Progressive TINs: Algorithms and Applications*

Anil Maheshwari

Pat Morin

Jorg-Rudiger Sack

School of Computer Science, Carleton University
{maheshwa,morin,sack} @scs.carleton.ca

Abstract

Transmission of geographic data over the Internet, rendering
at different resolutions/levels of detail, or processing at un-
necessarily fine detail pose interesting challenges and oppor-
tunities. In this paper we explore the applicability to GIS
of the notion of progressive meshes, introduced by Hoppe
[13] to the field of computer graphics. In particular, we
describe progressive TINs as an alternate method to hierar-
chical TINs, design algorithms for solving GIS tasks such as
selective refinement, point location, visibility or line of sight
queries, isoline/contour line extraction and provide empiri-
cal results which show that our algorithms are of consider-
able practical relevance. Moreover, the selective refinement
data structure and refinement algorithm solves a question
posed by Hoppe.

1 Introduction

In the field of Computer Graphics, very recently, Hoppe [13],
proposed the progressive mesh (PM) representation, which
can represent a triangulated mesh at a continuous level of
resolution. In essence, a mesh in the PM format consists of
a coarse mesh, My, and a sequence of operations which suc-
cessively transform the coarse mesh into progressively finer
meshes, {M1, M2, M3, ..., My}, until the high level detailed

input mesh, M,, is (re)created.

The progressive mesh representation naturally supports
some operations not found in standard representations of
triangulated meshes. Level-of-Detail (LOD) Approzimation
allows for viewing and manipulating the mesh at varying
levels of detail (number of vertices). Progressive transmis-
ston allows for the transmission of a mesh across a network
connection, so that the receiver can immediately display an
approximation of the mesh, and refine this display as more
data is received. Selective refinement is the ability to view
and manipulate part of the mesh at a high level of detail
while the remainder of the mesh remains at a low level of
detail.

*This work was supported in part by the Natural Sciences and
Engineering Research Council of Canada and Almerco Inc.

In this paper we are interested in progressive triangulated
irregular networks, progressive TINs, as an alternate repre-
sentation to hierarchical TINs as described in [3, 5, 4, 2].
A TIN is one of the fundamental data structures for repre-
senting geographical data where a triangulated set of points
is stored together with e.g., its elevation. TINs were first
introduced in 1978 (see [21, 22, 6]).

Storing data at different levels of detail is becoming in-
creasingly important due to changes for GIS in users, de-
vices, and communication technology. Today’s users have
access to geographic data at a level of detail orders of mag-
nitude greater than just a few years ago. Frequently, there is
no need to work with a TIN at a high level of detail to obtain
a desired result, or it is inefficient or even computationally
infeasible. Users often obtain or share data remotely via
the Internet or other communication lines. In a progressive
scheme, a user can interrupt the communication process at
any time, with an approximate solution, without waiting for
the final result.

In this paper we introduce the concept of progressive
TINs and present schemes for selective refinement!, which
in turn helps us in addressing a number of GIS applica-
tions such as exact and approximate point location queries,
visibility queries, and isoline/contour extraction (conversion
to contour lines). Empirical results are presented for some
of our algorithms which show that they are of considerable
practical relevance. Furthermore, we sketch representations
of progressive TINs in external memory.

2 Related Work

The problem of level of detail approximation in TINs has re-
ceived much attention in the field of GIS. This research takes
the form of Hierarchical TINs; surveys of these schemes are
included in [1] and [12]. Each of these schemes use a tree
[3, 5, 4] or directed acyclic graph (DAG) [2] structure to
store the triangles of a triangulation in a hierarchical man-
ner. These schemes support LOD approximation by only
refining the mesh to a certain level in the hierarchy, and
support efficient selective refinement by searching the struc-
ture in a top-down manner. Although not described in the
literature, these schemes can also support a limited form of

1In this paper we present a solution to the problem of efficient
selective refinement, originally posed in [13]. A similar solution to the
problem of selective refinement for meshes has been independently
and concurrently proposed by Hoppe [14] with Computer Graphics
applications in mind.

