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ABSTRACT: We consider the following problem. Given a polygéh possibly with holes,

and havingn vertices, compute a pair of equal radius disks that do not intersect each other,
are contained ir?, and whose radius is maximized. Our main result is a simple randomized
algorithm whose expected running time, on any inpuiQis logn). This is optimal in the
algebraic decision tree model of computation.
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1 Introduction

Let P be a polygon, possibly with holes, and havingvertices. We consider the
following problem, which we call 231sk: Find a pair of disks with radius* that
do not intersect each other, are containe@jrand such that* is maximized. This
problem was introduced by Bieét al. [5] who use it to determine the radiu$ of
the largest disk such that an irregularly shaped piece of papan be folded once to
cover the disk (see Fig. 1).

Biedl et al.[5] give anO(n?) time algorithm for 2pisK. Bespamyatnikh [4] gives
an algorithm for simple polygons (i.e., without holes) that run®im log® n) time
and is based on parametric search [11]. For the important special casePniben
convex polygon, Boset al. [6] describe a linear time algorithm and Kim and Shin
[10] describe arD(n log n) time algorithm.

Another special case occurs when the holesPoflegenerate to points. This is
known as thenmaximin 2-site facility locatiopproblem [3, 9]. In this formulation we
can think of the centers of the two disks as obnoxious facilities such as smokestacks,
or nuclear power plants, and the points as population centers. The goal is maximize
the minimum distance between a facility and a population center. &atk [9] give
an O(nlogn) time algorithm for the decision version of the 2-site facility location
problem in which one is given a distanéend asked if there exists a placement of 2
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FIG. 1: The solution to 231sK gives the size of the largest disk that can be hidden by
P using one fold.

non-intersecting disks of radius each contained i#® such that no point is included
in either of the disks.

In this paper we present a simple randomized algorithm for the general case in
which P is not necessarily convex and may contain holes. Our algorithm runs in
O(nlogn) expected time. It can also be used to solve the optimization version of
the 2-site maximin facility location problem i@(nlogn) expected time. We also
observe that, when we allow polygons with hol€$y logn) is a lower bound for
2-DISK by a simple reduction fromAX -GAP. Thus, our algorithm is optimal.

The remainder of the paper is organized as follows: Section 2 reviews definitions
and previous results regarding the medial-axis. Section 3 describes our algorithm.
Section 4 summarizes and concludes with an open problem.

2 The Medial-Axis

For the remainder of this papd?, will be a polygon, possibly with holes, and having
n vertices. Thamedial-axisM (P) of P is the locus of all pointp for which there
exists a disk centered pf contained inP, and which intersects the boundary®fn
two or more points. See Fig. 2 for an example. Alternativéf(P) is a portion of
theVoronoi diagramof the open line segments and vertices defined by the edges of
To be more precise, we need to remove the Voronoi edges that are olitsidtethose
associated with an edge and one of its endpoints. It is well known that the medial-axis
consists 0fD(n) straight line segments and parabolic arcs.

Algorithmically, the medial-axis is well understood. There exist®gn) time al-
gorithm [7] for computing the medial-axis of a polygon without holes éqd log n)
time algorithms for computing the medial-axis of a polygon with holes [2]. Further-
more, these algorithms can compute a representation in which each segment or arc is
represented as a segment or ar®it) where the third dimension gives the radius of
the disk that touches two or more points on the bounda.of

We say that a point € P supportsa disk of radius- if the disk of radius- centered



Packing Two Disks into a Polygonal Environmen8

/N

FiG. 2. The medial-axis of a polygon with a triangular hole.

atp is contained inP. We call a vertex, parabolic arc or line segmendf M (P) an
elementary objedf the radius of the largest disk supportediby « is non-decreasing
asp moves from one endpoint afto the other. The vertices and straight line segments
of M(P) are elementary objects and each parabolic a®/¢P) can be split into at
most two elementary objects. Thul,(P) can be split intaD(n) elementary objects
whose union isV/ (P).

3 The Algorithm

In this section we describe a randomized algorithm fapi@k with O(nlogn) ex-
pected running time. We begin by restatingpZsk as a problem of computing the
diameter of a set of elementary objects under a rather unusual distance function. We
then use an algorithm based on the work of Clarkson and Shor [8] to solve this prob-
lem in the stated time.

The following lemma, of which similar versions appear in Besal.[6] and Biedl|
et al.[5], tells us that we can restrict our search to disks whose centers li¢(@n).

LEMMA 3.1

Let D; and D, be a solution to 231sk which maximizes the distance betwefn
and D, and letp; andp, be the centers ab, and D, respectively. The®; and D,
each intersect the boundary Bfin at least two points and henpe andp, are points
of M(P).

