
Online Routing in Convex Subdivisions∗

Prosenjit Bose† Andrej Brodnik‡ Svante Carlsson§

Erik D. Demaine¶ Rudolf Fleischer¶ Alejandro López-Ortiz‖

Pat Morin† J. Ian Munro¶

Abstract

We consider online routing algorithms for finding paths between the vertices of
plane graphs. We show (1) there exists a routing algorithm for arbitrary triangulations
that has no memory and uses no randomization, (2) no equivalent result is possible
for convex subdivisions, (3) there is no competitive online routing algorithm under the
Euclidean distance metric in arbitrary triangulations, and (4) there is no competitive
online routing algorithm under the link distance metric even when the input graph is
restricted to be a Delaunay, greedy, or minimum-weight triangulation.

1 Introduction

Path finding, or routing, is central to a number of fields including geographic information
systems, urban planning, robotics, and communication networks. In many cases, knowledge
about the environment in which routing takes place is not available beforehand, and the ve-
hicle/robot/packet must learn this information through exploration. Algorithms for routing
in these types of environments are referred to as online [2] routing algorithms.

In this paper we consider online routing in the following abstract setting [3]: The envi-
ronment is a plane graph, G (i.e., the planar embedding of G) with n vertices. The source s
and destination t are vertices of G, and a packet can only travel on edges of G. Initially, a
packet only knows the coordinates of s, t, and N(s), where N(v) denotes the set of vertices
adjacent to v. When a packet visits a node v, it learns the coordinates of N(v).

∗This research was partly funded by the Natural Sciences and Engineering Research Council of Canada.
†School of Computer Science, Carleton University, 1125 Colonel By Dr., Ottawa, Ontario, Canada,

K1S 5B6, {jit,morin}@scs.carleton.ca
‡IMFM, University of Ljubljana, Jadranska 11, SI-1111 Ljubljana, Slovenia and Department of Computer

Science, Lule̊a Technical University, SE-971 87 Lule̊a, Sweden. Andrej.Brodnik@IMFM.Uni-Lj.SI
§University of Karlskona/Ronneby, 371 41 KARLSKRONA, Sweden, svante.carlsson@sm.luth.se
¶Department of Computer Science, University of Waterloo, Waterloo, Ontario, Canada, N2L 3G1,

{eddemain,rudolf,imunro}@uwaterloo.ca
‖Faculty of Computer Science, University of New Brunswick, P.O. Box 4400, Fredericton, New Brunswick,

Canada, E3B 4A1, alopez-o@unb.ca

1



Bose and Morin [3] classify routing algorithms based on their use of memory and/or
randomization. A deterministic routing algorithm is memoryless or oblivious if, given a
packet currently at vertex v and destined for node t, the algorithm decides where to forward
the packet based only on the coordinates of v, t and N(v). A randomized algorithm is
oblivious if it decides where to move a packet based only on the coordinates of v, t, N(v),
and the output of a random oracle. An algorithm A is defeated by a graph G if there exists
a pair of vertices s, t ∈ G such that a packet stored at s will never reach t when being routed
using A. Otherwise, we say that A works for G.

Let A(G, s, t) denote the length of the walk taken by routing algorithm A when travelling
from vertex s to vertex t of G, and let SP(G, s, t) denote the length of the shortest path
between s and t. We say that A is c-competitive for a class of graphs G if

A(G, s, t)

SP(G, s, t)
≤ c

for all graphs G ∈ G and all s, t ∈ G, s 6= t. We say that A is simply competitive if A is
c-competitive for some constant c.

Recently, several papers have dealt with online routing and related problems in geometric
settings. Kalyanasundaram and Pruhs [7] give a 16-competitive algorithm to explore any
unknown plane graph, i.e., visit all of its nodes. This online exploration problem makes the
same assumptions as those made here, but the goal of the problem is to visit all vertices of
G, not just t. This difference leads to inherently different solutions.

Kranakis et al. [8] give a deterministic oblivious routing algorithm that works for any
Delaunay triangulation, and give a deterministic non-oblivious algorithm that works for any
connected plane graph.

