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ABSTRACT

We describe an algorithm for enumerating all vertices, edges and faces of a planar
subdivision stored in any of the usual pointer-based representations, while using only a

constant amount of memory beyond that required to store the subdivision. The algo-
rithm is a refinement of a method introduced by de Berg et al (1997), that reduces the

worst case running time from O(n2) to O(n logn). We also give experimental results

that show that our modified algorithm runs faster not only in the worst case, but also
in many realistic cases.

Keywords: computational geometry, vertex enumeration, subdivision traversal, geo-

graphic information systems

1. Introduction

A planar subdivision S is a partitioning of the plane into a set V of vertices
(points), a set E of edges (line segments), and a set F of faces (polygons). Planar
subdivisions are frequently used in geographic information systems as a representa-
tion for maps. A common operation on subdivisions is that of traversal. Traversing
a subdivision involves reporting each vertex, edge and face of S exactly once, so
that, e.g., some operation can be applied to each.

The usual method of traversing a subdivision involves a breadth-first or depth-
first traversal of the primal (vertices and edges) or dual (faces and edges) graph
of S. Unfortunately, this requires the use of mark bits on the edges, vertices,
or faces of S and a stack or queue. If the data structure used to represent S
does not have extra memory allocated to the vertex/edge/face records for these
mark bits, then an auxiliary array must be allocated and some form of hashing is
required to map vertex/edge/face records to array indices. Even if extra memory
is available for mark bits, this approach has the problem that traversal cannot be
∗This research was funded by the Natural Sciences and Engineering Research Council of
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done simultaneously by more than one thread of execution without some type of
locking mechanism.

For these reasons, researchers have investigated methods of traversing subdivi-
sions and other graph-like data structures without the use of mark bits.1,2,3,4,5 Gen-
erally speaking, these techniques use geometric properties of S to define a spanning
tree T of the vertices, edges or faces of S and then apply a well-known tree-traversal
technique to traverse T using O(1) additional memory.

The most recent and general result on traversing planar subdivisions is that of
de Berg et al1 who show how to traverse any connected subdivision S using only
O(1) additional storage. The running time of their algorithm is O(

∑
f∈F |f |2),

where |f | denotes the number of edges on the boundary of the face f . In the
worst case this results in a running time of Θ(n2) for a subdivision with n vertices.
However, for convex subdivisions, the running time is O(n).

In this paper we show how to modify the algorithm of de Berg et al so that
it runs in O(

∑
f∈F |f | log |f |) = O(n log n) time. The modification we describe is

quite simple and does not significantly affect the constants in the running time of the
algorithm. The resulting algorithm is also similar enough to the original algorithm
that all the extensions described by de Berg et al also work for our algorithm,
often with an improved running time. We also give experimental results comparing
our modified algorithm to the original algorithm as well as a traditional traversal
algorithm that uses mark bits and a stack.

The remainder of the paper is organized as follows: Section 2 describes the prim-
itive constant time operations required by our algorithm and defines some notation.
Section 3 presents the traversal algorithm. Section 4 discusses our experimental
results. Section 5 summarizes and concludes with open problems.

2. Notation and Primitive Operations

In this section we describe the constant-time primitives used by our algorithm.
Rather than assume a specific representation of the subdivision S we will only

state the primitives used by our algorithm. We assume that the representation of S
includes the notions of vertices, edges, and faces and that edges can be directed so
that the edges (u, v) and (v, u) are two different entities. Note that, while we assume
the representation of S has directed edges, we still have to report each (undirected)
edge of S exactly once.

For an edge e = (u, v) of S, src(e) returns a pointer to u, tgt(e) returns a pointer
to v, and face of (e) returns a pointer to the face with e on its boundary and on the
left of e. The function succ(e) returns a pointer to the next edge on the boundary
of face of (e) when traversing e in direction uv. The function pred(e) returns the
next edge on the boundary of face of (e) when traversing e in direction vu. Finally,
rev(e) returns a pointer to the edge (v, u). See Figure 1 for an illustration of these
functions.

This functionality is available in or can be simulated by the most commonly
used data structures for storing planar subdivisions including the doubly-connected
edge list,6,7 the quad edge structure,8 the fully topological network structure, 9 the
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Figure 1: The operations required on subdivisions.

