedlet al. [5] who use it to determine the radiusr∗ of
the largest disk such that an irregularly shaped piece of paperP can be folded once to
cover the disk (see Fig. 1).

Biedl et al. [5] give anO(n2) time algorithm for 2-DISK. Bespamyatnikh [4] gives
an algorithm for simple polygons (i.e., without holes) that runs inO(n log2 n) time
and is based on parametric search [11]. For the important special case whenP is a
convex polygon, Boseet al. [6] describe a linear time algorithm and Kim and Shin
[10] describe anO(n log n) time algorithm.

Another special case occurs when the holes ofP degenerate to points. This is
known as themaximin 2-site facility locationproblem [3, 9]. In this formulation we
can think of the centers of the two disks as obnoxious facilities such as smokestacks,
or nuclear power plants, and the points as population centers. The goal is maximize
the minimum distance between a facility and a population center. Katzet al. [9] give
an O(n log n) time algorithm for the decision version of the 2-site facility location
problem in which one is given a distanced and asked if there exists a placement of 2

J. of Discrete Algorithms, Vol. 0 No. 0, pp. 1–9, 0000 c© Hermes Science Publications

2 J. of Discrete Algorithms, Vol. 0 No. 0, 0000

Fold

⇒

FIG. 1: The solution to 2-DISK gives the size of the largest disk that can be hidden by
P using one fold.

non-intersecting disks of radiusd, each contained inP such that no point is included
in either of the disks.

In this paper we present a simple randomized algorithm for the general case in
which P is not necessarily convex and may contain holes. Our algorithm runs in
O(n log n) expected time. It can also be used to solve the optimization version of
the 2-site maximin facility location problem inO(n log n) expected time. We also
observe that, when we allow polygons with holes,Ω(n log n) is a lower bound for
2-DISK by a simple reduction fromMAX -GAP. Thus, our algorithm is optimal.

The remainder of the paper is organized as follows: Section 2 reviews definitions
and previous results regarding the medial-axis. Section 3 describes our algorithm.
Section 4 summarizes and concludes with an open problem.

2 The Medial-Axis

For the remainder of this paper,P will be a polygon, possibly with holes, and having
n vertices. Themedial-axisM(P) of P is the locus of all pointsp for which there
exists a disk centered atp, contained inP , and which intersects the boundary ofP in
two or more points. See Fig. 2 for an example. Alternatively,M(P) is a portion of
theVoronoi diagramof the open line segments and vertices defined by the edges ofP .
To be more precise, we need to remove the Voronoi edges that are outsideP and those
associated with an edge and one of its endpoints. It is well known that the medial-axis
consists ofO(n) straight line segments and parabolic arcs.

Algorithmically, the medial-axis is well understood. There exists anO(n) time al-
gorithm [7] for computing the medial-axis of a polygon without holes andO(n log n)
time algorithms for computing the medial-axis of a polygon with holes [2]. Further-
more, these algorithms can compute a representation in which each segment or arc is
represented as a segment or arc inR3, where the third dimension gives the radius of
the disk that touches two or more points on the boundary ofP .

We say that a pointp ∈ P supportsa disk of radiusr if the disk of radiusr centered

Packing Two Disks into a Polygonal Environment3

FIG. 2. The medial-axis of a polygon with a triangular hole.

at p is contained inP . We call a vertex, parabolic arc or line segmentx of M(P) an
elementary objectif the radius of the largest disk supported byp ∈ x is non-decreasing
asp moves from one endpoint ofx to the other. The vertices and straight line segments
of M(P) are elementary objects and each parabolic arc ofM(P) can be split into at
most two elementary objects. Thus,M(P) can be split intoO(n) elementary objects
whose union isM(P).

3 The Algorithm

In this section we describe a randomized algorithm for 2-DISK with O(n log n) ex-
pected running time. We begin by restating 2-DISK as a problem of computing the
diameter of a set of elementary objects under a rather unusual distance function. We
then use an algorithm based on the work of Clarkson and Shor [8] to solve this prob-
lem in the stated time.

The following lemma, of which similar versions appear in Boseet al. [6] and Biedl
et al. [5], tells us that we can restrict our search to disks whose centers lie onM(P).

LEMMA 3.1
Let D1 andD2 be a solution to 2-DISK which maximizes the distance betweenD1

andD2 and letp1 andp2 be the centers ofD1 andD2, respectively. ThenD1 andD2

each intersect the boundary ofP in at least two points and hencep1 andp2 are points
of M(P).

PROOF. Refer to Fig. 3. Suppose that one of the disks, sayD1, intersects the boundary
of P in at most one point. Leto1 be this point, or ifD1 does not intersect the boundary
of P at all then leto1 be any point on the boundary ofD1. Note that there is some
value ofε > 0 such thatD1 is free to move by a distance ofε in either of the two
directions perpendicular to the direction−−→p1o1 while keepingD1 in the interior ofP .
However, movement in at least one of these directions will increase the distance|p1p2|,
which is a contradiction since this distance was chosen to be maximal over all possible
solutions to 2-DISK.