Figure 1: An example of (a) the thin triangles formed by
tree based schemes and (b) the high complexity of DAG
based schemes.

progressive transmission by transmitting the levels of the
hierarchy one at a time.

Unfortunately, both the tree-based and DAG-based
schemes have their drawbacks (see Figure 1). Tree-based
schemes either tend to form long thin triangles (since tri-
angles are nested inside each other) which can lead to nu-
merical instabilities, or they form surface discontinuities.
DAG-based schemes tend to be complex due to the vari-
able (possibly high) degree of their internal nodes. This
also makes them less space efficient than tree-based schemes.
DAG based schemes also tend to be less efficient in practice
since they are usually based on the Kirkpatrick hierarchy
[16] which is known to have large constants.

Recently, Snoeyink and van Kreveld [24] presented an
algorithm for permuting the vertices of a planar point set so
that Delaunay triangulation (or any canonical triangulation)
of this point set can be constructed incrementally in linear
time. It is unlikely that their scheme can support selective
refinement.

The progressive TIN representation avoids the thin tri-
angles associated with tree based hierarchical schemes since
it does not require triangles to be nested inside each other.
The constants in progressive TIN algorithms are also smaller
than those in DAG based schemes. Furthermore, the pro-
gressive TINs naturally support efficient selective refinement
and, as shown here, lend themselves to the development of
a number of GIS applications.

3 The Progressive Mesh Representation

The progressive mesh (PM) representation is based on the
edge collapse transformation and its inverse the vertex split.
These transformations have been described by Gold [7] for
the dynamic maintenance of Voronoi diagrams, and Hoppe
[13] in the context of progressive meshes. An edge collapse
involves collapsing an edge by identifying its two incident
vertices, v1 and vz, into a single aggregate vertex v. The
two adjacent faces (v1,v2,v;), and (v1,v2,v,) vanish in the
process. An edge collapse and its inverse vertex split are
illustrated in Figure 2.

In the progressive mesh representation, a mesh M, is
represented as a pair, (Mo, vsplits), where My is a coarse-
grained mesh and wvsplits is a list of vertex splits which will
reproduce the original mesh when applied in order. A ver-

o

I
4(Vertex Split

Figure 2: The edge collapse transformation and its inverse,
the vertex split

tex split transformation wsplits(v,vi,v2, v, v,, A) splits the
aggregate vertex v into two vertices v1 and vy and adds
the edges (vi,v1), (v1,vr), (v2,v:), and (va,v.). A stores
attribute information for the neighbourhood of the trans-
formation, including but not limited to, the positions of the
two new vertices.

We call v the parent of v1 and v2, and we call v1 and v
the children of v. We say that a vertex u is an ancestor of a
vertex v if u = v or if u is an ancestor of the parent of v. In
this case we call v a descendent of u. We denote by M; the
mesh obtained by performing the first ¢ elements of wvsplits
on the coarse grained mesh M. The original mesh, M, can
be obtained by applying all the elements of wsplits in order,
i‘e‘7 M|vsplits‘ =M.

The progressive mesh construction algorithm takes a
mesh, M, performs a series of edge collapse operations to
obtain the mesh My, and sets vsplits to the list of vertex split
operations that invert the edge collapses performed. The or-
der in which the edge collapses are performed is determined
by an application specific fitness function (e.g., minimizing
the geometric error). The edges of the mesh are placed in a
priority queue based on their fitness and are removed one at
a time as they are collapsed. Edges in the neighbourhood of
a collapse may have their priorities updated. A fitness func-
tion which considers the geometry, discrete attributes and
scalar attributes of the mesh is described in [13]. Sufficient
requirements for an edge collapse to be valid are given in

[15].