Bose and Morin [3] also study online routing in geometric settings, particularly triangula-
tions. They give a randomized oblivious routing algorithm that works for any triangulation,
and ask whether there is a deterministic oblivious routing algorithm for all triangulations.
They also give a competitive non-oblivious routing algorithm for Delaunay triangulations.

Cucka et al. [5] experimentally evaluate the performance of routing algorithms very sim-
ilar to those described by Kranakis et al. [8] and Bose and Morin [3]. When considering
the Euclidean distance travelled during point-to-point routing, their results show that the
greedy routing algorithm [3] performs better than the compass routing algorithm [3, 8] on
random graphs, but does not do as well on Delaunay triangulations of random point sets.1

However, when one considers not the Euclidean distance, but the number of edges traversed
(link distance), then the compass routing algorithm is slightly more efficient for both random
graphs and Delaunay triangulations.

In this paper we present a number of new fundamental theoretical results that help further
the understanding of online routing in plane graphs.

1. We give a deterministic oblivious routing algorithm for all triangulations, solving the
open problem posed by Bose and Morin [3].

1Cucka et al. call these algorithms p-dfs and d-dfs, respectively.

2



ccw(v)

cw(v)

t

v

Figure 1: Definition of cw(v) and ccw(v).

2. We prove that no deterministic oblivious routing algorithm works for all convex sub-
divisions, showing some limitations of deterministic oblivious routing algorithms.

3. We prove that the randomized oblivious routing algorithm random-compass de-
scribed by Bose and Morin [3] works for any convex subdivision.

4. We show that, under the Euclidean metric, no routing algorithm exists that is compet-
itive for all triangulations, and under the link distance metric, no routing algorithm
exists that is competitive for all Delaunay, greedy, or minimum-weight triangulations.

The remainder of the paper is organized as follows: In Section 2 we give our deterministic
oblivious algorithm for routing in triangulations. Section 3 presents our results for routing in
convex subdivisions. Section 4 describes our impossibility results for competitive algorithms.
Finally, Section 5 summarizes and concludes with open problems.

2 Oblivious Routing in Triangulations

A triangulation T is a plane graph for which every face is a triangle, except the outer face,
which is the complement of a convex polygon. In this section we describe a deterministic
oblivious routing algorithm that works for all triangulations. The algorithm is a carefully
designed combination of two existing algorithms [3]. The greedy algorithm always moves
a packet to a neighbouring node that minimizes the distance to t. The compass algorithm
always moves a packet to the node that is most “inline” with t. Both these algorithms are
defeated by certain types of triangulations, but the ways in which they are defeated are very
different. By combining them, we obtain an algorithm that is works for any triangulation.

We use the notation 6 a, b, c to denote the angle formed by a b and c as measured in
the counterclockwise direction. Let cw(v) be the vertex in N(v) which minimizes the angle
6 cw(v), v, t and let ccw(v) be the vertex in N(v) which minimizes the angle 6 t, v, ccw(v). If
v has a neighbour w on the line segment (v, t), then cw(v) = ccw(v) = w. In particular, the
vertex t is contained in the wedge cw(v), v, ccw(v). Refer to Fig. 1 for an illustration.

The greedy-compass algorithm always moves to the vertex among {cw(v), ccw(v)}
that minimizes the distance to t. If the two distances are equal, or if cw(v) = ccw(v), then
greedy-compass chooses one of {cw(v), ccw(v)} arbitrarily.

3



t

vi

vi+1

cw(vi) C

D

vf R1

R2

Figure 2: The proof of Theorem 1.

Theorem 1. Algorithm greedy-compass works for any triangulation.

Proof. Suppose, by way of contradiction that a triangulation T and a pair of vertices s and
t exist such that greedy-compass does not find a path from s to t.

