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Abstract. A queue layout of a graph consists of a total order of the vertices, and a partition
of the edges into queues, such that no two edges in the same queue are nested. The minimum
number of queues in a queue layout of a graph is its queue-number. A three-dimensional (straight-
line grid) drawing of a graph represents the vertices by points in Z3 and the edges by non-crossing
line-segments. This paper contributes three main results:

(1) It is proved that the minimum volume of a certain type of three-dimensional drawing of a
graph G is closely related to the queue-number of G. In particular, if G is an n-vertex member of
a proper minor-closed family of graphs (such as a planar graph), then G has a O(1)×O(1)×O(n)
drawing if and only if G has O(1) queue-number.

(2) It is proved that queue-number is bounded by tree-width, thus resolving an open problem
due to Ganley and Heath (2001), and disproving a conjecture of Pemmaraju (1992). This result
provides renewed hope for the positive resolution of a number of open problems in the theory of
queue layouts.

(3) It is proved that graphs of bounded tree-width have three-dimensional drawings with O(n)
volume. This is the most general family of graphs known to admit three-dimensional drawings with
O(n) volume.

The proofs depend upon our results regarding track layouts and tree-partitions of graphs, which
may be of independent interest.
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1. Introduction. A queue layout of a graph consists of a total order of the
vertices, and a partition of the edges into queues, such that no two edges in the same
queue are nested. The dual concept of a stack layout, introduced by Ollmann [73] and
commonly called a book embedding, is defined similarly, except that no two edges in
the same stack may cross. The minimum number of queues (respectively, stacks) in
a queue layout (stack layout) of a graph is its queue-number (stack-number). Queue
layouts have been extensively studied [41, 53, 54, 58, 76, 80, 86, 88] with applications
in parallel process scheduling, fault-tolerant processing, matrix computations, and
sorting networks (see [76] for a survey). Queue layouts of directed acyclic graphs
[9, 56, 57, 76] and posets [55, 76] have also been investigated. Our motivation for
studying queue layouts is a connection with three-dimensional graph drawing.

Graph drawing is concerned with the automatic generation of aesthetically pleas-
ing geometric representations of graphs. Graph drawing in the plane is well-studied
(see [24, 64]). Motivated by experimental evidence suggesting that displaying a graph
in three dimensions is better than in two [90, 91], and applications including informa-
tion visualisation [90], VLSI circuit design [66], and software engineering [92], there
is a growing body of research in three-dimensional graph drawing. In this paper
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we study three-dimensional straight-line grid drawings, or three-dimensional drawings
for short. In this model, vertices are positioned at grid-points in Z3, and edges are
drawn as straight line-segments with no crossings [17, 21, 25, 27, 28, 42, 53, 78, 75].
We focus on the problem of producing three-dimensional drawings with small vol-
ume. Three-dimensional drawings with the vertices in R3 have also been studied
[39, 47, 19, 16, 18, 61, 22, 63, 60, 62, 69, 74]. Aesthetic criteria besides volume that
have been considered include symmetry [60, 61, 62, 63], aspect ratio [19, 47], angular
resolution [47, 19], edge-separation [19, 47], and convexity [18, 19, 39, 87].

The first main result of this paper reduces the question of whether a graph has a
three-dimensional drawing with small volume to a question regarding queue layouts
(Theorem 2.10). In particular, we prove that every n-vertex graph from a proper
minor-closed graph family G has a O(1)×O(1)×O(n) drawing if and only if G has a
O(1) queue-number, and this result holds true when replacing O(1) by O(polylog n).
Consider the family of planar graphs, which are minor-closed. (In the conference
version of their paper) Felsner et al. [42] asked whether every planar graph has a
three-dimensional drawing with O(n) volume? Heath et al. [58, 54] asked whether
every planar graph has O(1) queue-number? By our result, these two open problems
are almost equivalent in the following sense. If every planar graph has O(1) queue-
number, then every planar graph has a three-dimensional drawing with O(n) volume.
Conversely, if every planar graph has a O(1) × O(1) × O(n) drawing, then every
planar graph has O(1) queue-number. It is possible, however, that planar graphs
have unbounded queue-number, yet have say O(n1/3)×O(n1/3)×O(n1/3) drawings.

Our other main results regard three-dimensional drawings and queue layouts of
graphs with bounded tree-width. Tree-width, first defined by Halin [50], although
largely unnoticed until independently rediscovered by Robertson and Seymour [81]
and Arnborg and Proskurowski [7], is a measure of the similarity of a graph to a tree
(see §2.1 for the definition). Tree-width (or its special case, path-width) has been
previously used in the context of graph drawing by Dujmović et al. [33], Hliněný [59],
and Peng [77], for example.

The second main result is that the queue-number of a graph is bounded by its
tree-width (Corollary 2.8). This solves an open problem due to Ganley and Heath [45],
who proved that stack-number is bounded by tree-width, and asked whether a similar
relationship holds for queue-number. This result has significant implications for the
above open problem (does every planar graph have O(1) queue-number), and the
more general question (since planar graphs have stack-number at most four [94]) of
whether queue-number is bounded by stack-number. Heath et al. [58, 54] originally
conjectured that both of these questions have an affirmative answer. More recently
however, Pemmaraju [76] conjectured that the ‘stellated K3’, a planar 3-tree, has
Θ(log n) queue-number, and provided evidence to support this conjecture (also see
[45]). This suggested that the answer to both of the above questions was negative. In
particular, Pemmaraju [76] and Heath [private communication, 2002] conjectured that
planar graphs have O(log n) queue-number. However, our result provides a queue-
layout of any 3-tree, and thus the stellated K3, with O(1) queues. Hence our result
disproves the first conjecture of Pemmaraju [76] mentioned above, and renews hope
in an affirmative answer to the above open problems.

The third main result is that every graph of bounded tree-width has a three-
dimensional drawing with O(n) volume. The family of graphs of bounded tree-width
includes most of the graphs previously known to admit three-dimensional drawings
with O(n) volume (for example, outerplanar graphs), and also includes many graph
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families for which the previous best volume bound was O(n2) (for example, series-
parallel graphs). Many graphs arising in applications of graph drawing do have small
tree-width. Outerplanar and series-parallel graphs are the obvious examples. Another
example arises in software engineering applications. Thorup [89] proved that the
control-flow graphs of go-to free programs in many programming languages have tree-
width bounded by a small constant; in particular, 3 for Pascal and 6 for C. Other
families of graphs having bounded tree-width (for constant k) include: almost trees
with parameter k, graphs with a feedback vertex set of size k, band-width k graphs,
cut-width k graphs, planar graphs of radius k, and k-outerplanar graphs. If the size
of a maximum clique is a constant k then chordal, interval and circular arc graphs
also have bounded tree-width. Thus, by our result, all of these graphs have three-
dimensional drawings with O(n) volume, and O(1) queue-number.

To prove our results for graphs of bounded tree-width, we employ a related struc-
ture called a tree-partition, introduced independently by Seese [85] and Halin [51]. A
tree-partition of a graph is a partition of its vertices into ‘bags’ such that contracting
each bag to a single vertex gives a forest (after deleting loops and replacing parallel
edges by a single edge). In a result of independent interest, we prove that every k-tree
has a tree-partition such that each bag induces a connected (k − 1)-tree, amongst
other properties. The second tool that we use is a track layout, which consists of a
vertex-colouring and a total order of each colour class, such that between any two
colour classes no two edges cross.

The remainder of the paper is organised as follows. In §2 we introduce the required
background material, and state our results regarding three-dimensional drawings and
queue layouts, and compare these with results in the literature. In §3 we establish
a number of results concerning track layouts. That three-dimensional drawings and
queue-layouts are closely related stems from the fact that three-dimensional drawings
and queue layouts are both closely related to track layouts, as proved in §4 and
§5, respectively. In §6 we prove the above-mentioned theorem for tree-partitions of
k-trees, which is used in §7 to construct track layouts of graphs with bounded tree-
width. We conclude in §8 with a number of open problems.

2. Background and Results. Throughout this paper all graphs G are undi-
rected, simple, and finite with vertex set V (G) and edge set E(G). The number of
vertices and the maximum degree of G are respectively denoted by n = |V (G)| and
∆(G). The subgraph induced by a set of vertices A ⊆ V (G) is denoted by G[A]. For
all disjoint subsets A,B ⊆ V (G), the bipartite subgraph of G with vertex set A ∪ B
and edge set {vw ∈ E(G) : v ∈ A,w ∈ B} is denoted by G[A,B].

A graph H is a minor of a graph G if H is isomorphic to a graph obtained from
a subgraph of G by contracting edges. A family of graphs closed under taking minors
is proper if it is not the class of all graphs.

A graph parameter is a function α that assigns to every graph G a non-negative
integer α(G). Let G be a family of graphs. By α(G) we denote the function f : N → N,
where f(n) is the maximum of α(G), taken over all n-vertex graphs G ∈ G. We say G
has bounded α if α(G) ∈ O(1). A graph parameter α is bounded by a graph parameter
β (for some graph family G), if there exists a function g such that α(G) ≤ g(β(G))
for every graph G (in G).