4 Selective Refinement

In this section we describe a new method of performing se-
lective refinement in progressive meshes. The method is
simple, numerically robust, and easy to implement. Due
to space limitations we only sketch the selective refinement
data structures and algorithms. For details, refer to [18].

Our approach can be summarized as follows: In a prepro-
cessing phase, we associate with each vertex, v, a region of
influence outside of which splitting v has no effect. By using
the parent/child relationships between vertex split records
these regions of influence can be organized as a forest of
rooted binary trees. When the records are organized in this
manner it is possible to efficiently identify all the vertex split
records whose regions of influence intersect a given query
region g. Once the relevant vertex split records have been
identified, they are applied in the correct order.

We treat the vsplits list as a dependency graph in which
a vertex v1 depends on a vertex v if v is split and one of the
resulting vertices is v1. Observe that the dependency graph
is a forest of rooted binary trees whose roots are the vertices
of the coarse TIN, My, and whose leaves are the vertices of

Figure 3: A sequence of vertex splits and its associated de-
pendency graph.

the original mesh, M (see Figure 3 for an illustration).

With each node v in the dependency graph we associate
an axis parallel 3-dimensional bounding box, denoted roi(v)
which represents the region outside of which this vertex split
has no influence. We define roi(v) recursively as follows: if
v is a leaf then roi(v) is the smallest box which encloses
all the neighbours of v in M, otherwise roi(v) is the small-
est box which encloses r0i(v1) and roi(vs) where v1 and vy
are the two children of v. These boxes, i.e., the roi’s can
be computed in a bottom-up fashion during the progressive
TIN construction procedure. Alternatively, these boxes can
be constructed using a post order traversal of the forests.

Once the vsplits list is augmented with the ro¢ informa-
tion, selective refinement can be carried out in the following
manner: For each vertex of My we search the tree rooted at
My and retrieve all vertex splits, v, for which roi(v) over-
laps the query region, g. If roi(v) does not intersect ¢ then
we do not need to search the subtree rooted at v, since all
the regions of influence of the children of v are contained in
roi(v). Therefore, retrieving the pertinent vertex splits can
be done in time O(|Mo|+ k), where k is the number of splits
retrieved.

Once the wvsplits records are retrieved they need to be
sorted and applied in order. The sorting could be done by a
standard sorting algorithm, but this would take O(klog k)
time. In the full version of this paper [18], we show that the
sorting of the records as well as the vsplits transformations
can be applied in O(kd) time, where d is the average degree
of the vertices that are split, using topological sort.

Preprocessing requires O(n) time, since it consists of
post-order traversals of the dependency graph, which is a
tree. The running time of the selective refinement algorithm
is dominated by the time it takes to sort the retrieved vertex

splits and applying them and is therefore O(kd).

At this point we note that it is also possible to general-
ize this scheme to perform selective refinement on any mesh
M; € {Mo, ..., M|,spiits| }. In this case, the query region is
returned at exactly the level of detail at which it appears
in M;. To achieve this generalization, we simply “prune”
the search when a vertex split record is reached whose in-
dex is greater than ¢t. In analyzing the running time of the
generalized algorithm, the value of k is defined in the same
manner as above, but with respect to the vertex split se-
quence v1, ..., Vt.

The preprocessing and selective refinement procedures
are quite simple, and only small constants are hidden in the
“big-O” notation. Another merit of this scheme is that since
it uses only axis parallel bounding boxes, the search proce-
dure can be implemented using only comparison operations
and is therefore not subject to the rounding errors inherent
in floating point arithmetic computations.

5 Progressive TINs

In this section, we suggest the progressive TIN represen-
tation as a viable alternative to traditional hierarchical
schemes. Combined with the selective refinement scheme
presented in Section 4 the progressive TIN representation
avoids the problem of thin triangles, as well as the large
constants associated with the Kirkpatrick hierarchy. Also,
as the following sections show, the progressive TIN repre-
sentation naturally support a number of common TIN op-
erations. Furthermore, these operations require little or no
additional preprocessing or storage overhead.