In this case there must be a cycle of vertices C = 〈v0, . . . , vk−1〉 of T such that greedy-

compass moves from vi to vi+1 for all 0 ≤ i ≤ k, i.e., greedy-compass gets trapped cycling
through the vertices of C (see also Lemma 1 of [3]).2 Furthermore, it follows from Lemma 2
of [3] that the destination t is contained in the interior of C.

Claim 1. All vertices of C must lie on the boundary of a disk D centered at t.

Proof (of claim). Suppose, by way of contradiction, that there is no such disk D. Then let
D be the disk centered at t and having the furthest vertex of C from t on its boundary.
Consider a vertex vi in the interior of D such that vi+1 is on the boundary of D. (Refer
to Fig. 2.) Assume, w.l.o.g., that vi+1 = ccw(vi). Then it must be that cw(vi) is not in
the interior of D, otherwise greedy-compass would not have moved to vi+1. But then the
edge (cw(vi), ccw(vi)) cuts D into two regions, R1 containing vi and R2 containing t. Since
C passes through both R1 and R2 and is contained in D then it must be that C enters region
R1 at cw(vi) and leaves R1 at vi+1 = ccw(vi). However, this cannot happen because both
cw(cw(vi)) and ccw(cw(vi)) are contained in the halfspace bounded by the supporting line
of (cw(vi), ccw(vi)) and containing t, and are therefore not contained in R1.

Thus, we have established that all vertices of C are on the boundary of D. However,
since C contains t in its interior and the triangulation T is connected, it must be that for
some vertex vj of C, cw(vj) or ccw(vj) is in the interior of D. Suppose that it is cw(vj).
But then we have a contradiction, since the greedy-compass algorithm would have gone
to cw(vj) rather than vj+1.

2Here, and in the remainder of this proof, all subscripts are taken modk.

4



3 Oblivious Routing in Convex Subdivisions

A convex subdivision is an embedded plane graph such that each face of the graph is a convex
polygon, except the outer face which is the complement of a convex polygon. Triangulations
are a special case of convex subdivisions in which each face is a triangle; thus it is natural to
ask whether the greedy-compass algorithm can be generalized to convex subdivisions. In
this section, we show that there is no deterministic oblivious routing algorithm for convex
subdivisions. However, there is a randomized oblivious routing algorithm that uses only one
random bit per step.

3.1 Deterministic Algorithms

Theorem 2. Every deterministic oblivious routing algorithm is defeated by some convex
subdivision.

Proof. We exhibit a finite collection of convex subdivisions such that any deterministic obliv-
ious routing algorithm is defeated by at least one of them.

There are 17 vertices that are common to all of our subdivisions. The destination vertex
t is located at the origin. The other 16 vertices V = {v0, . . . , v15} are the vertices of a regular
16-gon centered at the origin and listed in counterclockwise order.3 In all our subdivisions,
the even-numbered vertices v0, v2, . . . , v14 have degree 2. The degree of the other vertices
varies. All of our subdivisions contain the edges of the regular 16-gon.

Assume, by way of contradiction, that there exists a routing algorithm A that works
for any convex subdivision. Since the even-numbered vertices in our subdivisions always
have the same two neighbours in all subdivisions, A always makes the same decision at a
particular even-numbered vertex. Thus, it makes sense to ask what A does when it visits an
even-numbered vertex, without knowing anything else about the particular subdivision that
A is routing on.

For each vertex vi ∈ V , we color vi black or white depending on the action of A upon
visiting vi, specifically, black for moving counterclockwise and white for moving clockwise
around the regular 16-gon. We claim that all even-numbered vertices in V must have the
same color. If not, then there exists two vertices vi and vi+2 such that vi is black and vi+2

is white. Then, if we take s = vi in the convex subdivision shown in Fig. 3.a, the algorithm
becomes trapped on one of the edges (vi, vi+1) or (vi+1, vi+2) and never reaches the destination
t, contradicting the assumption that A works for any convex subdivision.

Therefore, assume w.l.o.g. that all even-numbered vertices of V are black, and consider
the convex subdivision shown in Fig. 3.b. From this figure it is clear that, if we take s = v1, A
cannot visit x after v1, since then it gets trapped among the vertices {v12, v13, v14, v15, v0, v1, x}
and never reaches t.