2.1. Tree-Width. Let G be a graph and let T be a tree. An element of V (T )
is called a node. Let {Tx ⊆ V (G) : x ∈ V (T )} be a set of subsets of V (G) indexed
by the nodes of T . Each Tx is called a bag. The pair (T, {Tx : x ∈ V (T )}) is a
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tree-decomposition of G if:
1.

⋃
x∈V (T )

Tx = V (G) (that is, every vertex of G is in at least one bag),

2. ∀ edge vw of G, ∃ node x of T such that v ∈ Tx and w ∈ Tx, and
3. ∀ nodes x, y, z of T , if y is on the path from x to z in T , then Tx ∩ Tz ⊆ Ty.

The width of a tree-decomposition is one less than the maximum cardinality
of a bag. A path-decomposition is a tree-decomposition where the tree T is a path
T = (x1, x2, . . . , xm), which is simply identified by the sequence of bags T1, T2, . . . , Tm

where each Ti = Txi
. The path-width (respectively, tree-width) of a graph G, denoted

by pw(G) (tw(G)), is the minimum width of a path- (tree-) decomposition of G.
Graphs with tree-width at most one are precisely the forests. Graphs with tree-width
at most two are called series-parallel1, and are characterised as those graphs with no
K4 minor (see [10]).

A k-tree for some k ∈ N is defined recursively as follows. The empty graph is
a k-tree, and the graph obtained from a k-tree by adding a new vertex adjacent to
each vertex of a clique with at most k vertices is also a k-tree. This definition of a
k-tree is by Reed [79]. The following more restrictive definition of a k-tree, which we
call ‘strict’, was introduced by Arnborg and Proskurowski [7], and is more often used
in the literature. A k-clique is a strict k-tree, and the graph obtained from a strict
k-tree by adding a new vertex adjacent to each vertex of a k-clique is also a strict
k-tree. Obviously the strict k-trees are a proper sub-class of the k-trees. A subgraph
of a k-tree is called a partial k-tree, and a subgraph of a strict k-tree is called a partial
strict k-tree. The following result is well known (see for example [10, 79]). A chord
of a cycle C is an edge not in C whose end-vertices are both in C. A graph is chordal
if every cycle on at least four vertices has a chord.

Lemma 2.1. Let G be a graph. The following are equivalent:
1. G has tree-width tw(G) ≤ k,
2. G is a partial k-tree,
3. G is a partial strict k-tree,
4. G is a subgraph of a chordal graph that has no clique on k + 2 vertices.

Proof. Scheffler [83] proved that (1) and (3) are equivalent. That (1) and (4) are
equivalent is due to Robertson and Seymour [81]. That (2) and (4) are equivalent is the
characterisation of chordal graphs in terms of ‘perfect elimination’ vertex-orderings
due to Fulkerson and Gross [44].

2.2. Tree-Partitions. As in the definition of a tree-decomposition, let G be
graph and let {Tx ⊆ V (G) : x ∈ V (T )} be a set of subsets of V (G) (called bags)
indexed by the nodes of a tree T . The pair (T, {Tx : x ∈ V (T )}) is a tree-partition of
G if

1. ∀ distinct nodes x and y of T , Tx ∩ Ty = ∅, and
2. ∀ edge vw of G, either
(i) ∃ node x of T with v ∈ Tx and w ∈ Tx (vw is called an intra-bag edge), or
(ii) ∃ edge xy of T with v ∈ Tx and w ∈ Ty (vw is called an inter-bag edge).

The main property of tree-partitions that has been studied in the literature is the
maximum cardinality of a bag, called the width of the tree-partition [11, 51, 85, 31, 32].
The minimum width over all tree-partitions of a graph G is the tree-partition-width2

1‘Series-parallel digraphs’ are often defined in terms of certain ‘series’ and ‘parallel’ composition
operations. The underlying undirected graph of such a digraph has tree-width at most two (see [10]).

2Tree-partition-width has also been called strong tree-width [85, 11].
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of G, denoted by tpw(G). A graph with bounded degree has bounded tree-partition-
width if and only if it has bounded tree-width [32]. In particular, for every graph G,
Ding and Oporowski [31] proved that tpw(G) ≤ 24 tw(G)∆(G), and Seese [85] proved
that tw(G) ≤ 2 tpw(G)− 1.

Theorem 6.1 provides a tree-partition of a k-tree G with additional features be-
sides small width. First, the subgraph induced by each bag is a connected (k−1)-tree.
This allows us to perform induction on k. Second, in each non-root bag Tx the set
of vertices in the parent bag of x with a neighbour in Tx form a clique. This feature
is crucial in the intended application (Theorem 7.3). Finally the tree-partition has
width at most max{1, k(∆(G)− 1)}, which represents a constant-factor improvement
over the above result by Ding and Oporowski [31] in the case of k-trees.

2.3. Track Layouts. Let G be a graph. A colouring of G is a partition {Vi :
i ∈ I} of V (G), where I is a set of colours, such that for every edge vw of G, if v ∈ Vi

and w ∈ Vj then i 6= j. Each set Vi is called a colour class. A colouring of G with c
colours is a c-colouring, and we say that G is c-colourable. The chromatic number of
G, denoted by χ(G), is the minimum c such that G is c-colourable.

If <i is a total order of a colour class Vi, then we call the pair (Vi, <i) a track. If
{Vi : i ∈ I} is a colouring of G, and (Vi, <i) is a track, for each colour i ∈ I, then we
say {(Vi, <i) : i ∈ I} is a track assignment of G indexed by I. Note that at times it
will be convenient to also refer to a colour i ∈ I and the colour class Vi as a track.
The precise meaning will always be clear from the context. A t-track assignment is a
track assignment with t tracks.

As illustrated in Fig. 2.1, an X-crossing in a track assignment consists of two
edges vw and xy such that v <i x and y <j w, for distinct tracks Vi and Vj . A t-track
assignment with no X-crossing is called a t-track layout. The track-number of a graph
G, denoted by tn(G), is the minimum t such that G has a t-track layout.

x

y

v

w

(Vi, <i)

(Vj , <j)

Fig. 2.1. An example of an X-crossing in a track assignment.

Let {(Vi, <i) : i ∈ I} be a t-track layout of a graph G. The span of an edge vw of
G, with respect to a numbering of the tracks I = {1, 2, . . . , t}, is defined to be |i− j|
where v ∈ Vi and w ∈ Vj .

Track layouts will be central in most of our proofs. To enable comparison of
our results to those in the literature we now introduce the notion of an ‘improper’
track layout. A improper colouring of a graph G is simply a partition {Vi : i ∈ I} of
V (G). Here adjacent vertices may be in the same colour class. A track of an improper
colouring is defined as above. Suppose {Vi : i ∈ I} is an improper colouring of G,
and (Vi, <i) is a track, for each colour i ∈ I. An edge with both end-vertices in the
same track is called an intra-track edge; otherwise it is called an inter-track edge.
We say {(Vi, <i) : i ∈ I} is an improper track assignment of G if, for all intra-track
edges vw ∈ E(G) with v ∈ Vi and w ∈ Vi for some i ∈ I, there is no vertex x
with v <i x <i w. That is, adjacent vertices in the same track are consecutive in
that track. An improper t-track assignment with no X-crossing is called an improper
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t-track layout3.
Lemma 2.2. If a graph G has an improper t-track layout, then G has a 2t-track

layout.
Proof. For every track Vi of an improper t-track layout of G, let V ′

i be a new
track. Move every second vertex from Vi to V ′

i , such that V ′
i inherits its total order

from the original Vi. Clearly there is no intra-track edge and no X-crossing. Thus we
obtain a 2t-track layout of G.

Hence the track-number of a graph is at most twice its ‘improper track-number’.
The following lemma, which was jointly discovered with Giuseppe Liotta, gives a
compelling reason to only consider proper track layouts. Similar ideas can be found
in [42, 27]. Let vw be an edge of a graph G. Let G′ be the graph obtained from G
by adding a new vertex x only adjacent to v and w. We say x is an ear, and G′ is
obtained from G by adding an ear to vw.

Lemma 2.3. Let G be a class of graphs closed under the addition of ears (for
example, series-parallel graphs or planar graphs). If every graph in G has an improper
t-track layout for some constant t, then every graph in G has a (proper) t-track layout.

Proof. For any graph G ∈ G, let G′ be the graph obtained from G by adding t
ears to every edge of G. By assumption, G′ has an improper t-track layout. Suppose
that there is an edge vw of G such that v and w are in the same track. None of
the ears added to vw are on the same track, as otherwise adjacent vertices would
not be consecutive in that track. Thus there is a track containing at least two of
the ears added to vw. However, this implies that there is an X-crossing, which is a
contradiction. Thus the end-vertices of every edge of G are in distinct tracks. Hence
the improper t-track layout of G′ contains a t-track layout of G.

Lemmata 2.2 and 2.3 imply that only for relatively small classes of graphs will
the distinction between track layouts and improper track layouts be significant. We
therefore chose to work with the less cumbersome notion of a track layout. The
following theorem summarises our bounds on the track-number of a graph.