Because of the small constants involved in the PM repre-
sentation, the algorithms presented in this section are com-
petitive with existing algorithms which operate on TINs in a
standard representation. The advantage of these algorithms
over these existing algorithms are:

1. these algorithms work on TINs in the PM representa-
tion, maintaining all the advantages of the PM repre-
sentation,

2. these algorithms require little or no additional prepro-
cessing or storage (O(n) preprocessing and O(n) stor-
age) making them, in some cases, more efficient than
existing solutions, and

3. by using the “pruning” technique described in Sec-
tion 4, all the algorithms presented here can be used to
efficiently solve approximate versions of the problem in
question, i.e., the problem can be solved on any of the
meshes Mo, ..., M|vspiits|-

Throughout the remainder of this section we use 7' to
denote the TIN being operated on in the same manner as
we have previously used M to denote an arbitrary mesh.

5.1 Point Location

Point location in a TIN is a well studied problem in GIS and
a number of algorithms exist for this problem. Given a TIN,
T, and a query point g, the point location problem is to de-
termine the face of T in which ¢ lies. Although theoretically

optimal algorithms (O(n) preprocessing time and O(logn)
query time e.g., [16]) exist for the point location problem,
these algorithms have large constants which makes them less
useful in practice. (Most real commercial implementations
use schemes that are theoreticallly sub-optimal but which
work usually well in practice [8, 19].)

To perform point location on a progressive TIN, we per-
form selective refinement in which the query region is a single
point, namely the query point q. The selective refinement
algorithm is run and the triangle in which the query point
lies is found. The running time of this algorithm is clearly

O(|Mo| + kd) where k and d are defined as in Section 4.

If our objective is to do largely point location queries in
the TIN, then the fitness function that can be used in the
construction algorithm to obtain a progressive TIN is to al-
ways collapse the edge (v1, v2) such that the resulting region
of influence is the smallest among all possible edge collapses.
This heuristic seems to perform very well in practice (see
Section 6). (A similar heuristic is used in the construction
of R-Trees [11].)

5.2 Isoline Extraction

The problem of isoline or contour line extraction is stated
as follows: given a query elevation h, return all triangles of
T which occur at height h. Given the triangles which oc-
cur at elevation A, the polygons and polygonal chains which
form the isolines can be found in O(k) time (where k is
the number of triangles) by starting at an arbitrary triangle
and walking along triangles until a triangle already visited
is reached, or the border of T is reached. When this occurs,
another unvisited triangle is chosen, and the same procedure
is applied. The problem of extracting isolines from TINs has
been addressed in [25] and from hierarchical TINs in [5].

For answering isoline queries on a progressive TIN, we as-
sociate with each vertex v, information about the minimum
and maximum elevation affected by the splitting of that ver-
tex. We denote this information by minh(v) and mazh(v),
respectively. If v is a vertex of T', this information consists
of the minimum and maximum elevation which occurs in the
immediate neighbourhood of v in T'. If v is obtained by col-
lapsing (v1i,v2), we let minh(v) = min{minh(v1), minh(vz)}
and mazh(v) = max{mazh(v1), mazh(vs)}. Note that inter-
val [minh(v), mazh(v)] is analogous to the region of influence
roi(v) defined in Section 4 and can be computed in linear
time with a post-order traversal of the dependency graph.

To answer an isoline query, vsplits is searched in the same
manner as is done for selective refinement except that rather
than testing if the region of influence of a vertex, v, inter-
sects a query region, the test is whether A lies in the interval
[minh(v), mazh(v)]. The splits retrieved are then applied in
order. At this point, the TIN is fully refined around the
contour lines at height h, and very coarse in other areas.
To complete the query processing, it remains only to report
the triangles whose minimum and maximum elevations in-
clude h. The running time of this algorithm is O(|Mo| + kd)
where k is the number of vertex splits whose height intervals
overlap h, and d is defined as in Section 4.