Note that we can rotate Fig. 3.b by integral multiples of π/4 while leaving the vertex

3In the remainder of this proof, all subscripts are implicitly taken mod16.

5



vi

vi+2

t

vi+1

v1 v0

v15

v14

v13

v12

x

t

v2

v3

v4

v5

v6

v7

v8 v9
v10

v11

v1 v0

v15

v14

v13

v12

v2

v3

v4

v5

v6

v7

v8 v9
v10

v11

(a) (b) (c)

Figure 3: The proof of Theorem 2.

Figure 4: Strictly convex subdivisions that can be used in the proof of Theorem 2.

labels in place and make similar arguments for v3, v5, v7, v9, v11, v13 and v15. However, this
implies that A is defeated by the convex subdivision shown in Fig. 3.c since if it begins at
any vertex of the regular 16-gon, it never enters the interior of the 16-gon. We conclude that
no oblivious online routing algorithm works for all convex subdivisions.

We note that, although our proof uses subdivisions in which some of the faces are not
strictly convex (i.e., have vertices with interior angle π), it is possible to modify the proof to
use only strictly convex subdivisions, but doing so leads to more cluttered diagrams. These
diagrams are shown in Fig. 4. We leave the details to the interested reader.

3.2 Randomized Algorithms

Bose and Morin [3] describe the random-compass algorithm and show that it works for
any triangulation. For a packet stored at node v, the random-compass algorithm selects a
vertex from {cw(v), ccw(v)} uniformly at random and moves to it. In this section we show
that random-compass works for any convex subdivision.

Although it is well known that a random walk on any graph G will eventually visit all

6



vertices of G, the random-compass algorithm has two advantages over a random walk.
The first advantage is that the random-compass algorithm is more efficient in its use of
randomization than a random walk. It requires only one random bit per step, whereas a
random walk requires log k random bits for a vertex of degree k. The second advantage is
that the random-compass algorithm makes use of geometry to guide it, and the result
is that random-compass generally arrives at t much more quickly than a random walk.
Nevertheless, it can be helpful to think of random-compass as a random walk on a directed
graph in which every node has out-degree 1 or 2 except for t which is a sink.

Before we can make statements about which graphs defeat random-compass, we must
define what it means for a graph to defeat a randomized algorithm. We say that a graph G
defeats a (randomized) routing algorithm if there exists a pair of vertices s and t of G such
that a packet originating at s with destination t has probability 0 of reaching t in any finite
number of steps. Note that, for oblivious algorithms, proving that a graph does not defeat
an algorithm implies that the algorithm will reach its destination with probability 1.

Theorem 3. Algorithm random-compass works for any convex subdivision.

Proof. Assume, by way of contradiction, that there is a convex subdivision G with two
vertices s and t such that the probability of reaching s from t using random-compass is 0.
Then there is a subgraph H of G containing s, but not containing t, such that for all vertices
v ∈ H, cw(v) ∈ H and ccw(v) ∈ H.

The vertex t is contained in some face f of H. We claim that this face must be convex.
For the sake of contradiction, assume otherwise. Then there is a reflex vertex v on the
boundary of f such that the line segment (t, v) does not intersect any edge of H. However,
this cannot happen, since ccw(v) and cw(v) are in H, and hence v would not be reflex.

Since G is connected, it must be that for some vertex u on the boundary of f , cw(u) or
ccw(u) is contained in the interior of f . But this vertex in the interior of f is also in H,
contradicting the fact that f is a convex face of H. We conclude that there is no convex
subdivision that defeats random-compass.

4 Competitive Routing Algorithms

If we are willing to accept more sophisticated routing algorithms that make use of memory,
then it is sometimes possible to find competitive routing algorithms. Bose and Morin [3] give
a competitive algorithm for Delaunay triangulations under the Euclidean distance metric.
Two questions arise from this: (1) Can this result be generalized to arbitrary triangulations?
and (2) Can this result be duplicated for the link distance metric? In this section we show
that the answer to both these questions is negative.