PROOF Refer to Fig. 3. Suppose that one of the disks,Bayintersects the boundary

of P in at most one point. Let; be this point, or ifD; does not intersect the boundary

of P at all then leto; be any point on the boundary @f,. Note that there is some
value ofe > 0 such thatD; is free to move by a distance efin either of the two
directions perpendicular to the directipfio; while keepingD; in the interior of P.
However, movement in at least one of these directions will increase the digtapse

which is a contradiction since this distance was chosen to be maximal over all possible
solutions to 2pIsK. [ |

Letz; andxs be two elementary objects af (P). We define thelistancebetween
x1 andz, denotedi(x, x2) as2r, wherer is the radius of the largest pair of equal-
radius non-intersecting disk3, and D5, contained inP and withD; centered on;,
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FIG. 3. The proof of Lemma 3.1.

fori = 1,2. There are two points to note about this definition of distance: (1) if the
distance between two elementary objec&-ighen we can place two non-intersecting
disks of radiug- in P, and (2) the distance from an elementary object to itself is not
necessarily 0. Given two elementary objects it is possible, in constant time, to compute
the distance between them as well as the locations of 2 disks that produce this distance
[5].

Let E' be the set of elementary objects obtained by taking the union of the following
three sets of elementary objects:

1. the set of vertices a¥/(P),
2. the set of elementary line segments\éf P) and

3. the set of elementary parabolic arcs obtained by splitting each parabolic arc of
M (P) into at most two elementary objects.

We call thediameterof £ the maximum distance between any paiy € E, where
distance is defined as above. By Lemma 3.1i18k can be solved by finding a pair
of elementary objects iy whose distance is equal to the diameteFof

Thus, all that remains is to devise an algorithm for finding the diametét. dfet
m denote the cardinality o and note that, initiallyyn = O(n). Motivated by
Clarkson and Shor [8], we compute the diameter using the following algorithm. We
begin by selecting a random elementary objeftom E and finding the elementary
objectz’ € E whose distance from is maximal, along with the corresponding radius
r. This can be done i®(m) time, since each distance computation between two
elementary objects can be done in constant time. Notertisad lower bound om*.

We use this lower bound to ddmmingandpruningon the objects of-.

We trim each objecy € F by partitioningy into two subarcg,each of which may
be empty. The subarg- is the part ofy supporting disks of radius greater than or
equal tor. The subarg .. is the remainder af. We thentrim y. from y by removing
y from E and replacing it withy>. During the trimming step we also remove frdth

LHere we use the term “pair” loosely, since the diameter may be defined by the distance between an elementary object and itself.
2\We use the term subarc to mean both parts of segments and parts of parabolic arcs.
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any object that does not support a disk of radius greatertiamwhich casey> is
empty). Each such trimming operation can be done in constant time, resulting in an
O(m) running time for this step.

Next, we pruneE. For any arcy € E, thelowest pointof y is its closest point
to the boundary ofP. In the case of ties, we take a point which is closest to one
of the endpoints of;. By the definition of elementary objects, the lowest poing of
is therefore an endpoint af. The closed disk with radius centered on the lowest
point of y is denoted byD(y). To prune, we discard all the objeaisc E such that
D(y)nD(y) #Oforally € E.

Pruning can be performed @(m log m) time by computing, for each lowest end-
point p, a matching lowest endpoigt whose distance fromp is maximal and then
discardingp if ||pg|| < 2r. This computation is known al-pairs furthest neighbors
and can be completed @(m logm) time [1].

Once all trimming and pruning is done, we have a new set of elementary objects
E’ on which we recurse. The recursion completes wigih < 2, at which point we
compute the diameter @ in constant time using a brute-force algorithm. We output
the largest pair of equal-radius non-overlapping disks found during any iteration of
the algorithm.

To prove that this algorithm is correct we consider a pair of non-intersecting disks
D, and D, each contained i® and having radius*, centered ap, andp,, re-
spectively, such that the Euclidean distafipep|| is maximal. The following lemma
shows thap; andp, are not discarded from consideration until an equally good solu-
tion is found.

LEMMA 3.2
If, during the execution of one roundlp;,p2} C UE andr < r*, then{py,p2} C
UE’ at the end of the round.

PrROOFE We need to show that at the end of the round, there exists elementary objects
y1,y2 € E' such thap; € y; andpy € yo. More specifically, we need to show there
existsy1,y2 € E such thatp;, respectivelyp, is not trimmed fromy,, respectively

y2, andy; andysy are not pruned.

To see thap;, andp, are not trimmed from any elementary object that contains them
we simply note thap; andp- both support disks of radius® > r and are therefore
not trimmed.

To prove that the elementary objegtsandy. containingp; andp, are not pruned
we subdivide the plane into two open halfspaégsand H, such that all points it
are closer tg; than tops and vice-versa. We denote lythe line separating these
two halfspaces.

Recall that, after trimming, an elementary objeds$ only pruned ifD(z) N D(y) #
¢ for all y € E. We will show thatD(y;) C Hy andD(y2) C Ho, thereforeD(y;) N
D(y,) = 0 and neithery; nory, are pruned. It suffices to prove thB{(y;) C H;
since the same argument shows the,) C H.. We consider three separate cases
depending on the location gf on M (P).