From this, it follows that the edge collapse sequence can
be optimized for isoline extraction by always collapsing the
edge which produces the smallest interval in the resulting

supervertex. This heuristic is similar to that suggested in
Section 5.1 for optimizing the edge collapse sequence for
point location.

Progressive TINs also support progressive transmission
of isolines. To perform progressive transmission of isolines,
we note that a vertex split operation can only affect isolines
in the neighbourhood of the split vertex, and so maintaining
isolines under the vertex split operation is a localized matter.
Therefore, progressive transmission of isolines involves first
transmitting the coarse grained TIN, Ty, and then transmit-
ting the vertex split records which affect the elevation(s) in
question. At the receiving end, extracting the isolines from
To can be done using a linear time brute force method, and
these isolines can be maintained using only local operations
as vertex splits records are received.

5.3 Visibility Queries

Two points on a TIN, T, are said to be visible if the line
segment joining them does not intersect 7. The visibility
query problem is the following: given two query points p
and ¢, is p visible from ¢?

A straightforward solution to the visibility query prob-
lem is as follows. Locate the triangle in which p lies and then
walk along triangles in the direction of g until either (1) an
edge is crossed that occludes ¢ in which case the answer is
negative, or (2) the triangle containing q is reached in which
case the answer is positive. The preprocessing required by
this algorithm is the same as that for point location. The
query time is the time to locate ¢ plus the number of edges,
k, which intersect the segment pgq.

Alternatively, on a progressive TIN, a visibility query be-
tween a pair of points can be answered by selectively refining
the TIN along the line segment pq while at the same time
locating p, and then walking from p to g along the segment
pq. This requires no additional preprocessing or storage.
The running time is proportional to the number of wvsplits
records whose regions of influence intersect the line segment
Pq.

The above procedure can be made more efficient, at the
cost of a small increase in the storage (i.e., two real values)
per triangle. For each triangle ¢ in the progressive TIN, let
mazh(t) (respectively, minh(t)) denote the maximum (re-
spectively, minimum) height, over all points in t. (Note
that, in general, at any stage in the progressive TIN, a tri-
angle ¢ intersects several triangles at finer resolution.) To
determine whether the query points p and ¢ are visible, we
follow the following steps:

1. Locate p and ¢ in the coarse triangulation 7y and then
walk from p to g, collecting all triangles in the coarse
representation that intersects the segment pg.

2. Let t be one of the coarse triangles obtained in the
previous step. Let s be the portion of the line seg-
ment pg that lies in t. Let mazh(s) (respectively,
minh(s) denote the maximum (respectively, minimum)
y-coordinate for the points on the segment s. Observe
that if mazh(s) < minh(t), then p and ¢ are not visible.
In this case, we stop and report that p and ¢ are not
visible. Moreover, if minh(s) > mazh(t) then p and ¢
are visible with respect to ¢, and there is no need to do
further refinement of ¢.

3. Let S denote the set of coarse triangles at the end of
Step 2, for which mazh(s) > minh(t) and minh(s) <
mazh(t), i.e., those triangles which could possibly be
visible. Which triangles should be refined in the set S?7
‘We propose a simple heuristic, which refines first those
triangles in S whose minh or mazh value is close to the
critical values. These are the triangles, for which after
a few steps of the refinement, we are likely to conclude
whether they block visibility between p and ¢, or they
do not block the visibility.

Presently, we are pursuing the implementation of the
above schemes for the visibility problem in progressive TINs.

5.4 External Memory Progressive TINs

External memory methods for TINs are of significant prac-
tical relevance to the field of GIS, as the amount of geo-
graphic data currently available exceeds the capacity of in-
ternal memories. This motivates the development of an ex-
ternal memory storage scheme for progressive TINs. With
such a scheme, the coarse grained TIN, Tp, could be stored
in internal memory, and user could perform selective refine-
ment to refine a small portion of this TIN and work with
it.