ARC-INFO structure,10 and the DIME file.11

Our algorithm also requires the use of some geometric operations. Let dist(a, b)
be the distance between two points a and b. Let −→ab be the direction of the ray
originating at a and containing b. The angle formed by three points a, b and c is
denoted by ∠abc and always refers to the smaller of the two angles as measured
in the clockwise and counterclockwise directions. When referring specifically to
clockwise and counterclockwise angles we will use the notations

cw

∠ abc and
ccw

∠ abc,
respectively. Let right turn(a, b, c) be the predicate that is true if and only if

cw

∠
abc < π. We use the notation cone(a, b, c) to denote the cone with apex b, with

supporting lines passing through b and c, and interior angle
ccw

∠ abc. We will assume
that cone(a, b, c) contains the bounding ray passing through a and b, but not the
bounding ray passing through b and c. If a, b, and c are collinear then cone(a, b, c)
is a single ray.

Although we use angles, distances and directions that involve square roots and
trigonometric functions, this is only to simplify the description of our algorithm.
Since these values are always only being compared, it is not necessary to explicity
compute them, and it is a simple exercise to implement the algorithm using only
algebraic functions.

3. The Algorithm

In this section we describe the subdivision traversal algorithm. The algorithm
requires only that we are given a pointer to some edge estart of S and a point p
contained in the interior of face of (estart). The point p is not strictly necessary
since it can be obtained by using symbolic perturbation to create a point just to
the left of the midpoint of estart .12

The algorithm works by defining a relation between the faces of S that produces
a spanning tree of the faces of S. The relation is based on a total order on the edges
of S that defines a special edge for each face.

3.1. The �p order and entry edges
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Figure 2: Cases in which determining that (u, v) �p (w, x) requires the use of
(a) their first key, (b) their second key, (c) their third key, and (d) their fourth key.

Next we define the total order �p on the edges of S. For an edge e, let dist(e, p)
be the radius of the smallest circle C, centered at p, that intersects e, and let pt(e)
be the intersection point of C and e.

For an edge e = (u, v) such that pt(e) = x and dist(u, p) ≤ dist(v, p) we define
the key of e as the 4-tuple

key(e) =
(

dist(e, p), −→px, ∠puv,
ccw

∠ puv
)
. (1)

It is not difficult to verify that for any two edges e1 and e2 of S, key(e1) = key(e2)
if and only if e1 = e2. (This follows from the fact that edges of S intersect only
at their endpoints.) The total order �p is defined by lexicographic comparison of
the numeric key values using ≤. Figure 2 gives examples of how the four values of
key(e) are used to compare two edges.

For a face f of S, we define entry(f) as

entry(f) = e ∈ f : e �p e′ for all e′ 6= e ∈ f , (2)

i.e., entry(f) is the minimum edge on the boundary of f with respect to the order
�p.

3.2. Traversing the face tree

For a face f , let parent(f) be the face f ′ 6= f that has the edge entry(f) on its
boundary. de Berg et al1 prove the following lemma.
Lemma 1 (de Berg et al 1997) For any face f that does not contain
p, parent(f) 6= f and the values of parent(f) define a rooted tree whose vertices
correspond to the faces of S and whose root is face of (estart).
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Figure 3: The face tree of S and a traversal of the face tree.

We call this tree the face tree of S with respect to p. See Figure 3 for an example.
The traversal algorithm (Algorithm 1) performs a depth-first traversal of the

face tree in order to report each vertex, face, and edge of S exactly once. An
example of a traversal performed by Algorithm 1 is shown in Figure 3.
Lemma 2 Algorithm 1 reports each vertex, edge and face of S exactly once.

Proof. A proof that this algorithm performs a depth-first traversal of the
face tree that visits all faces of S is given by de Berg et al.1 This traversal has two
important properties.

1. Each face f of S is traversed exactly once.

2. Each (directed) edge e = (u, v) of S is visited exactly once.

That the algorithm reports each face exactly once is clear, since the algorithm
reports a face f when returning to the parent of f (line 15), and each face has
exactly one parent, except for the face containing p, which is treated as a special
case (line 23). See Figure 4.a for an illustration.

That each (undirected) edge is reported exactly once follows from the fact that
an edge is reported only when it is visited in the direction moving “away-from” p
(line 5), and by property (2), each edge is visited exactly once in each direction.
See Figure 4.b for an illustration.

That each vertex is reported exactly once follows from the fact that a vertex v is
reported only while traversing the unique edge e satisfying the conditions of line 10
(see Figure 4.c) in the direction for which tgt(e) = v. Since, by property (2), each
edge is traversed exactly once in each direction, v is reported exactly once. See
Figure 4.c for an illustration. 2

If we ignore the cost of the tests in lines 13 and 17, then the running time
of the algorithm is clearly O(n), since each face is traversed only once. The test
e = entry(f) can be implemented in O(|f |) time by walking around f until finding
an edge e′ 6= e such that e′ �p e or until returning to e. Since, by property (2) each
edge of S is tested 4 times (twice in each direction), the overall running time of this
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Algorithm 1 Traverses the subdivision S
1: e← estart