Theorem 2.4. Let G be a graph with maximum degree ∆(G), path-width pw(G),
tree-partition-width tpw(G), and tree-width tw(G). The track-number of G satisfies:

(a) tn(G) ≤ pw(G) + 1 ≤ 1 + (tw(G) + 1) log n,
(b) tn(G) ≤ 3 tpw(G) ≤ 72 ∆(G) tw(G),
(c) tn(G) ≤ 3 tw(G) · 6(4 tw(G)−3 tw(G)−1)/9.
Proof. Part (a) follows from Lemma 3.2, and the fact that pw(G) ≤ (tw(G) +

1) log n (see [10]). Note that tn(G) ≤ 1+(tw(G)+1) log n can be proved directly using
a separator-based approach similar to that used to prove pw(G) ≤ (tw(G) + 1) log n.
Part (b) follows from Lemma 3.3 in §3, and the result of Ding and Oporowski [31]
discussed in §2.2. Part (c) is Theorem 7.3.

2.4. Vertex-Orderings. Let G be a graph. A total order σ = (v1, v2, . . . , vn)
of V (G) is called a vertex-ordering of G. Suppose G is connected. The depth of a
vertex vi in σ is the graph-theoretic distance between v1 and vi in G. We say σ is
a breadth-first vertex-ordering if for all vertices v and w with v <σ w, the depth of
v in σ is no more than the depth of w in σ. Vertex-orderings, and in particular,
vertex-orderings of trees will be used extensively in this paper. Consider a breadth-
first vertex-ordering σ of a tree T such that vertices at depth d ≥ 1 are ordered with
respect to the ordering of vertices at depth d−1. In particular, if v and x are vertices

3In [34, 35, 93] we called a track layout an ordered layering with no X-crossing and no intra-layer
edges, and an improper track layout was called an ordered layering with no X-crossing.
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at depth d with respective parents w and y at depth d− 1 with w <σ y then v <σ x.
Such a vertex-ordering is called a lexicographical breadth-first vertex-ordering of T ,
and is illustrated in Fig. 2.2.

depth 0 depth 1 depth 2 depth 3

Fig. 2.2. A lexicographical breadth-first vertex-ordering of a tree.

2.5. Queue Layouts. A queue layout of a graph G consists of a vertex-ordering
σ of G, and a partition of E(G) into queues, such that no two edges in the same queue
are nested with respect to σ. That is, there are no edges vw and xy in a single queue
with v <σ x <σ y <σ w. The minimum number of queues in a queue layout of G is
called the queue-number of G, and is denoted by qn(G). A similar concept is that of
a stack layout (or book embedding), which consists of a vertex-ordering σ of G, and a
partition of E(G) into stacks (or pages) such that there are no edges vw and xy in
a single stack with v <σ x <σ w <σ y. The minimum number of stacks in a stack
layout of G is called the stack-number (or page-number or book-thickness) of G, and
is denoted by sn(G). A queue (respectively, stack) layout with k queues (stacks) is
called a k-queue (k-stack) layout, and a graph that admits a k-queue (k-stack) layout
is called a k-queue (k-stack) graph.

Heath and Rosenberg [58] characterised 1-queue graphs as the ‘arched levelled
planar’ graphs, and proved that it is NP-complete to recognise such graphs. This
result is in contrast to the situation for stack layouts — 1-stack graphs are precisely
the outerplanar graphs [8], which can be recognised in polynomial time. Heath et
al. [54] proved that 1-stack graphs are 2-queue graphs (rediscovered by Rengarajan
and Veni Madhavan [80]), and that 1-queue graphs are 2-stack graphs.

While it is NP-hard to minimise the number of stacks in a stack layout given a
fixed vertex-ordering [46], the analogous problem for queue layouts can be solved as
follows. A k-rainbow in a vertex-ordering σ consists of a matching {viwi : 1 ≤ i ≤ k}
such that v1 <σ v2 <σ · · · <σ vk <σ wk <σ wk−1 <σ · · · <σ w1, as illustrated in
Fig. 2.3.

Fig. 2.3. A rainbow of five edges in a vertex-ordering.

A vertex-ordering containing a k-rainbow needs at least k queues. A straight-
forward application of Dilworth’s Theorem [30] proves the converse. That is, a fixed
vertex-ordering admits a k-queue layout where k is the size of the largest rainbow.
(Heath and Rosenberg [58] describe a O(m log log n) time algorithm to compute the
queue assignment.) Thus determining qn(G) can be viewed as the following vertex-
ordering problem.
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Lemma 2.5 ([58]). The queue-number qn(G) of a graph G is the minimum, taken
over all vertex-orderings σ of G, of the maximum size of a rainbow in σ.

Stack and/or queue layouts of k-trees have previously been investigated in [20,
80, 45]. A 1-tree is a 1-queue graph, since in a lexicographical breadth-first vertex-
ordering of a tree no two edges are nested (see Fig. 2.2). Chung et al. [20] proved that
in a depth-first vertex-ordering of a tree no two edges cross. Thus 1-trees are 1-stack
graphs. Rengarajan and Veni Madhavan [80] proved that graphs with tree-width at
most two (the series parallel graphs) are 2-stack and 3-queue graphs4. Improper track
layouts are implicit in the work of Heath et al. [54] and Rengarajan and Veni Mad-
havan [80]. In §5 we prove the following fundamental relationship between queue and
track layouts.

Theorem 2.6. For every graph G, qn(G) ≤ tn(G) − 1. Moreover, if G is any
proper minor-closed graph family, then G has queue-number qn(G) ∈ F(n) if and only
if G has track-number tn(G) ∈ F(n), where F(n) is any family of functions closed
under multiplication (such as O(1) or O(polylog n)).

Ganley and Heath [45] proved that every graph G has stack-number sn(G) ≤
tw(G) + 1 (using a depth-first traversal of a tree-decomposition), and asked whether
queue-number is bounded by tree-width? One of the principal results of this paper is
to solve this question in the affirmative. Applying Theorems 2.4 and 2.6 we have the
following.

Theorem 2.7. Let G be a graph with maximum degree ∆(G), path-width pw(G),
tree-partition-width tpw(G), and tree-width tw(G). The queue-number qn(G) satis-
fies5:

(a) qn(G) ≤ pw(G) ≤ (tw(G) + 1) log n,
(b) qn(G) ≤ 3 tpw(G)− 1 ≤ 72∆(G) tw(G)− 1,
(c) qn(G) ≤ 3 tw(G) · 6(4 tw(G)−3 tw(G)−1)/9 − 1.
A similar upper bound to Theorem 2.7(a) is obtained by Heath and Rosen-

berg [58], who proved that every graph G has qn(G) ≤ d 1
2bw(G)e, where bw(G)

is the band-width of G. In many cases this result is weaker than Theorem 2.7(a)
since pw(G) ≤ bw(G) (see [29]). More importantly, we have the following corollary of
Theorem 2.7(c).

Corollary 2.8. Queue-number is bounded by tree-width, and hence graphs with
bounded tree-width have bounded queue-number.

2.6. Three-Dimensional Drawings. A three-dimensional straight-line grid draw-
ing of a graph, henceforth called a three-dimensional drawing, represents the vertices
by distinct points in Z3 (called grid-points), and represents each edge as a line-segment
between its end-vertices, such that edges only intersect at common end-vertices, and
an edge only intersects a vertex that is an end-vertex of that edge.

In contrast to the case in the plane, a folklore result states that every graph has
a three-dimensional drawing. Such a drawing can be constructed using the ‘moment
curve’ algorithm in which vertex vi, 1 ≤ i ≤ n, is represented by the grid-point
(i, i2, i3). It is easily seen — compare with Lemma 4.2 — that no two edges cross.
(Two edges cross if they intersect at some point other than a common end-vertex.)

4In [35] we give a simple proof based on Theorem 6.1 for the result by Rengarajan and Veni Mad-
havan [80] that every series-parallel graph has a 3-queue layout.

5In [93] we obtained an alternative proof that qn(G) ≤ pw(G) using the ‘vertex separation
number’ of a graph (which equals its path-width), and applying Lemma 2.5 directly we proved that
qn(G) ≤ 3

2
tpw(G), and thus qn(G) ≤ 36 ∆(G) tw(G).
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Since every graph has a three-dimensional drawing, we are interested in optimis-
ing certain measures of the aesthetic quality of a drawing. If a three-dimensional
drawing is contained in an axis-aligned box with side lengths X − 1, Y − 1 and Z− 1,
then we speak of an X × Y × Z drawing with volume X · Y · Z and aspect ratio
max{X, Y, Z}/ min{X, Y, Z}. This paper considers the problem of producing a three-
dimensional drawing of a given graph with small volume, and with small aspect ratio
as a secondary criterion.

Observe that the drawings produced by the moment curve algorithm have O(n6)
volume. Cohen et al. [21] improved this bound, by proving that if p is a prime with
n < p ≤ 2n, and each vertex vi is represented by the grid-point (i, i2 mod p, i3 mod p),
then there is still no crossing. This construction is a generalisation of an analogous
two-dimensional technique due to Erdős [40]. Furthermore, Cohen et al. [21] proved
that the resulting O(n3) volume bound is asymptotically optimal in the case of the
complete graph Kn. It is therefore of interest to identify fixed graph parameters that
allow for three-dimensional drawings with small volume.