A number of external memory spatial data structures
exist which can be used to store progressive TINs. We be-
lieve that the data structure which is well suited for this
application is the R-tree [11] or one of its variants, as R-
trees are designed specifically for storing axis parallel boxes.
(A variety of other spatial index structures exist see e.g.
[23, 9, 10, 17] and also consult the new survey article by
Nievergelt and Widmayer [20].) In particular, one variant
of the R-tree, the packed R-tree constructs an R-tree in a
bottom up fashion from a static set of axis aligned boxes.

Thus in order to construct an external memory repre-
sentation of a progressive TIN, we perform the progressive
TIN construction algorithm and then build a packed R-tree
on the list of vertex splits. When performing selective re-
finement we use the packed R-tree to extract the relevant
vertex splits and then proceed in the manner described in
Section 4 to sort and apply the splits.

Using this representation, the algorithms for point lo-
cation, elevation queries, and visibilities queries can all be
applied to progressive TINs stored in external memory.

6 Empirical Results

In this section we present empirical results for our selective
refinement algorithm. Test were performed on randomly
generated TINs as well as two TINs representing an actual
geographical area, containing 10000 and 20000 points, each.
Random TINs were generated by choosing uniformly dis-
tributed points in the unit square and then computing a
Delaunay triangulation of these points. All results for ran-
dom TINs were compared with those of the two real TINs
with the same number of vertices, and were found to be
nearly identical.

Figure 4 shows the ratio between the number of vertices
in a query region and the number of vertex splits which
are retrieved when selectively refining the region. The tests

55 T T T T T T T T T

Large window ——
5 [+ Small window -+ |

Splits Retrieved/Vertices in Region

15
0 5000 100001500020000250003000035000400004500050000
Number of Vertices

Figure 4: Performance of selective refinement algorithm.

65 T T T T T T T T T

Average ——
60 Maximum =z~

45 L |
40

35

Number of Splits Performed

30

25

20 .
0 5000 100001500020000250003000035000400004500050000
Number of Vertices

Figure 5: Performance of point location algorithm.

take a query window of a fixed size and places it at 2500
regularly spaced locations on the TIN and perform selective
refinement at each location. Both small (1/25 of the TIN’s
surface area) and large (1/4 of the TINs surface area) query
windows were tested. The main results of these tests is
that the ratio between the number of splits performed and
the number of vertices in the query window converges to a
small constant (< 3) as n increases. This confirms that the
running time of the selective refinement algorithm is directly
proportional to the complexity of the query region.

Figure 5 shows results for the planar point location tech-
nique described in Section 5.1. The query point was placed
at 2500 regularly spaced location on the TIN and point lo-
cation was performed. Figure 5 shows the results for TINs
with up to 50000 vertices, and shows that even the worst-
case running times tend to be logarithmic in the size of T'.
Also of interest are the absolute values in Figure 5 since
these show that the constants are quite small. In no case
does the number of vertex splits performed exceed 70.

7 Conclusions

The progressive TIM appears to be a suitable structure to
represent terrains at different levels of detail. It has low
overhead, is conceptually simple and easy to implement. We
have given a number of important GIS applications of this

data representation as well as some empirical results. Other
applications we have considered include finding the maxi-
mum height value in a region, or refining selectively in a
moving rectangle. A natural question which arises out of
our work is to find the properties of the class of problems
where selective refinement is an effective tool.

References

[1]

2]

(3]

[4]

(5]

[6]

7]

(8]

[9]

[10]

[11]

[12]

[13]

[14]

ANDREWS, D. Simplifying terrain models and measur-
ing terrain model accuracy. Tech. rep., University of
British Columbia Computer Science Department, 1996.

DE BERG, M., AND DOBRINDT, K. On levels of de-
tail in terrains. In Proc. 11th Annual ACM Symp. on
Computational Geometry (SCG ’95) (1995).

DE FLORIANI, L. A pyramidal data structure for trian-
gle based surface description. IEEE Computer Graphics
and Applications 9 (1989), 67-78.