Case 1:p; is a vertex ofM (P). In this case we choosg to be the singleton el-
ementary objec{p; }. Thus, D(y;) is centered ap; andD(y,) € D; C Hy, as
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FIG. 4. The proof of Lemma 3.2 Case 2.

required.
Case 2:p; lies in the interior of a straight line segment of M (P). Letp| be the
lower endpoint of; . Let# be the angle/pap1p} (see Fig. 4). 1P € [—-7 /2, 7/2] then

we can movep; slightly in the direction opposite tp, p; while keepingD; inside P,
thus contradicting the assumption thjat p» || is maximal. Thereforé € [r/2, 37 /2],
which implies thatD(y;) lies in H;.

Case 3:p; lies in the interior of a parabolic agg of M (P). In this caseD; is tangent
to an edge:; of P and touches one of its vertices Again, letp] denote the lower
endpoint ofy;. Without loss of generality, assume thatis parallel to ther-axis,
x(p}) < x(p1) andw is belowe; (see Fig. 5). Note thaf; is part of a parabola whose
focus isv and that the radius of the largest disk supported by any poing; is given
by distance betweemande; .

Our assumption that(p}) < x(p;) therefore implies thag(p}) < y(p1) and that
x(v) < x(p1). Let L’ be the line parallel td. that intersects the segmdpt, p»] and
that is tangent td);. We denote by, the point where:; is tangent taD,, and we
denote by the point such thafo;, o} ) is a diameter oD;.

It must be thatk(ps) > x(p1). Otherwisep; and D, could be moved a small
amount in the positive: direction andD; would remain inP (sincey; is part of
a parabola whose maximum is obtainedcét)). This would increase the distance
llp1p2||, contradicting the assumption that this distance is maximal. It followsZthat
is tangent taD; along the counterclockwise af@/, o1]. Now, sincex(p}) < x(p1)
andy(p}) < y(p1) and the radius oD(y; ) is not more than the radius @¥,, D(y;)
does not intersedt’. FurtheremoreD(y;) is on the same side df’ asD;, soD(y;)
is contained in1, which completes the proof.

Let d; denote the distance of the furthest objectidrom z;, and suppose for the
sake of analysis that the elementsfofre labeledry, . .., z, sothatd; < d;,;. The
following lemma helps to establish the running time of the algorithm.
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FIG. 5. The proof of Lemma 3.2 Case 3.

LEMMA 3.3
If we selectr = z; as the random elementary object, then we discard;all £ such
thatj < from E.

PrRoOOF. For any;j < ¢, eitherz; does not support a disk of radius greater tagror
every point onz; that supports a disk of radiug is of distance less tha2d; from
every other point of\/ (P) that supports a disk of radius.

In the first casez; is removed fromE by trimming. In the second casB(z;) N
D(zy) # 0 for all 2, € E andx; is removed by pruning.

Finally, we state and prove our main theorem.

THEOREM 3.4
The above algorithm solves 25k in O(n logn) expected time.

PROOF The algorithm is correct because, by Lemma 3.2, it never disgardsr p,
until it has found a solution with = r*, at which point it has already found an optimal
solution that will be reported when the algorithm terminates.

To prove the running time of the algorithm, we use the following facts. Each round
of the algorithm can be completed @(m log m) time wherem is the cardinality of
E at the beginning of the round. By Lemma 3.3, when we selge&s our random
elementary object, all objects with j < i disappear fronk. Therefore, the expected
running time of the algorithm is given by the recurrence

m

T(m) < O(mlogm) + % ZT(m —1) ,
i=1

which readily solves t@(m logm). Sincem € O(n), this completes the proof. B
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FIG. 6. ReducinguAX -GAP to 2-DISK.

4 Conclusions

We have given a randomized algorithm fom2sk that runs inO(n logn) expected
time. The algorithm is considerably simpler than thén log® n) algorithm of Be-
spamyathnikh [4] and has the additional advantage of solving the more general prob-
lem of polygons with holes. Although we have described our algorithm as performing
computations with distances, these can be replaced with squared distances to yield an
algorithm that uses only algebraic computations.

In the algebraic decision tree model of computation, one can also prévg:dog n)
lower bound on any algorithm for 2+sk through a reduction frormAX -GAP [12].
Suppose that the input tAX -GAP IS y1, ..., y,. Without loss of generality one can
assume thay; = min{y; : 1 <i < n} andy, = max{y; : 1 <i < n}. We then
construct a rectangle with top and bottom sideg,agdndy,,, respectively, and with
width 2(y,, —y1). The interior of this rectangle is then partitioned into rectangles with
horizontal line segments havingcoordinatesy, .. ., y,. See Fig. 6 for an example.

It should then be clear that the solution tab2sk for this problem corresponds
to placing two disks in the rectangle corresponding to the gap betyeandy; 4
which is maximal, i.e., it gives a solution to the origimed x -GAP problem. Since this
reduction can be easily accomplished in linear time mnd -GAP has arf2(n logn)
lower bound, this yields af¥(n logn) lower bound on 251sK.

The above reduction only works because we allow polygons with holes. An inter-
esting open problem is that of determining the complexity afi2k when restricted
to simple polygons. Is there a linear time algorithm? More generally, is there an
O(n + nlog h) time algorithm for polygons with at mostholes?
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