2: repeat
3: {* report e if necessary *}
4: Let (u, v) = e
5: if dist(u, p) < dist(v, p) or (dist(u, p) = dist(v, p) and −→up < −→vp) then
6: report e
7: end if
8: {* report v if necessary *}
9: Let (v, w) = succ(e)

10: if p is contained in cone(w, v, u) then
11: report v
12: end if
13: if e = entry(face of (e)) then
14: {* return to parent of face of (e) *}
15: report face of (e)
16: e← rev(e)
17: else if rev(e) = entry(face of (rev(e))) then
18: {* descend to child of face of (e) *}
19: e← rev(e)
20: end if
21: e← succ(e)
22: until e = estart

23: report face of (estart)

algorithm is O(
∑
f∈F |f |2), and this is basically the algorithm given by de Berg et

al.1

3.3. Testing entry edges

In this section we show how to implement the test e = entry(f) so that the
running time of Algorithm 1 is O(

∑
f∈F |f | log |f |).

Let e0, . . . , e|f |−1 be the edges of f in counterclockwise order. Then we say that
ei is a k-minimum if ei �p ej for all i − k ≤ j ≤ i + k.a We define minval(ei) as
the maximum k for which ei is a k-minimum. The following lemma provides an
efficient means of testing whether ei = entry(f).
Lemma 3

∑|f |−1
i=0 minval(ei) ≤ |f | · (H|f | − 1), where Hx is the xth harmonic

number, defined as Hx =
∑x
i=1 1/x.

Proof. If ei is a k-minimum, then none of ei−k, . . . , ei−1, ei+1, . . . , ei+k is a
k-minimum. Therefore, at most b|f |/(k + 1)c edges of f are k-minima. Thus,

|f |−1∑
i=0

minval(ei) =
|f |−1∑
k=1

|{ei : ei is a k-minimum}| (3)

aIn this section, subscripts are implicitly taken mod|f |.
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Figure 4: When the edge e is visited in direction u→ v, (a) face of (e) is reported,
(b) e is reported, (c) v is reported.

≤
|f |−1∑
k=1

b|f |/(k + 1)c (4)

=
|f |∑
k=1

(b|f |/kc − |f |) (5)

≤ |f | · (H|f | − 1) , (6)

as required. 2

Harmonic numbers have been studied extensively, and are known to satisfy the
inequalies lnx ≤ Hx ≤ lnx+1 (cf. Ref. [13]). Therefore, Lemma 3.3 suggests that it
is more efficient to perform the test ei = entry(f) by traversing f in the clockwise
and counterclockwise directions “in parallel.” This leads to Algorithm 2 for testing
the condition ei = entry(f).

Clearly Algorithm 2 is correct, since it only returns false after finding an edge
e′ such that e′ �p e and returns true only after it has compared e to every other
edge of f . Furthermore, the number of comparisons performed by Algorithm 2 is
at most 2 · (minval(ei) + 1). We are now ready to prove our main result.
Theorem 1 Algorithm 1 reports all vertices, edges and faces of a connected planar
subdivision S with n vertices in O(n log n) time.

Proof. The correctness of the algorithm was proven in Lemma 3.2.
Next we note that if we run Algorithm 2 on each edge of a face f then, by

Lemma 3.3, the total number of comparisons performed is at most 2 · |f | ·H|f |. By
property (2) each edge of S is tested for being an entry edge at most 4 times (twice in
each direction) during the execution of Algorithm 1. Therefore, the total number of
comparisons performed during these tests is at most

∑
f∈F 8 · |f | ·H|f | ∈ O(n log n).

Since all other operations can be bounded by the number of comparisons performed
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Algorithm 2 Tests the condition ei = entry(f).
1: ecw ← eccw ← ei
2: while true do
3: ecw ← pred(ecw)
4: if ecw = eccw then
5: return true
6: else if ecw �p ei then
7: return false
8: end if
9: eccw ← succ(eccw)

10: if ecw = eccw then
11: return true
12: else if eccw �p ei then
13: return false
14: end if
15: end while

during these tests, the theorem follows. 2

Any reader familiar with the field of distributed algorithms may notice the sim-
ilarity between the analysis used in this section and the analysis of the Hirschberg-
Sinclair14 leader election algorithm for the ring. Indeed, there are deep links between
the two problems. In the leader election problem, each processor in a ring must
determine whether it has the smallest processor ID in the ring. In our problem we
must determine if each edge on the boundary of a face is a minimum with respect
to the �p order. In the case of leader election, the challenge comes from the fact
that processors can only communicate with their immediate neighbours, while in
our problem the difficulty comes from the O(1) memory restriction.