DE FLORIANI, L., MaAgGiLLo, P., Puppo, E., AND
BERTOLOTTO, M. Variable resolution operators on
a multiresolution terrain model. In fth ACM Work-
shop on Advances in Geographic Information Systems
(1996), pp. 123-130.

DE FLORIANI, L., MIRRA, D., AND PuPPO, E. Extract-
ing contour lines from a hierarchical surface model. In
Eurographics ’93 (1993), pp. 249-260.

GoLDp, C. M. The practical generation and use of ge-
ographic triangular element data. Harvard Papers on
Geographic Information Systems 5 (1978).

GoLp, C. M. Problems with handling spatial data—
the Voronoi approach. CISM Journal 45, 1 (1991), 65—
80.

GoOODRICH, M. T., ORLETSKY, M., AND RAMAIYER,
K. Methods for achieving fast query times in point
location data structures. In Proc. 8th ACM Symp. on
Discrete Algorithms (SODA ’97) (1997).

GUENTHER, O. The design of the cell tree: an object-
oriented index structure for geometric databases. In
Proceedings of the 5th IEEE Conference on Data Engi-
neering (1989), pp. 598-615.

GUTING, R. H. An introduction to spatial database
systems. The VLDB Journal 3 (1994), 357-399.

GUTTMAN, A. R-trees: A dynamic index structure for
spatial searching. In SIGMOD Conference 1984 (1985),
pp. 47-57.

HECKBERT, P. S., AND GARLAND, M. Multiresolution
modelling for fast rendering. In Proc. Graphics Inter-

face ’94 (1994), pp. 43-50.

HorpPE, H. Progressive meshes. In Computer Graphics
(SIGGRAPH ’96 Proceedings) (1996), pp. 99-108.

HorpE, H. View-dependent refinement of progressive
meshes. In Computer Graphics (SIGGRAPH ’97 Pro-
ceedings) (1997).

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

23]

[24]

[25]

HorpE, H., DEROSE, T., DucHAMP, T., MCDONALD,
J., AND STUEZLE, W. Mesh optimization. Computer
Graphics (SIGGRAPH 95 Proceedings) (1995), 247—
254.

KIRKPATRICK, D. G. Optimal search in planar subdivi-
sions. SIAM Journal on Computing 12 (1979), 18-27.

LAuriNi, R., AND THOMPSON, D. Fundamentals of
Spatial Information Systems. Academic Press, London,
1992.

MAHESHWARI, A., MoORIN, P., AND Sack, J.-R. Pro-
gressive TINs: Algorithms and applications. Tech. rep.,
Carleton University School of Computer Science, 1997.

NAHER, S. The LEDA manual, Version R-3.4.1. Tech.
rep., Max-Planck-Institut fir Informatik, 1996.

NIEVERGELT, J., AND WIDMAYER, P. Spatial data
structures: concepts, design, and choices. In Handbook
of Computational Geometry, J. Urrutia and J.-R. Sack,
Eds. Elsevier Sciences, to appear.

PEUCKER, T. K. Data structures for digital terrain
models. Harvard Papers on Geographic Information

Systems 5 (1978).

PEUCKER, T. K., FOWLER, R. J., LITTLE, J. J., AND
MARK, D. M. The triangulated irregular network.
In Proceedings DTM Symposium American Society of
Photogrammatry - Amercian Congress on Survery and
Mapping (1978), pp. 24-31.

SAMET, H. The Design and Analysis of Spatial Data
Structures. Addison-Wesley, Reading, MA, 1990.

SNOEYINK, J., AND VAN KREVELD, M. Linear-time
reconstruction of Delaunay triangulations with applica-
tions. In ESA ’97: European Symposium on Algorithms
(1997).

VAN KREVELD, M. Efficient algorithms for isoline ex-
traction from a TIN. Int. Journal of GIS 10 (1996),
523-540.