7



s

t

(a)

s

t

vb

(b)

Figure 5: (a) The triangulation T with the path found by A indicated. (b) The resulting
triangulation T ′ with the “almost-vertical” path shown in bold.

4.1 Euclidean Distance

In this section we show that, under the Euclidean metric, no deterministic routing algorithm
is o(
√
n)-competitive for all triangulations. Our proof is a modification of that used by

Papadimitriou and Yannakakis [9] to show that no online algorithm for finding a destination
point among n axis-oriented rectangular obstacles in the plane is o(

√
n)-competitive.

Theorem 4. Under the Euclidean distance metric, no deterministic routing algorithm is
o(
√
n) competitive for all triangulations.

Proof. Consider an n×n hexagonal lattice with the following modifications. The lattice has
had its x-coordinates scaled so that each edge is of length Θ(n). The lattice also has two
additional vertices, s and t, centered horizontally, at one unit below the bottom row and one
unit above the top row, respectively. Finally, all vertices of the lattice and s and t have been
completed to a triangulation T . See Fig. 5.a for an illustration.

Let A be any deterministic routing algorithm and observe the actions of A as it routes
from s to t. In particular, consider the first n + 1 steps taken by A as it routes from s
to t. Then A visits at most n + 1 vertices of T , and these vertices induce a subgraph Tvis

consisting of all vertices visited by A and all edges adjacent to these vertices.

For any vertex v of T not equal to s or t, define the x-span of v as the interval between
the rightmost and leftmost x-coordinate of N(v). The length of any x-span is Θ(n), and the
width of the original triangulation T is Θ(n2). This implies that there is some vertex vb on
the bottom row of T whose x-coordinate is at most n

√
n from the x-coordinate of s and is

contained in O(
√
n) x-spans of the vertices visited in the first n+ 1 steps of A.

8



We now create the triangulation T ′ that contains all vertices and edges of Tvis. Addi-
tionally, T ′ contains the set of edges forming an “almost vertical” path from vb to the top
row of T ′. This almost vertical path is a path that is vertical wherever possible, but uses
minimal detours to avoid edges of Tvis. Since only O(

√
n) detours are required, the length

of this path is O(n
√
n). Finally, we complete T ′ to a triangulation in some arbitrary way

that does not increase the degrees of vertices on the first n + 1 steps of A. See Fig. 5.b for
an example.

Now, since A is deterministic, the first n+ 1 steps taken by A on T ′ will be the same as
the first n+1 steps taken by A on T , and will therefore travel a distance of Θ(n2). However,
there is a path in T ′ from s to t that first visits vb (at a cost of O(n

√
n)), then uses the

“almost-vertical” path to the top row of T ′ (at a cost of O(n
√
n)) and then travels directly

to t (at a cost of O(n
√
n)). Thus, the total cost of this path, and hence the shortest path,

from s to t is O(n
√
n).

We conclude that A is not o(
√
n)-competitive for T ′. Since the choice of A is arbitary,

and T ′ contains O(n) vertices, this implies that no deterministic routing algorithm is o(
√
n)

competitive for all triangulations with n vertices.

4.2 Link Distance

The link distance metric simply measures the number of edges traversed by a routing algo-
rithm. For many networking applications, this metric is more meaningful than Euclidean
distance. In this section we show that competitive algorithms under the link distance metric
are harder to come by than under the Euclidean distance metric. Throughout this section
we assume that the reader is familiar with the definitions of Delaunay, greedy and minimum-
weight triangulations (cf. Preparata and Shamos [10]).

We obtain this result by constructing a “bad” family of point sets as follows. Let Ci
be the set of

√
n points {(i

√
n, 1), (i

√
n, 2), . . . , (i

√
n,
√
n)}. We call Ci the ith column.