4. Experimental Results

In this section we give experimental results on the running times of subdivi-
sion traversal algorithms. All tests were implemented in C++ using the LEDA
library.15 Subdivisions were represented using the data type GRAPH<point,int> in
which vertex coordinates are represented using double-precision floating point. All
numerical values presented in this section are the average of 40 different tests. The
test machine was a PC with a Pentium II 350Mhz processor and 128MB of 100Mhz
memory running Linux kernel release 2.0.36.

Table 1 compares the running times of three subdivision traversal algorithms on
Delaunay triangulations of points uniformly distributed in the unit circle. The dfs

algorithm requires the use of mark bits and a stack and does a depth-first search on
the vertices (to report vertices and edges) and on the faces (to report faces). The
bkoo algorithm is the algorithm described by de Berg et al1 and the bm algorithm
is the one described in this paper.

From these results it is clear that, in terms of running time, dfs is far more
efficient than the the other two algorithms, being somewhere between 15–20 times
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n/104 1 2 3 4 5 6 7 8 9 10

dfs 0.09 0.19 0.28 0.38 0.48 0.57 0.69 0.78 0.88 0.97
bkoo 1.53 3.05 4.56 6.09 7.70 9.23 10.76 12.14 13.85 15.39
bm 1.53 3.06 4.59 6.14 7.79 9.35 10.90 12.22 14.03 15.59

Table 1: Running times (in seconds) for dfs, bkoo and bm on subdivisions ranging
from 104 to 105 vertices.

faster. This is due simply to the fact that evaluating the geometric predicates
required to implement bkoo and bm involves expensive floating-point computations.

However, the reader should note that these tests strongly favour the dfs algo-
rithm for several reasons. The first is that vertices, edges and faces of the LEDA
graph type are given integer identifiers which makes it possible to implement mark
bits very efficiently through the use of auxilliary arrays, without the use of hashing.
The price of this is, of course, an increase in storage cost, even when mark bits are
not needed.

Another factor that favoured the dfs algorithm is that the functions for re-
porting vertices, edges, and faces were implemented as stub functions that return
immediately without doing any work. Thus, the running time represents only the
overhead incurred by the traversal algorithm. In many cases, this overhead is neg-
ligible if the reporting functions are more complicated. Along similar lines, the
subdivision being traversed may be stored in external memory. In this case the cost
of disk accesses in the subdivision data structure will be the dominant cost, rather
than the geometric predicates used by the bkoo and bm algorithms.

Next we compare the bkoo and bm algorithms. Let S be a planar subdivision
with n+αn vertices. We obtain a subdivision S′ with a failure rate of α by deleting
αn randomly chosen vertices of S. Intuitively, the failure rate α is a measure of
how complex the faces of S′ are, compared to the faces of S. Our test cases for
the bkoo and bm algorithms involved generating graphs with n+ αn vertices and
then deleting αn randomly chosen vertices. Any resulting graph with more than
one connected component was discarded.

Figure 5 compares the performance of the bkoo and bm algorithms when the
initial graph is the Delaunay triangulation of points randomly distributed in the
unit circle. As our theoretical analysis predicts, the performance of the bkoo and
bm algorithms is comparable as long as all faces are of constant complexity, but the
performance of the bkoo algorithm degrades as the complexity of the faces (failure
rate) of the subdivision increases. In contrast, the complexity of the faces seems to
have no noticeable effect on the performance of the bm algorithm.

Figures 6 and 7 show similar results for the case of regular quadrangle meshes
and triangulations generated by first sorting the points by x-coordinate and then
using Graham’s scan (c.f., Ref. [7]) to triangulate the points. Overall, these results
suggest that the bm algorithm not only performs better than bkoo in the worst
case, but also in many practical cases.

5. Conclusions
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Figure 5: Comparison of bkoo and bm on Delaunay triangulations.
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Figure 6: Comparison of bkoo and bm on Meshes.
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Figure 7: Comparison of bkoo and bm on Graham triangulations.

We have shown how to traverse a connected planar subdivision with n vertices
using O(1) additional memory and O(n log n) time. De Berg et al1 describe various
extensions of their algorithm, including curved subdivisions, window queries, and
traversing connected subsets of faces with a common attribute. Our modification
of their algorithm results in improved running times for all of these operations.

An interesting theoretical open problem is to try and close the gap between our
O(n log n) upper bound for an O(1) memory traversal algorithm and the trivial
Ω(n) lower bound. Another possibility is a tradeoff between running time and
additional memory. On the more practical side, we believe that a more careful
implementation of the �p test could significantly reduce the constants for the bkoo

and bm algorithms, making them more competitive with algorithms that use mark
bits. In order to encourage such research we have made our source code available
on the second author’s web page (http://www.cs.carleton.ca/~morin).
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