Let x1 andx2 be two elementary objects ofM(P). We define thedistancebetween
x1 andx2, denotedd(x1, x2) as2r, wherer is the radius of the largest pair of equal-
radius non-intersecting disksD1 andD2, contained inP and withDi centered onxi,

4 J. of Discrete Algorithms, Vol. 0 No. 0, 0000

p1

p2

o1

D1

FIG. 3. The proof of Lemma 3.1.

for i = 1, 2. There are two points to note about this definition of distance: (1) if the
distance between two elementary objects is2r, then we can place two non-intersecting
disks of radiusr in P , and (2) the distance from an elementary object to itself is not
necessarily 0. Given two elementary objects it is possible, in constant time, to compute
the distance between them as well as the locations of 2 disks that produce this distance
[5].

Let E be the set of elementary objects obtained by taking the union of the following
three sets of elementary objects:

1. the set of vertices ofM(P),
2. the set of elementary line segments ofM(P) and

3. the set of elementary parabolic arcs obtained by splitting each parabolic arc of
M(P) into at most two elementary objects.

We call thediameterof E the maximum distance between any pairx, y ∈ E, where
distance is defined as above. By Lemma 3.1, 2-DISK can be solved by finding a pair
of elementary objects inE whose distance is equal to the diameter ofE.1

Thus, all that remains is to devise an algorithm for finding the diameter ofE. Let
m denote the cardinality ofE and note that, initially,m = O(n). Motivated by
Clarkson and Shor [8], we compute the diameter using the following algorithm. We
begin by selecting a random elementary objectx from E and finding the elementary
objectx′ ∈ E whose distance fromx is maximal, along with the corresponding radius
r. This can be done inO(m) time, since each distance computation between two
elementary objects can be done in constant time. Note thatr is a lower bound onr∗.
We use this lower bound to dotrimmingandpruningon the objects ofE.

We trim each objecty ∈ E by partitioningy into two subarcs,2 each of which may
be empty. The subarcy≥ is the part ofy supporting disks of radius greater than or
equal tor. The subarcy< is the remainder ofy. We thentrim y< from y by removing
y from E and replacing it withy≥. During the trimming step we also remove fromE

1Here we use the term “pair” loosely, since the diameter may be defined by the distance between an elementary object and itself.
2We use the term subarc to mean both parts of segments and parts of parabolic arcs.

Packing Two Disks into a Polygonal Environment5

any object that does not support a disk of radius greater thanr (in which casey≥ is
empty). Each such trimming operation can be done in constant time, resulting in an
O(m) running time for this step.

Next, we pruneE. For any arcy ∈ E, the lowest pointof y is its closest point
to the boundary ofP . In the case of ties, we take a point which is closest to one
of the endpoints ofy. By the definition of elementary objects, the lowest point ofy
is therefore an endpoint ofy. The closed disk with radiusr centered on the lowest
point of y is denoted byD(y). To prune, we discard all the objectsy ∈ E such that
D(y) ∩D(y) 6= ∅ for all y′ ∈ E.

Pruning can be performed inO(m log m) time by computing, for each lowest end-
point p, a matching lowest endpointq whose distance fromp is maximal and then
discardingp if ‖pq‖ ≤ 2r. This computation is known asall-pairs furthest neighbors
and can be completed inO(m log m) time [1].

Once all trimming and pruning is done, we have a new set of elementary objects
E′ on which we recurse. The recursion completes when|E′| ≤ 2, at which point we
compute the diameter ofE′ in constant time using a brute-force algorithm. We output
the largest pair of equal-radius non-overlapping disks found during any iteration of
the algorithm.

To prove that this algorithm is correct we consider a pair of non-intersecting disks
D1 andD2, each contained inP and having radiusr∗, centered atp1 andp2, re-
spectively, such that the Euclidean distance‖p1p2‖ is maximal. The following lemma
shows thatp1 andp2 are not discarded from consideration until an equally good solu-
tion is found.

LEMMA 3.2
If, during the execution of one round,{p1, p2} ⊂ ∪E andr < r∗, then{p1, p2} ⊂
∪E′ at the end of the round.

PROOF. We need to show that at the end of the round, there exists elementary objects
y1, y2 ∈ E′ such thatp1 ∈ y1 andp2 ∈ y2. More specifically, we need to show there
existsy1, y2 ∈ E such thatp1, respectivelyp2 is not trimmed fromy1, respectively
y2, andy1 andy2 are not pruned.