Let Di = {(i
√
n, 1), (i

√
n,
√
n)}, and define a family of point sets S =

⋃∞
j=1{Sj2} where

Sn = {Sn,1, . . . , Sn,√n} and

Sn,i =
i−1⋃
j=1

Cj ∪Di ∪
√
n⋃

j=i+1

Cj ∪ {(
√
n/2, 0), (

√
n/2,

√
n+ 1)} (1)

Two members of the set S49 are shown in Fig. 6.

Theorem 5. Under the link distance metric, no routing algorithm is o(
√
n)-competitive for

all Delaunay triangulations.

Proof. We use the notation DT (Sn,i) to denote the Delaunay triangulation of Sn,i. Although
the Delaunay triangulation of Sn,i is not unique, we will assume DT (Sn,i) is triangulated
as in Fig. 6. Note that, in DT (Sn,i), the shortest path between the topmost vertex s and
bottom-most vertex t is of length 3, independent of n and i. Furthermore, any path from s

9



(a) (b)

Figure 6: The point sets (a) S49,2 and (b) S49,5 along with their Delaunay triangulations.

to t whose length is less than
√
n must visit vertices from one of the columns Ci−1, Ci, or

Ci+1.

The rest of the proof is based on the following observation: If we choose an element i
uniformly at random from {1, . . . ,

√
n}, then the probability that a routing algorithm A has

visited a vertex of Ci−1, Ci, or Ci+1 after k steps is at most 3k/
√
n. Letting k =

√
n/6, we

see that the probability that A visits a vertex of Ci−1, Ci, or Ci+1 after
√
n/6 steps is at

most 1/2.

Letting di denote the (expected, in the case of randomized algorithms) number of steps
when routing from s to t in Sn,i using routing algorithm A, we have

1√
n
·
√
n∑

i=1

di ≥
√
n/12 . (2)

Since, for any Sn,i, the shortest path from s to t is 3 there must be some i for which the
competitive ratio of A for Sn,i is at least

√
n/36 ∈ Ω(

√
n).

Theorem 6. Under the link distance metric, no routing algorithm is o(
√
n)-competitive for

all greedy triangulations.

Proof. This follows immediately from the observation that for any Sn,i, a Delaunay triangu-
lation of Sn,i is also a greedy triangulation of Sn,i.

Theorem 7. Under the link distance metric, no routing algorithm is o(
√
n)-competitive for

all minimum-weight triangulations.

Proof. We claim that for members of S, any greedy triangulation is also a minimum-weight
triangulation. To prove this, we use a result on minimum-weight triangulations due to
Aichholzer et al. [1]. Let Kn,i be the complete graph on Sn,i. Then an edge e of Kn,i is
said to be a light edge if every edge of Kn,i that crosses e is not shorter than e. Aichholzer
et al. prove that if the set of light edges contains the edges of a triangulation then that
triangulation is a minimum-weight triangulation.

There are only 5 different types of edges in the greedy triangulation of Sn,i; (1) vertical
edges within a column, (2) horizonal edges between adjacent columns, (3) diagonal edges
between adjacent columns, (4) edges used to triangulate column i, and (5) edges used to
join s and t to the rest of the graph. It is straightforward to verify that all of these types of
edges are indeed light edges.

10



Class of Deterministic Randomized Euclidean Link
graphs oblivious oblivious4 competitive competitive
DT Yes [3, 8, ↓] Yes [←] Yes [3] No [here]
GT/MWT Yes [↓] Yes [↓] Yes [4] No [here]
Triangulations Yes [here] Yes [3, ←] No [here] No [↑]
Conv. Subdv. No [here] Yes [here] No [↑] No [↑]
Plane graphs No [F] No [F] No [F] No [F]

Table 1: A summary of known results for online routing in plane graphs.

5 Conclusions

We have presented a number of results concerning online routing in plane graphs. Table 1
summarizes what is currently known about online routing in plane graphs. An arrow in a
reference indicates that the result is implied by the more general result pointed to by the
arrow. An F indicates that the result is trivial and/or folklore.

We have also implemented a simulation of the greedy-compass algorithm as well as
the algorithms described by Bose and Morin [3] and compared them under the Euclidean
distance metric. These results will be presented in the full version of the paper. Here we
only summarize our main observations.