The first such parameter to be studied was the chromatic number [17, 75]. Calam-
oneri and Sterbini [17] proved that every 4-colourable graph has a three-dimensional
drawing with O(n2) volume. Generalising this result, Pach et al. [75] proved that
graphs of bounded chromatic number have three-dimensional drawings with O(n2)
volume, and that this bound is asymptotically optimal for the complete bipartite
graph with equal sized bipartitions. If p is a suitably chosen prime, the main step
of this algorithm represents the vertices in the ith colour class by grid-points in the
set {(i, t, it) : t ≡ i2 (mod p)}. It follows that the volume bound is O(k2n2) for
k-colourable graphs.

The lower bound of Pach et al. [75] for the complete bipartite graph was gener-
alised by Bose et al. [14] for all graphs. They proved that every three-dimensional
drawing with n vertices and m edges has volume at least 1

8 (n + m). In particular,
the maximum number of edges in an X × Y × Z drawing is exactly (2X − 1)(2Y −
1)(2Z − 1)−XY Z. For example, graphs admitting three-dimensional drawings with
O(n) volume have O(n) edges.

The first non-trivial O(n) volume bound was established by Felsner et al. [42]
for outerplanar graphs. Their elegant algorithm ‘wraps’ a two-dimensional drawing
around a triangular prism to obtain an improper 3-track layout (see Lemmata 3.1 and
3.4 for more on this method). Poranen [78] proved that series-parallel digraphs have
upward three-dimensional drawings with O(n3) volume, and that this bound can be
improved to O(n2) and O(n) in certain special cases. Di Giacomo [27] proved that
series-parallel graphs with maximum degree three have three-dimensional drawings
with O(n) volume.

In §4 we prove the following intrinsic relationship between three-dimensional
drawings and track layouts.

Theorem 2.9. Every graph G has a O(tn(G)) × O(tn(G)) × O(n) drawing.
Moreover, G has a F(n) × F(n) × O(n) drawing if and only if G has track-number
tn(G) ∈ F(n), where F(n) is a family of functions closed under multiplication.

Of course, every graph has an n-track layout — simply place a single vertex on
each track. Thus Theorem 2.9 matches the O(n3) volume bound discussed in §2.6.
In fact, the drawings of Kn produced by our algorithm, with each vertex in a distinct
track, are identical to those produced by the algorithm of Cohen et al. [21].

Theorems 2.6 and 2.9 immediately imply the following result, which reduces the
problem of producing a three-dimensional drawing with small volume to that of pro-
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ducing a queue layout of the same graph with few queues.
Theorem 2.10. Let G be a proper minor-closed family of graphs, and let F(n)

be a family of functions closed under multiplication. The following are equivalent:
(a) every n-vertex graph in G has a F(n)×F(n)×O(n) drawing,
(b) G has track-number tn(G) ∈ F(n), and
(c) G has queue-number qn(G) ∈ F(n).
Graphs with constant queue-number include de Bruijn graphs, FFT and Beneš

network graphs [58]. By Theorem 2.10, these graphs have three-dimensional drawings
with O(n) volume. Applying Theorems 2.4 and 2.9 we have the following result.

Theorem 2.11. Let G be a graph with maximum degree ∆(G), path-width pw(G),
tree-partition-width tpw(G), and tree-width tw(G). Then G has a three-dimensional
drawing with the following dimensions:

(a) O(pw(G))×O(pw(G))×O(n), which is O(tw(G) log n)×O(tw(G) log n)×
O(n),

(b) O(tpw(G))×O(tpw(G))×O(n), which is O(∆(G) tw(G))×O(∆(G) tw(G))×
O(n),

(c) O(3 tw(G) · 6(4 tw(G)−3 tw(G)−1)/9)×O(3 tw(G) · 6(4 tw(G)−3 tw(G)−1)/9)×O(n).
Most importantly, we have the following corollary of Theorem 2.11(c).
Corollary 2.12. Every graph with bounded tree-width has a three-dimensional

drawing with O(n) volume.
Note that bounded tree-width is not necessary for a graph to have a three-

dimensional drawing with O(n) volume. The
√

n ×
√

n plane grid graph has Θ(
√

n)
tree-width, and has a

√
n ×

√
n × 1 drawing with n volume. It also has a 3-track

layout, and thus, by Lemma 4.2, has a O(1)×O(1)×O(n) drawing.
Since a planar graph is 4-colourable, by the results of Calamoneri and Sterbini [17]

and Pach [75] discussed above, every planar graph has a three-dimensional drawing
with O(n2) volume. This result also follows from the classical algorithms of de Frays-
seix et al. [23] and Schnyder [84] for producing O(n) × O(n) plane grid drawings.
All of these methods produce O(n)×O(n)×O(1) drawings, which have Θ(n) aspect
ratio. Since every planar graph G has pw(G) ∈ O(

√
n) [10], we have the following

corollary of Theorem 2.11(a).
Corollary 2.13. Every planar graph has a three-dimensional drawing with

O(n2) volume and Θ(
√

n) aspect ratio.
This result matches the above O(n2) volume bounds with an improvement in the

aspect ratio by a factor of Θ(
√

n). As discussed in §1, it is an open problem whether
every planar graph has a three-dimensional drawing with O(n) volume. Subsequent
to this research, Dujmović and Wood [37] proved that graphs excluding a clique minor
on a fixed number of vertices, such as planar graphs, have three-dimensional drawings
with O(n3/2) volume, as do graphs with bounded degree.

Our final result regarding three-dimensional drawings, which is proved in §4,
examines the apparent trade-off between aspect ratio and volume.

Theorem 2.14. For every graph G and for every r, 1 ≤ r ≤ n/tn(G), G has a
three-dimensional drawing with O(n3/r2) volume and aspect ratio 2r.

3. Track Layouts. In this section we describe a number of methods for produc-
ing and manipulating track layouts. The following result is implicit in the proof by
Felsner et al. [42] that every outerplanar graph has an improper 3-track layout.

Lemma 3.1 ([42]). Every tree T has a 3-track layout.
Proof. Root T at an arbitrary node r. Let σ be a lexicographical breadth-first

vertex-ordering of T starting at r, as described in §2.4. For i ∈ {0, 1, 2}, let Vi be the
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set of nodes of T with depth d ≡ i (mod 3) in σ. With each Vi ordered by σ, we have
a 3-track assignment of T . Clearly adjacent vertices are on distinct tracks. Since no
two edges are nested in σ, there is no X-crossing (see Fig. 3.1).

Fig. 3.1. A 3-track layout of a tree.

Lemma 3.2. Every graph G with path-width pw(G) has track-number tn(G) ≤
pw(G) + 1.

Proof. Let k = pw(G) + 1. It is well known that a G is the subgraph of a k-
colourable interval graph [10, 48]. That is, there is a set of intervals {[`(v), r(v)] ⊆ R :
v ∈ V (G)} such that [`(v), r(v)] ∩ [`(w), r(w)] 6= ∅ for every edge vw of G. Let {Vi :
1 ≤ i ≤ k} be a k-colouring of G. Consider each colour class Vi to be an ordered track
(v1, v2, . . . , vp), where `(v1) < r(v1) < `(v2) < r(v2) < · · · < `(vp) < r(vp). Suppose
there is an X-crossing between edges vw and xy with v, x ∈ Vi and w, y ∈ Vj for some
pair of tracks Vi and Vj . Without loss of generality, r(v) < `(x) and r(y) < `(w).
Since vw is an edge, `(w) ≤ r(v). Thus r(y) < `(w) ≤ r(v) < `(x), which implies that
xy is not an edge of G. This contradiction proves that there is no X-crossing, and G
has a k-track layout.

Fig. 3.2. A 4-track layout of a 4-colourable interval graph.

The next lemma uses a tree-partition to construct a track layout.
Lemma 3.3. Every graph G with maximum degree ∆(G), tree-width tw(G), and

tree-partition-width tpw(G), has track-number tn(G) ≤ 3 tpw(G) ≤ 72 ∆(G)tw(G).
Proof. Let (T, {Tx : x ∈ V (T )}) be a tree-partition of G with width tpw(G). By

Lemma 3.1, T has a 3-track layout. Replace each track by tpw(G) ‘sub-tracks’, and
for each node x in T , place the vertices in bag Tx on the sub-tracks replacing the track
containing x, with at most one vertex in Tx in a single track. For all nodes x and y
of T , if x < y in a single track of the 3-track layout of T , then for all vertices v ∈ Tx

and w ∈ Ty, v < w whenever v and w are assigned to the same track. There is no
X-crossing, since in the track layout of T , adjacent nodes are on distinct tracks and
there is no X-crossing. Thus we have a track layout of G. The number of tracks is
3 tpw(G), which is at most 72∆(G)tw(G) by the theorem of Ding and Oporowski [31]
discussed in §2.2.

In the remainder of this section, we prove two results that show how track layouts
can be manipulated without introducing an X-crossing. The first is a generalisation
of the ‘wrapping’ algorithm of Felsner et al. [42], who implicitly proved the case s = 1.
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Lemma 3.4. If a graph G has an (improper) track layout {(Vi, <i) : 1 ≤ i ≤ t}
with maximum edge span s, then G has an (improper) (2s + 1)-track layout.