To see thatp1 andp2 are not trimmed from any elementary object that contains them
we simply note thatp1 andp2 both support disks of radiusr∗ > r and are therefore
not trimmed.

To prove that the elementary objectsy1 andy2 containingp1 andp2 are not pruned
we subdivide the plane into two open halfspacesH1 andH2 such that all points inH1

are closer top1 than top2 and vice-versa. We denote byL the line separating these
two halfspaces.

Recall that, after trimming, an elementary objectx is only pruned ifD(x)∩D(y) 6=
∅ for all y ∈ E. We will show thatD(y1) ⊆ H1 andD(y2) ⊆ H2, thereforeD(y1) ∩
D(y2) = ∅ and neithery1 nor y2 are pruned. It suffices to prove thatD(y1) ⊆ H1

since the same argument shows thatD(y2) ⊆ H2. We consider three separate cases
depending on the location ofp1 onM(P).
Case 1: p1 is a vertex ofM(P). In this case we choosey1 to be the singleton el-
ementary object{p1}. Thus,D(y1) is centered atp1 andD(y1) ⊆ D1 ⊆ H1, as

6 J. of Discrete Algorithms, Vol. 0 No. 0, 0000

L

p2

p′1

θ

D1

D(y1)

H1

H2

p1

FIG. 4. The proof of Lemma 3.2 Case 2.

required.
Case 2:p1 lies in the interior of a straight line segmenty1 of M(P). Let p′1 be the
lower endpoint ofy1. Letθ be the angle∠p2p1p

′
1 (see Fig. 4). Ifθ ∈ [−π/2, π/2] then

we can movep1 slightly in the direction opposite to
−−→
p1p

′
1 while keepingD1 insideP ,

thus contradicting the assumption that‖p1p2‖ is maximal. Thereforeθ ∈ [π/2, 3π/2],
which implies thatD(y1) lies inH1.
Case 3:p1 lies in the interior of a parabolic arcy1 of M(P). In this caseD1 is tangent
to an edgee1 of P and touches one of its verticesv. Again, letp′1 denote the lower
endpoint ofy1. Without loss of generality, assume thate1 is parallel to thex-axis,
x(p′1) ≤ x(p1) andv is belowe1 (see Fig. 5). Note thaty1 is part of a parabola whose
focus isv and that the radius of the largest disk supported by any pointp ∈ y1 is given
by distance betweenp ande1.

Our assumption thatx(p′1) ≤ x(p1) therefore implies thaty(p′1) ≤ y(p1) and that
x(v) ≤ x(p1). Let L′ be the line parallel toL that intersects the segment[p1, p2] and
that is tangent toD1. We denote byo1 the point wheree1 is tangent toD1, and we
denote byo′1 the point such that(o1, o

′
1) is a diameter ofD1.

It must be thatx(p2) > x(p1). Otherwisep1 and D1 could be moved a small
amount in the positivex direction andD1 would remain inP (sincey1 is part of
a parabola whose maximum is obtained atx(v)). This would increase the distance
‖p1p2‖, contradicting the assumption that this distance is maximal. It follows thatL′

is tangent toD1 along the counterclockwise arc[o′1, o1]. Now, sincex(p′1) < x(p1)
andy(p′1) ≤ y(p1) and the radius ofD(y1) is not more than the radius ofD1, D(y1)
does not intersectL′. Furtheremore,D(y1) is on the same side ofL′ asD1, soD(y1)
is contained inH1, which completes the proof.

Let di denote the distance of the furthest object inE from xi, and suppose for the
sake of analysis that the elements ofE are labeledx1, . . . , xn so thatdi ≤ di+1. The
following lemma helps to establish the running time of the algorithm.

Packing Two Disks into a Polygonal Environment7

L

L′

p2

o

y

p1

o1

x

o′1

C

e1

D1

p′1
y1

v

D(y1)

FIG. 5. The proof of Lemma 3.2 Case 3.

LEMMA 3.3
If we selectx = xi as the random elementary object, then we discard allxj ∈ E such
thatj ≤ i from E.

PROOF. For anyj ≤ i, eitherxj does not support a disk of radius greater thandi, or
every point onxj that supports a disk of radiusdi is of distance less than2di from
every other point ofM(P) that supports a disk of radiusdi.

In the first case,xj is removed fromE by trimming. In the second case,D(xj) ∩
D(xk) 6= ∅ for all xk ∈ E andxj is removed by pruning.

Finally, we state and prove our main theorem.

THEOREM 3.4
The above algorithm solves 2-DISK in O(n log n) expected time.

PROOF. The algorithm is correct because, by Lemma 3.2, it never discardsp1 nor p2

until it has found a solution withr = r∗, at which point it has already found an optimal
solution that will be reported when the algorithm terminates.