For Delaunay triangulations of random point sets, we found that the performance of
greedy-compass is comparable to that of the compass and greedy algorithms [3, 5,
8]. For triangulations obtained by performing Graham’s scan [6] on random point sets,
the greedy-compass algorithm does significantly better than the compass or greedy

algorithms.

We also implemented a variant of greedy-compass that we call greedy-compass-2

that, when located at a vertex v, moves to the vertex u ∈ {cw(v), ccw(v)} that minimizes
d(v, u)+d(u, t), where d(a, b) denotes the Euclidean distance between a and b. Although there
are triangulations that defeat greedy-compass-2, it worked for all our test triangulations,
and in fact seems to be twice as efficient as greedy-compass in terms of the Euclidean
distance travelled.

We note that currently, under the link distance metric, there are no competitive routing
algorithms for any interesting class of geometric graphs (meshes do not count). The reason
for this seems to be that the properties used in defining many geometric graphs make use
of properties of Euclidean space, and link distance in these graphs is often independent of
these properties. We consider it an open problem to find competitive algorithms, under the
link distance metric, for an interesting and naturally occuring class of geometric graphs.

4In this column, we consider only algorithms that use a constant number of random bits per step.
Otherwise, it is well known that a random walk on any graph G will eventually visit all vertices of G.

11



Acknowledgements

This work was initiated at Schloss Dagstuhl Seminar on Data Structures, held in Wadern,
Germany, February–March 2000, and co-organized by Susanne Albers, Ian Munro, and
Peter Widmayer. The authors would also like to thank Lars Jacobsen for helpful discussions.

References

[1] O. Aichholzer, F. Aurenhammer, S.-W. Cheng, N. Katoh, G. Rote, M. Taschwer,
and Y.-F. Xu. Triangulations intersect nicely. Discrete and Computational Geome-
try, 16(4):339–359, 1996.

[2] A. Borodin and R. El-Yaniv. Online Computation and Competitive Analysis. Cambridge
University Press, 1998.

[3] P. Bose and P. Morin. Online routing in triangulations. In Proceedings of the Tenth
International Symposium on Algorithms and Computation (ISAAC’99), volume 1741 of
Springer LNCS, pages 113–122, 1999.

[4] P. Bose and P. Morin. Competitive routing algorithms for greedy and minimum-weight
triangulations. Manuscript, 2000.

[5] P. Cucka, N. S. Netanyahu, and A. Rosenfeld. Learning in navigation: Goal find-
ing in graphs. International Journal of Pattern Recognition and Artificial Intelligence,
10(5):429–446, 1996.

[6] R. L. Graham. An efficient algorithm for determining the convex hull of a finite planar
set. Information Processing Letters, 1:132–133, 1972.

[7] B. Kalyanasundaram and K. R. Pruhs. Constructing competitive tours from local in-
formation. Theoretical Computer Science, 130:125–138, 1994.

[8] E. Kranakis, H. Singh, and J. Urrutia. Compass routing on geometric networks. In
Proceedings of the 11th Canadian Conference on Computational Geometry (CCCG’99),
1999. available online at http://www.cs.ubc.ca/conferences/CCCG/elec_proc/c46.
ps.gz.

[9] C. H. Papadimitriou and M. Yannakakis. Shortest paths without a map. Theoretical
Computer Science, 84:127–150, 1991.

[10] F. P. Preparata and M. I. Shamos. Computational Geometry. Springer-Verlag, New
York, 1985.

12

http://www.cs.ubc.ca/conferences/CCCG/elec_proc/c46.ps.gz
http://www.cs.ubc.ca/conferences/CCCG/elec_proc/c46.ps.gz

	Introduction
	Oblivious Routing in Triangulations
	Oblivious Routing in Convex Subdivisions
	Deterministic Algorithms
	Randomized Algorithms

	Competitive Routing Algorithms
	Euclidean Distance
	Link Distance

	Conclusions