Proof. Let ` = 2s + 1. Construct an `-track assignment of G by merging the
tracks {Vi : i ≡ j (mod t)} for each j, 0 ≤ j ≤ t − 1, with vertices in Vα appearing
before vertices in Vβ in the new track j, for all α, β ≡ j (mod t) with α < β. The
given order of each Vi is preserved in the new tracks. It remains to prove that there
is no X-crossing. Consider two edges vw and xy. Let i1 and i2, 1 ≤ i1 < i2 ≤ t, be
the minimum and maximum tracks containing v, w, x or y in the given t-track layout
of G.

First consider the case that i2 − i1 > 2s. Then without loss of generality v is in
track i2 and y is in track i1. Thus w is in a greater track than x, and even if x (or
y) appear on the same track as v (or w) in the new `-track assignment, x (or y) will
be to the left of v (or w). Thus these edges do not form an X-crossing in the `-track
assignment. Otherwise i2 − i1 ≤ 2s. Thus any two of v, w, x or y will appear on
the same track in the `-track assignment if and only if they are on the same track in
the given t-track layout (since ` > 2s). Hence the only way for these four vertices to
appear on exactly two tracks in the `-track assignment is if they were on exactly two
layers in the given t-track layout, in which case, by assumption vw and xy do not
form an X-crossing. Therefore there is no X-crossing, and we have an `-track layout
of G.

The next result shows that the number of vertices in different tracks of a track
layout can be balanced without introducing an X-crossing. The proof is based on an
idea due to Pach et al. [75] for balancing the size of the colour classes in a colouring.

Lemma 3.5. If a graph G has an (improper) t-track layout, then for every t′ > 0,
G has an (improper) bt + t′c-track layout with at most d n

t′ e vertices in each track.
Proof. For each track with q > d n

t′ e vertices, replace it by dq/d n
t′ ee ‘sub-tracks’

each with exactly d n
t′ e vertices except for at most one sub-track with q mod d n

t′ e
vertices, such that the vertices in each sub-track are consecutive in the original track,
and the original order is maintained. There is no X-crossing between sub-tracks from
the same original track as there is at most one edge between such sub-tracks. There
is no X-crossing between sub-tracks from different original tracks as otherwise there
would be an X-crossing in the original. There are at most bt′c tracks with d n

t′ e vertices.
Since there are at most t tracks with less than d n

t′ e vertices, one for each of the original
tracks, there is a total of at most bt + t′c tracks.

4. Three-Dimensional Drawings and Track Layouts. In this section we
prove Theorem 2.9, which states that three-dimensional drawings with small volume
are closely related to track layouts with few tracks.

Lemma 4.1. If a graph G has an A × B × C drawing, then G has an improper
AB-track layout, and G has a 2AB-track layout.

Proof. Let Vx,y be the set of vertices of G with an X-coordinate of x and a Y -
coordinate of y, where without loss of generality 1 ≤ x ≤ A and 1 ≤ y ≤ Y . With each
set Vx,y ordered by the Z-coordinates of its elements, {Vx,y : 1 ≤ x ≤ A, 1 ≤ y ≤ Y } is
an improper AB-track assignment. There is no X-crossing, as otherwise there would
be a crossing in the original drawing, and hence we have an improper AB-track layout.
By Lemma 2.2, G has a 2AB-track layout.

We now prove the converse of Lemma 4.1. The proof is inspired by the gener-
alisations of the moment curve algorithm by Cohen et al. [21] and Pach et al. [75],
described in §2.6. Loosely speaking, Cohen et al. [21] allow three ‘free’ dimensions,
whereas Pach et al. [75] use the assignment of vertices to colour classes to ‘fix’ one
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dimension with two dimensions free. We use an assignment of vertices to tracks to
fix two dimensions with one dimension free. The style of three-dimensional drawing
produced by our algorithm, where tracks are drawn vertically, is illustrated in Fig. 4.1.

Fig. 4.1. A three-dimensional drawing produced from a track layout.

Lemma 4.2. If a graph G has a (possibly) improper k-track layout, then G has
a k × 2k × 2k · n′ three-dimensional drawing, where n′ is the maximum number of
vertices in a track.

Proof. Suppose {(Vi, <i) : 1 ≤ i ≤ k} is the given improper k-track layout. Let
p be the smallest prime such that p > k. Then p ≤ 2k by Bertrand’s postulate. For
each i, 1 ≤ i ≤ k, represent the vertices in Vi by the grid-points

{(i, i2 mod p, t) : 1 ≤ t ≤ p · |Vi|, t ≡ i3 (mod p)} ,

such that the Z-coordinates respect the given total order <i. Draw each edge as a
line-segment between its end-vertices. Suppose two edges e and e′ cross such that
their end-vertices are at distinct points (iα, i2α mod p, tα), 1 ≤ α ≤ 4. Then these
points are coplanar, and if M is the matrix

M =


1 i1 i21 mod p t1
1 i2 i22 mod p t2
1 i3 i23 mod p t3
1 i4 i24 mod p t4


then the determinant det(M) = 0. We proceed by considering the number of distinct
tracks N = |{i1, i2, i3, i4}|.

• N = 1: By the definition of an improper track layout, e and e′ do not cross.
• N = 2: If either edge is intra-track then e and e′ do not cross. Otherwise

neither edge is intra-track, and since there is no X-crossing, e and e′ do not cross.
• N = 3: Without loss of generality i1 = i2. It follows that det(M) = (t2 − t1) ·

det(M ′), where

M ′ =

1 i2 i22 mod p
1 i3 i23 mod p
1 i4 i24 mod p

 .
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Since t1 6= t2, det(M ′) = 0. However, M ′ is a Vandermonde matrix modulo p, and
thus

det(M ′) ≡ (i2 − i3)(i2 − i4)(i3 − i4) (mod p),

which is non-zero since i2, i3 and i4 are distinct and p is a prime, a contradiction.
• N = 4: Let M ′ be the matrix obtained from M by taking each entry modulo

p. Then det(M ′) = 0. Since tα ≡ i3α (mod p), 1 ≤ α ≤ 4,

M ′ ≡


1 i1 i21 i31
1 i2 i22 i32
1 i3 i23 i33
1 i4 i24 i34

 (mod p) .

Since each iα < p, M ′ is a Vandermonde matrix modulo p, and thus

det(M ′) ≡ (i1 − i2)(i1 − i3)(i1 − i4)(i2 − i3)(i2 − i4)(i3 − i4) (mod p),

which is non-zero since iα 6= iβ and p is a prime. This contradiction proves there are
no edge crossings. The produced drawing is at most k × 2k × 2k · n′.

Proof of Theorem 2.9. Let F(n) be a family of functions closed under mul-
tiplication. Let G be an n-vertex graph with a t-track layout, where t ∈ F(n). By
Lemma 3.5 with t′ = t, G has a 2t-track layout with at most dn

t e vertices in each track.
By Lemma 4.2, G has a 2t× 4t× 4t · dn

t e drawing, which is O(t)×O(t)×O(n). Con-
versely, suppose an n-vertex graph G has a A×B×O(n) drawing, where A,B ∈ F(n).
By Lemma 4.1, G has a track layout with 2AB ∈ F(n) tracks.

Proof of Theorem 2.14. Let t = tn(G), and suppose 1 ≤ r ≤ n/t. By Lemma 3.5
with t′ = n

r , G has a bn
r + tc-track layout with at most r vertices in each track. By

assumption t ≤ n
r , and the number of tracks is at most 2n

r . By Lemma 4.2, G has a
2n
r × 4n

r × 4n three-dimensional drawing, which has volume 32n3/r2 and aspect ratio
2r.

5. Queue Layouts and Track Layouts. In this section we prove Theorem 2.6,
which states that track and queue layouts are closely related. Our first lemma high-
lights this fact — its proof follows immediately from the definitions (see Fig. 5.1).

Lemma 5.1. A bipartite graph G = (A,B;E) has a 2-track layout with tracks A
and B if and only if G has a 1-queue layout such that in the corresponding vertex-
ordering, the vertices in A appear before the vertices in B.

Fig. 5.1. A 2-track layout and a 1-queue layout of a bipartite graph.

We now show that a queue layout can be obtained from a track layout. This
result can be viewed as a generalisation of the construction of a 2-queue layout of an
outerplanar graph by Heath et al. [54] and Rengarajan and Veni Madhavan [80] (with
s = 1).
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Lemma 5.2. If a graph G has a (possibly) improper t-track layout {(Vi, <i) : 1 ≤
i ≤ t} with maximum edge span s (≤ t−1), then qn(G) ≤ s+1, and if the given track
layout is not improper, then qn(G) ≤ s.

Proof. First suppose that there are no intra-track edges. Let σ be the vertex
ordering (V1, V2, . . . , Vt) of G. Let Eα be the set of edges with span α in the given
track layout. As in Lemma 5.1, two edges from the same pair of tracks are nested
in σ if and only if they form an X-crossing in the track layout. Since no two edges
form an X-crossing in the track layout, no two edges that are between the same pair
of tracks are nested in σ. If two edges not from the same pair of tracks have the same
span then they are not nested in σ. (This idea is due to Heath and Rosenberg [58].)
Thus no two edges are nested in each Eα, and we have an s-queue layout of G. If
there are intra-track edges, then they all form one additional queue in σ.

