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Abstract

Given a set of n points in the plane, is it possible to find k lines that
cover all the points in the set? We show that although this problem is NP-
hard, it can be solved efficiently for small values of k. In particular, we give
a O(nk log k + k2(k+1)) algorithm for this problem, and a generalization
to higher dimensions.

1 Introduction

We consider the point cover problem in Rd: given a set S of n points in Rd and
an integer k, is it possible to find a set of k hyperplanes H = {h1, ..., hk} such
that for every point in S, there is a hyperplane in H incident to it. In a dual
setting (see e.g. [4]), this is equivalent to the hyperplane cover problem: given
an arrangement of n hyperplanes in Rd, can we find a set of k points such that
there is at least one point on each hyperplane?

In 1982, Megiddo and Tamir proved that this problem is NP-hard [8] even
when d = 2, and it was recently shown that the corresponding optimization
problem is also APX-hard [7][2]. These facts have been used to prove hardness
results for several clustering [1] art gallery [2] and covering problems [5]. The two
dimensional problem is also reducible to a particular instance of the set covering
problem where each set in the given set system intersects with any other set in
at most one element. It is shown in [7] that approximating the minimum set
cover with intersection 1 within a factor o(log n) in random polynomial is not
possible unless NP ⊆ ZTIME(nO(log log n)).

However, Johnson [6] shows that any minimum set cover problem can be
approximated within a factor O(log n) using a greedy algorithm. This is also
the best known approximation algorithm for the minimum point cover problem.
Approximation algorithms for restricted versions and variants of this problem
can be found in [1][5].

In this paper, we study the point cover problem under the lens of fixed
parameter tractability [3]. In this setting, we identify some parameters of our
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problem – in this case, k and d – which are likely to be small, and look for
polynomial time algorithms when these parameters are considered constants,
but where the exponent of the polynomial is independent from the parameters
k and d.

In contrast, the point cover problem can be solved by looking at all k-tuple
of hyperplanes amongst all the

(
n
d

)
hyperplanes defined by any d points of S.

For each of these O(ndk) tuples, we can check whether it covers all the points
in S in O(kn) time, resulting in a O(kndk+1) time algorithm. For d and k
constants, the algorithm is polynomial, but the exponent in n depends on the
parameters of the problem. Instead, we will be looking for an algorithm of the
form O(p(n)f(d, k)) where f is some arbitrary function independent of n, and
p(n) is some small polynomial in n. We prove:

Theorem 1 The point cover problem can be solved in O(nkdk) time.

Theorem 2 The point cover problem can be solved in O(n(2k)d−1 log k+dkd(k+1))
time.

Details appear in the final version.
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