To prove the running time of the algorithm, we use the following facts. Each round
of the algorithm can be completed inO(m log m) time wherem is the cardinality of
E at the beginning of the round. By Lemma 3.3, when we selectxi as our random
elementary object, all objectsxj with j ≤ i disappear fromE. Therefore, the expected
running time of the algorithm is given by the recurrence

T (m) ≤ O(m log m) +
1
m

m∑
i=1

T (m− i) ,

which readily solves toO(m log m). Sincem ∈ O(n), this completes the proof.

8 J. of Discrete Algorithms, Vol. 0 No. 0, 0000

y1

y2

y3

yn

...

FIG. 6. ReducingMAX -GAP to 2-DISK.

4 Conclusions

We have given a randomized algorithm for 2-DISK that runs inO(n log n) expected
time. The algorithm is considerably simpler than theO(n log3 n) algorithm of Be-
spamyathnikh [4] and has the additional advantage of solving the more general prob-
lem of polygons with holes. Although we have described our algorithm as performing
computations with distances, these can be replaced with squared distances to yield an
algorithm that uses only algebraic computations.

In the algebraic decision tree model of computation, one can also prove anΩ(n log n)
lower bound on any algorithm for 2-DISK through a reduction fromMAX -GAP [12].
Suppose that the input toMAX -GAP is y1, . . . , yn. Without loss of generality one can
assume thaty1 = min{yi : 1 ≤ i ≤ n} andyn = max{yi : 1 ≤ i ≤ n}. We then
construct a rectangle with top and bottom sides aty1 andyn, respectively, and with
width 2(yn−y1). The interior of this rectangle is then partitioned into rectangles with
horizontal line segments havingy coordinatesy1, . . . , yn. See Fig. 6 for an example.

It should then be clear that the solution to 2-DISK for this problem corresponds
to placing two disks in the rectangle corresponding to the gap betweenyi andyi+1

which is maximal, i.e., it gives a solution to the originalMAX -GAP problem. Since this
reduction can be easily accomplished in linear time andMAX -GAP has anΩ(n log n)
lower bound, this yields anΩ(n log n) lower bound on 2-DISK.

The above reduction only works because we allow polygons with holes. An inter-
esting open problem is that of determining the complexity of 2-DISK when restricted
to simple polygons. Is there a linear time algorithm? More generally, is there an
O(n + n log h) time algorithm for polygons with at mosth holes?

References
[1] P. K. Agarwal, J. Matoǔsek, and S. Suri. Farthest neighbors, maximum spanning trees, and related

problems in higher dimensions.Computational Geometry: Theory and Applications, 4:189–201, 1992.
[2] H. Alt and O. Schwarzkopf. The Voronoi diagram of curved objects. InProceedings of the 11th Annual

ACM Symposium on Computational Geometry, pages 89–97, 1995.
[3] Boaz Ben-Moshe, Matthew J. Katz, and Michael Segal. Obnoxious facility location: Complete service

with minimal harm.International Journal of Computational Geometry and Applications, pages 581–
592, 2000.

[4] S. Bespamyatnikh. Packing two disks in a polygon.Computational Geometry: Theory and Applica-
tions, 23(1):31–42, 2002.

[5] T. C. Biedl, E. D. Demaine, M. L. Demaine, A. Lubiw, and G. T. Toussaint. Hiding disks in folded

Packing Two Disks into a Polygonal Environment9

polygons. InProceedings of the 10th Canadian Conference on Computational Geometry (CCCG’98),
1998.

[6] P. Bose, J. Czyzowicz, E. Kranakis, and A. Maheshwari. Algorithms for packing two circles in a con-
vex polygon. InProceedings of Japan Conference on Discrete and Computational Geometry (JCDCG
’98), pages 93–103, 1998.

[7] F. Chin, J. Snoeyink, and C. A. Wang. Finding the medial axis of a simple polygon in linear time.
Discrete & Computational Geometry, 21:405–420, 1999.

[8] K. L. Clarkson and P. W. Shor. Algorithms for diametral pairs and convex hulls that are optimal, ran-
domized, and incremental. InProceedings of the Fourth Annual ACM Symposium on Computational
Geometry (SoCG’88), pages 12–17, 1988.

[9] M. J. Katz, K. Kedem, and M. Segal. Improved algorithms for placing undesirable facilities. In
Proceedings of the 11th Canadian Conference on Computational Geometry (CCCG’99), volume 29,
pages 1859–1872, 2002.

[10] S. K. Kim and C.-S. Shin. Placing two disks in a convex polygon.Information Processing Letters, 73,
2000.

[11] N. Megiddo. Applying parallel computation algorithms to the design of serial algorithms.Journal of
the ACM, 30:852–865, 1983.

[12] F. P. Preparata and M. I. Shamos.Computational Geometry. Springer-Verlag, New York, 1985.

Received April 26, 2002