We now set out to prove the converse of Lemma 5.2. It is well known that the
subgraph induced by any two tracks of a track layout is a forest of caterpillars [52].
A colouring of a graph is acyclic if every bichromatic subgraph is a forest; that is,
every cycle receives at least three distinct colours. Thus a t-track layout of a graph
G defines an acyclic t-colouring of G. The minimum number of colours in an acyclic
colouring of G is the acyclic chromatic number of G, denoted by χa(G). Thus,

χa(G) ≤ tn(G) .

Acyclic colourings were introduced by Grünbaum [49], who proved that every
planar graph is acyclically 9-colourable. This result was steadily improved [1, 65, 68]
until Borodin [12] proved that every planar graph is acyclically 5-colourable, which is
the best possible bound. Many other graph families have bounded acyclic chromatic
number, including graphs embeddable on a fixed surface [2, 3, 6], 1-planar graphs
[13], graphs with bounded maximum degree [5], and graphs with bounded tree-width.
A folklore result states that χa(G) ≤ tw(G) + 1 (see [43]). More generally, Nešetřil
and Ossona de Mendez [71] proved that every proper minor-closed graph family has
bounded acyclic chromatic number. In fact, Nešetřil and Ossona de Mendez [71]
proved that every graph G has a star k-colouring (every bichromatic subgraph is a
forest of stars), where k is a (small) quadratic function of the maximum chromatic
number of a minor of G.

Lemma 5.3. Every graph G with acyclic chromatic number χa(G) ≤ c and queue-
number qn(G) ≤ q has track-number tn(G) ≤ c (2q)c−1.

Proof. Let {Vi : 1 ≤ i ≤ c} be an acyclic colouring of G. Let σ be the vertex-
ordering in a q-queue layout of G. Consider an edge vw with v ∈ Vi, w ∈ Vj , and
i < j. If v <σ w then vw is forward, and if w <σ v then vw is backward. Consider the
edges to be coloured with 2q colours, where each colour class consists of the forward
edges in a single queue, or the backward edges in a single queue.

Alon and Marshall [4] proved that given a (not necessarily proper) edge k-colouring
of a graph G, any acyclic c-colouring of G can be refined to a ckc−1-colouring so that
the edges between any pair of (vertex) colour classes are monochromatic, and each
(vertex) colour class is contained in some original colour class. (Nešetřil and Ras-
paud [72] generalised this result for coloured mixed graphs.) Apply this result with
the given acyclic c-colouring of G and the edge 2q-colouring discussed above. Consider
the resulting c(2q)c−1 colour classes to be tracks ordered by σ. The edges between
any two tracks are from a single queue, and are all forward or all backward.

Suppose that there are edges vw and xy that form an X-crossing. Since each track
is a subset of some Vi, we can assume that v, x ∈ Vi, w, y ∈ Vj and i < j. Suppose
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that vw and xy are both forward. The case in which vw and xy are both backward
is symmetric. Thus v <σ w and x <σ y. Since vw and xy form an X-crossing, and
the tracks are ordered by σ, we have v <σ x and y <σ w. Hence v <σ x <σ y <σ w.
That is, vw and xy are nested. This is the desired contradiction, since edges between
any pair of tracks are from a single queue. Thus we have a c(2q)c−1-track layout of
G.

Proof of Theorem 2.6. Let F(n) be a family of functions closed under mul-
tiplication. Let G be an n-vertex graph from a proper minor-closed graph family
G. First, suppose that G has a t-track layout, where t ∈ F(n). By Lemma 5.2,
G has queue-number qn(G) ≤ t − 1 ∈ F(n). Conversely, suppose G has queue-
number qn(G) = q ∈ F(n). By the above-mentioned result of Nešetřil and Ossona
de Mendez [71], G has bounded acyclic chromatic number χa(G) ≤ c ∈ O(1). By
Lemma 5.3, G has a t-track layout, where t ≤ c(2q)c−1 ∈ F(n).

6. Tree-Partitions of k-Trees. In this section we prove our theorem regarding
tree-partitions of k-trees mentioned in §2.2. This result forms the cornerstone of the
proof of Theorem 7.3.

Theorem 6.1. Let G be a k-tree with maximum degree ∆. Then G has a rooted
tree-partition (T, {Tx : x ∈ V (T )}) such that for all nodes x of T ,

(a) if x is a non-root node of T and y is the parent node of x, then the set of
vertices in Ty with a neighbour in Tx form a clique Cx of G, and

(b) the induced subgraph G[Tx] is a connected (k − 1)-tree.
Furthermore the width of (T, {Tx : x ∈ V (T )}) is at most max{1, k(∆− 1)}.

Proof. We assume G is connected, since if G is not connected then a tree-partition
of G that satisfies the theorem can be determined by adding a new root node with an
empty bag, adjacent to the root node of a tree-partition of each connected component
of G.

It is well-known that G is a connected k-tree if and only if G has a vertex-ordering
σ = (v1, v2, . . . , vn), such that for all i ∈ {1, 2, . . . , n},

(i) if Gi is the induced subgraph G[{v1, v2, . . . , vi}], then Gi is connected and
the vertex-ordering of Gi induced by σ is a breadth-first vertex-ordering of Gi, and

(ii) the neighbours of vi in Gi form a clique Ci = {vj : vivj ∈ E(G), j < i} with
1 ≤ |Ci| ≤ k (unless i = 1 in which case Ci = ∅).

In the language of chordal graphs, σ is a (reverse) ‘perfect elimination’ vertex-
ordering and can be determined, for example, by the Lex-BFS algorithm by Rose et
al. [82] (also see [48]). Moreover, we can choose v1 to be any vertex in G.

Let r be a vertex of minimum degree6 in G. Then deg(r) ≤ k. Let σ =
(v1, v2, . . . , vn) be a vertex-ordering of G with v1 = r, and satisfying (i) and (ii).
By (i), the depth of each vertex vi in σ is the same as the depth of vi in the vertex-
ordering of Gj induced by σ, for all j ≥ i. We therefore simply speak of the depth of
vi. Let Vd be the set of vertices of G at depth d.

Claim 1. For all d ≥ 1, and for every connected component Z of G[Vd], the set
of vertices at depth d− 1 with a neighbour in Z form a clique of G.

Proof. The claim in trivial for d = 1 or d = 2. Now suppose that d ≥ 3. Assume
for the sake of contradiction that there are two non-adjacent vertices x and y at depth
d − 1, such that x has a neighbour in Z and y has a neighbour in Z. Let P1 be a
shortest path between x and y with its interior vertices in Z. Let P2 be a shortest

6We choose r to have minimum degree to obtain a slightly improved bound on the width of the
tree-partition. If we choose r to be an arbitrary vertex then the width is at most max{1, ∆, k(∆−1)},
and the remainder of Theorem 6.1 holds.
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path between x and y with its interior vertices at depth at most d − 2. Since the
interior vertices of P1 are at depth d, there is no edge between an interior vertex of
P1 and an interior vertex of P2. Thus P1 ∪ P2 is a chordless cycle of length at least
four, contradicting the fact that G is chordal (by Lemma 2.1).

Define a graph T and a partition {Tx : x ∈ V (T )} of V (G) indexed by the nodes
of T as follows. There is one node x in T for every connected component of each
G[Vd], whose bag Tx is the vertex-set of the corresponding connected component. We
say x and Tx are at depth d. Clearly a vertex in a depth-d bag is also at depth d. The
(unique) node of T at depth zero is called the root node. Let two nodes x and y of T
be connected by an edge if there is an edge vw of G with v ∈ Tx and w ∈ Ty. Thus
(T, {Tx : x ∈ V (T )}) is a ‘graph-partition’.

We now prove that in fact T is a tree. First observe that T is connected since G is
connected. By definition, nodes of T at the same depth d are not adjacent. Moreover
nodes of T can be adjacent only if their depths differ by one. Thus T has a cycle
only if there is a node x in T at some depth d, such that x has at least two distinct
neighbours in T at depth d− 1. However this is impossible since by Claim 1, the set
of vertices at depth d−1 with a neighbour in Tx form a clique (which we call Cx), and
are hence in a single bag at depth d − 1. Thus T is a tree and (T, {Tx : x ∈ V (T )})
is a tree-partition of G (see Fig. 6.1).

V0

V1

V2

V3

Fig. 6.1. Illustration for Theorem 6.1 in the case of k = 3.

We now prove that each bag Tx induces a connected (k − 1)-tree. This is true
for the root node which only has one vertex. Suppose x is a non-root node of T at
depth d. Each vertex in Tx has at least one neighbour at depth d − 1. Thus in the
vertex-ordering of Tx induced by σ, each vertex vi ∈ Tx has at most k− 1 neighbours
vj ∈ Tx with j < i. Thus the vertex-ordering of Tx induced by σ satisfies (i) and (ii)
for k − 1, and G[Tx] is (k − 1)-tree. By definition each G[Tx] is connected.
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Finally, consider the cardinality of a bag in T . We claim that each bag contains
at most max{1, k(∆− 1)} vertices. The root bag has one vertex. Let x be a non-root
node of T with parent node y. Suppose y is the root node. Then Ty = {r}, and thus
|Tx| ≤ deg(r) ≤ k ≤ k(∆ − 1) assuming ∆ ≥ 2. If ∆ ≤ 1 then all bags have one
vertex. Now assume y is a non-root node. The set of vertices in Ty with a neighbour
in Tx forms the clique Cx. Let k′ = |Cx|. Thus k′ ≥ 1, and since Cx ⊆ Ty and G[Ty]
is a (k − 1)-tree, k′ ≤ k. A vertex v ∈ Cx has k′ − 1 neighbours in Cx and at least
one neighbour in the parent bag of y. Thus v has at most ∆ − k′ neighbours in Tx.
Hence the number of edges between Cx and Tx is at most k′(∆− k′). Every vertex in
Tx is adjacent to a vertex in Cx. Thus |Tx| ≤ k′(∆− k′) ≤ k(∆− 1). This completes
the proof.

7. Tree-Width and Track Layouts. In this section we prove that track-
number is bounded by tree-width. Let {(Vi, <i) : i ∈ I} be a track layout of a
graph G. We say a clique C of G covers the set of tracks {i ∈ I : C ∩ Vi 6= ∅}. Let
S be a set of cliques of G. Suppose there exists a total order � on S such that for
all cliques C1, C2 ∈ S, if there exists a track i ∈ I, and vertices v ∈ Vi ∩ C1 and
w ∈ Vi ∩C2 with v <i w, then C1 ≺ C2. In this case, we say � is nice, and S is nicely
ordered by the track layout.

Lemma 7.1. Let L ⊆ I be a set of tracks in a track layout {(Vi, <i) : i ∈ I} of a
graph G. If S is a set of cliques, each of which covers L, then S is nicely ordered by
the given track layout.

Proof. Define a relation � on S as follows. For every pair of cliques C1, C2 ∈ S,
define C1 � C2 if C1 = C2 or there exists a track i ∈ L and vertices v ∈ C1 and
w ∈ C2 with v <i w. Clearly all cliques in S are comparable.

Suppose that � is not antisymmetric; that is, there exists distinct cliques C1, C2 ∈
S, distinct tracks i, j ∈ L, and distinct vertices v1, w1 ∈ C1 and v2, w2 ∈ C2, such
that v1 <i v2 and w2 <j w1. Since C1 and C2 are cliques, the edges v1w1 and v2w2

form an X-crossing, which is a contradiction. Thus � is antisymmetric.
We claim that � is transitive. Suppose there exist cliques C1, C2, C3 ∈ S such

that C1 � C2 and C2 � C3. We can assume that C1, C2 and C3 are pairwise distinct.
Thus there are vertices u1 ∈ C1, u2 ∈ C2, v2 ∈ C2 and v3 ∈ C3, such that u1 <i u2

and v2 <j v3 for some pair of (not necessarily distinct) tracks i, j ∈ L. Since C3 has
a vertex in Vi and since C3 6� C2, there is a vertex u3 ∈ C3 with u2 ≤i u3. Thus
u1 <i u3, which implies that C1 � C3. Thus � is transitive.

Hence � is a total order on S, which by definition is nice.
Consider the problem of partitioning the cliques of a graph into sets such that

each set is nicely ordered by a given track layout. The following immediate corollary
of Lemma 7.1 says that there exists such a partition where the number of sets does
not depend upon the size of the graph.

Corollary 7.2. Let G be a graph with maximum clique size k. Given a t-track
layout of G, there is a partition of the cliques of G into

∑k
i=1

(
t
i

)
sets, each of which

is nicely ordered by the given track layout.
We do not actually use Corollary 7.2 in the following result, but the idea of

partitioning the cliques into nicely ordered sets is central to its proof.
Theorem 7.3. For every integer k ≥ 0, there is a constant tk = 3k · 6(4k−3k−1)/9

such that every graph G with tree-width tw(G) ≤ k has a tk-track layout.
Proof. If the input graph G is not a k-tree then add edges to G to obtain a k-tree

containing G as a subgraph. It is well-known that a graph with tree-width at most
k is a spanning subgraph of a k-tree. These extra edges can be deleted once we are
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done. We proceed by induction on k with the following hypothesis:
For all k ∈ N, there exists a constant sk, and sets Ik and Sk such that

1. |Ik| = tk and |Sk| = sk,
2. each element of Sk is a subset of Ik, and
3. every k-tree G has a tk-track layout indexed by Ik, such that for every clique

C of G, the set of tracks that C covers is in Sk.
Consider the base case with k = 0. A 0-tree G has no edges and thus has a 1-track

layout. Let I0 = {1} and order V1 = V (G) arbitrarily. Thus t0 = 1, s0 = 1, and
S0 = {{1}} satisfy the hypothesis for every 0-tree. Now suppose the result holds for
k − 1, and G is a k-tree.

Let (T, {Tx : x ∈ V (T )}) be a tree-partition of G described in Theorem 6.1, where
T is rooted at r. Each induced subgraph G[Tx] is a (k − 1)-tree. Thus, by induction,
there are sets Ik−1 and Sk−1 with |Ik−1| = tk−1 and |Sk−1| = sk−1, such that for
every node x of T , the induced subgraph G[Tx] has a tk−1-track layout indexed by
Ik−1. For every clique C of G[Tx], if C covers L ⊆ Ik−1 then L ∈ Sk−1. Assume
Ik−1 = {1, 2, . . . , tk−1} and Sk−1 = {X1, X2, . . . , Xsk−1}. By Theorem 6.1, for each
non-root node x of T , if p is the parent node of x, then the set of vertices in Tp with
a neighbour in Tx form a clique Cx. Let α(x) = i where Cx covers Xi. For the root
node r of T , let α(r) = 1.

Track layout of T . To construct a track layout of G we first construct a track
layout of the tree T indexed by the set {(d, i) : d ≥ 0, 1 ≤ i ≤ sk−1}, where the track
Ld,i consists of nodes x of T at depth d with α(x) = i. Here the depth of a node x
is the distance in T from the root node r to x. We order the nodes of T within the
tracks by increasing depth. There is only one node at depth d = 0. Suppose we have
determined the orders of the nodes up to depth d− 1 for some d ≥ 1.

Let i ∈ {1, 2, . . . , sk−1}. The nodes in Ld,i are ordered primarily with respect to
the relative positions of their parent nodes (at depth d− 1). More precisely, let ρ(x)
denote the parent node of each node x ∈ Ld,i. For all nodes x and y in Ld,i, if ρ(x)
and ρ(y) are in the same track and ρ(x) < ρ(y) in that track, then x < y in Ld,i. For
x and y with ρ(x) and ρ(y) on distinct tracks, the relative order of x and y is not
important. It remains to specify the order of nodes in Ld,i with a common parent.

Suppose P is a set of nodes in Ld,i with a common parent node p. By construction,
for every node x ∈ P , the parent clique Cx covers Xi in the track layout of G[Tp]. By
Lemma 7.1 the cliques {Cx : x ∈ P} are nicely ordered by the track layout of G[Tp].
Let the order of P in track Ld,i be specified by a nice ordering of {Cx : x ∈ P}, as
illustrated in Fig. 7.1.

This construction defines a partial order on the nodes in track Ld,i, which can be
arbitrarily extended to a total order. Hence we have a track assignment of T . Since
the nodes in each track are ordered primarily with respect to the relative positions of
their parent nodes in the previous tracks, there is no X-crossing, and hence we have
a track layout of T .

Track layout of G. To construct a track assignment of G from the track layout
of T , replace each track Ld,i by tk−1 ‘sub-tracks’, and for each node x of T , insert
the track layout of G[Tx] in place of x on the sub-tracks corresponding to the track
containing x in the track layout of T . More formally, the track layout of G is indexed
by the set

{(d, i, j) : d ≥ 0, 1 ≤ i ≤ sk−1, 1 ≤ j ≤ tk−1} .
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Cy1
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x1 x2 x3

y1 y2 y3
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p

Ld,1

Ld,2

�

�

�

Ld,sk−1

Fig. 7.1. Track layout of nodes with a common parent p.

Each track Vd,i,j consists of those vertices v of G such that, if Tx is the bag containing
v, then x is at depth d in T , α(x) = i, and v is in track j in the track layout of G[Tx].
If x and y are distinct nodes of T with x < y in Ld,i, then v < w in Vd,i,j , for all
vertices v ∈ Tx and w ∈ Ty in track j. If v and w are vertices of G in track j in bag
Tx at depth d, then the relative order of v and w in Vd,α(x),j is the same as in the
track layout of G[Tx].

Clearly adjacent vertices of G are in distinct tracks. Thus we have defined a track
assignment of G. We claim there is no X-crossing. Clearly an intra-bag edge of G
is not in an X-crossing with an edge not in the same bag. By induction, there is no
X-crossing between intra-bag edges in a common bag. Since there is no X-crossing in
the track layout of T , inter-bag edges of G which are mapped to edges of T without
a common parent node, are not involved in an X-crossing.

Consider a parent node p in T . For each child node x of p, the set of vertices
in Tp adjacent to a vertex in Tx forms the clique Cx. Thus there is no X-crossing
between a pair of edges both from Cx to Tx, since the vertices of Cx are on distinct
tracks. Consider two child nodes x and y of p. For there to be an X-crossing between
an edge from Tp to Tx and an edge from Tp to Ty, the nodes x and y must be on the
same track in the track layout of T . Suppose x < y in this track. By construction, Cx

and Cy cover the same set of tracks, and Cx � Cy in the corresponding nice ordering.
Thus for any track containing vertices v ∈ Cx and w ∈ Cy, v ≤ w in that track. Since
all the vertices in Tx are to the left of the vertices in Ty (in a common track), there is
no X-crossing between an edge from Tp to Tx and an edge from Tp to Ty. Therefore
there is no X-crossing, and hence we have a track layout of G.

Wrapped track layout of G. As illustrated in Fig. 7.2, we now ‘wrap’ the
track layout of G in the spirit of Lemma 3.1. In particular, define a track assignment
of G indexed by{

(d′, i, j) : d′ ∈ {0, 1, 2}, 1 ≤ i ≤ sk−1, 1 ≤ j ≤ tk−1

}
,

where each track

Wd′,i,j =
⋃

{Vd,i,j : d ≡ d′ (mod 3)} .
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If v ∈ Vd,i,j and w ∈ Vd+3,i,j then v < w in the order of Wd′,i,j (where d′ = d mod 3).
The order of each Vd,i,j is preserved in Wd′,i,j . The set of tracks {Wd′,i,j : d′ ∈
{0, 1, 2}, 1 ≤ i ≤ sk−1, 1 ≤ j ≤ tk−1} forms a track assignment of G.

For every edge vw of G, the depths of the bags in T containing v and w differ by
at most one. Thus in the wrapped track assignment of G, adjacent vertices remain
on distinct tracks, and there is no X-crossing. The number of tracks is 3 · sk−1 · tk−1.

Every clique C of G is either contained in a single bag of the tree-partition or is
contained in two adjacent bags. Let

S ′ =
{
{(d′, i, h) : h ∈ Xj} : d′ ∈ {0, 1, 2}, 1 ≤ i, j ≤ sk−1

}
.

For every clique C of G contained in a single bag, the set of tracks containing C is in
S ′. Let

S ′′ =
{
{(d′, i, `) : ` ∈ Xj} ∪ {((d′ + 1) mod 3, p, h) : h ∈ Xq} :

d′ ∈ {0, 1, 2}, 1 ≤ i, j, p, q ≤ sk−1

}
.

For every clique C of G contained in two bags, the set of tracks containing C is in S ′′.
Observe that S ′∪S ′′ is independent of G. Hence Sk = S ′∪S ′′ satisfies the hypothesis
for k.

Now |S ′| = 3s2
k−1 and |S ′′| = 3s4

k−1, and thus |S ′ ∪ S ′′| = 3s2
k−1(s

2
k−1 + 1).

Therefore any solution to the following set of recurrences satisfies the theorem:

s0 ≥ 1, t0 ≥ 1, sk ≥ 3s2
k−1(s

2
k−1 + 1), tk ≥ 3sk−1 · tk−1 . (7.1)

We claim that

sk = 6(4k−1)/3 and tk = 3k · 6(4k−3k−1)/9

is a solution to (7.1). Observe that s0 = 1 and t0 = 1. Now

3s2
k−1(s

2
k−1 + 1) ≤ 6s4

k−1 ,

and

6(6(4k−1−1)/3)4 = 61+4(4k−1−1)/3 = 6(4k−1)/3 = sk .

Thus the recurrence for sk is satisfied. Now

3 · sk−1 · tk−1 = 3 · 6(4k−1−1)/3 · 3k−1 · 6(4k−1−3(k−1)−1)/9

= 3k · 6(3·4k−1−3+4k−1−3k+3−1)/9

= 3k · 6(4k−3k−1)/9

= tk .

Thus the recurrence for tk is satisfied. This completes the proof.
In the proof of Theorem 7.3 we have made little effort to reduce the bound on tk,

beyond that it is a doubly exponential function of k. In [35] we describe a number
of refinements that result in improved bounds on tk. One such refinement uses strict
k-trees. From an algorithmic point of view, the disadvantage of using strict k-trees is
that at each recursive step, extra edges must be added to enlarge the graph from a
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Fig. 7.2. Wrapped track layout in Theorem 7.3.

partial strict k-tree into a strict k-tree, whereas when using (non-strict) k-trees, extra
edges need only be added at the beginning of the algorithm.

For small values of k, much-improved results can be obtained. For example, we
prove that every series-parallel graph (that is, with tree-width at most two) has an
18-track layout [35], whereas t2 = 54. This bound has recently been improved to 15
by Di Giacomo et al. [26]. Their method is based on Theorems 6.1 and 7.3, and in
the general case, still gives a doubly exponential upper bound on the track-number
of graphs with tree-width k. For other particular classes of graphs, Di Giacomo and
Meijer [25, 28] recently improved the constants in our results.

Our doubly exponential upper bound is probably not best possible. Di Giacomo
et al. [26] constructed graphs with tree-width k and track-number at least 2k+1. The
following construction establishes a quadratic lower bound. It is similar to a graph
due to Albertson [3], which gives a tight lower bound on the star chromatic number
of graphs with tree-width k.

Theorem 7.4. For all k ≥ 0, there is a graph Gk with tree-width at most k and
track-number tn(Gk) = 1

2 (k + 1)(k + 2).
Proof. Let G0 = K1. Obviously G0 has tree-width 0. Construct Gk from Gk−1 as

follows. Start with a k-clique {v1, v2, . . . , vk}. Let n = 2(1
2 (k + 1)(k + 2)− 1− k) + 1.

Add n vertices {w1, w2, . . . , wn} each adjacent to every vi. Let H1,H2, . . . ,Hn be
copies of Gk−1. For all 1 ≤ j ≤ n, add an edge between wj and each vertex of Hj . It
is easily seen that from a tree decomposition of Gk−1 of width k−1, we can construct
a tree decomposition of Gk of width k. Thus Gk has tree-width at most k.

To prove that tn(Gk) ≥ 1
2 (k + 1)(k + 2), we proceed by induction on k ≥ 0.

Obviously tn(G0) = 1. Suppose that tn(Gk−1) ≥ 1
2k(k + 1), but tn(Gk) ≤ 1

2 (k +
1)(k + 2) − 1. Since {v1, v2, . . . , vk} is a clique, we can assume that vi is in track i.
Since each vertex wj is adjacent to each vi, no wj is in tracks {1, 2, . . . , k}. There are
1
2 (k + 1)(k + 2) − 1 − k remaining tracks. Since n is more than twice this number,
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Fig. 7.3. The graph Gk.

there are at least three wj vertices in a single track. Without loss of generality,
w1 < w2 < w3 in track k + 1. No vertex x of H2 is in track i ∈ {1, 2, . . . , k}, as
otherwise xw2 would form an X-crossing with viw1 or viw3. No vertex x of H2 is
in track k + 1, since x and w2 are adjacent, and w2 is in track k + 1. Thus all
the vertices of H2 are in tracks {k + 2, k + 3, . . . , 1

2 (k + 1)(k + 2) − 1}. There are
1
2 (k + 1)(k + 2) − 1 − (k + 1) = 1

2k(k + 1) − 1 such tracks. This contradicts the
assumption that tn(Gk−1) ≥ 1

2k(k + 1). Therefore tn(Gk) ≥ 1
2 (k + 1)(k + 2).

It remains to prove that tn(Gk) ≤ 1
2 (k + 1)(k + 2). Suppose we have a 1

2k(k + 1)-
track layout of Gk−1. Thus each Hj has a 1

2k(k + 1)-track layout. Put each vertex vi

of Gk in track i. Put the vertices {w1, w2, . . . , wn} in track k + 1 in this order. Put
the track layout of each Hj in tracks k + 2, k + 3, . . . , 1

2 (k + 1)(k + 2), such that the
vertices of Hj precede the vertices of Hj+1. Clearly there are no X-crossings.

Also note that Theorem 7.4 (for k ≥ 2) can be extended using the proof technique
of Lemma 2.3 to give the same lower bound for improper track layouts.

8. Open Problems.
1. (In the conference version of their paper) Felsner [42] asked whether every

planar graph has a three-dimensional drawing with O(n) volume? By Theorem 2.9,
this question has an affirmative answer if every planar graph has O(1) track-number.
Whether every planar graph has O(1) track-number is an open problem due to H.
de Fraysseix [private communication, 2000], and by Theorem 2.6, is equivalent to the
following question.

2. Heath et al. [58, 54] asked whether every planar graph has O(1) queue-
number? The best known upper bound on the queue-number of a planar graph is
O(
√

n). In general, Dujmović and Wood [38] proved that every m-edge graph has
queue-number at most e

√
m, where e is the base of the natural logarithm.

3. Heath et al. [58, 54] asked whether stack-number is bounded by queue-number
(and vice-versa)? Note that there is a family of graphs G with sn(G) ∈ Ω(3Ω(qn(G))−ε),
for all G ∈ G [54].

4. Is the queue-number of a graph bounded by a polynomial (or even singly
exponential) function of its tree-width?
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