Translating a Regular Grid over a Point Set*

Prosenjit Bose! ~ Marc van Kreveld? Anil Maheshwarif

Pat Morin® Jason Morrison'

Abstract

We consider the problem of translating a (finite or infinite) square grid
G over a set S of n points in the plane in order to maximize some objective
function. We say that a grid cell is k-occupied if it contains k£ or more
points of S. The main set of problems we study have to do with translat-
ing an infinite grid so that the number of k-occupied cells is maximized
or minimized. For these problems we obtain running times of the form
O(kn polylog n). We also consider the problem of translating a finite size
grid, with m cells, in order to maximize the number of k-occupied cells.
Here we obtain a running time of the form O(knm polylog nm).

1 Introduction

In this paper we consider the problem of translating a (finite or infinite) square
grid G over a set S of n points in the plane so that some objective function is
optimized. For a grid cell C' of G we say that C is k-occupied if C contains
at least k points of S. The k-occupancy of G is the number of cells of G that
are k-occupied. A cell is simply occupied if it is 1-occupied and the occupancy
denotes the 1-occupancy.

For infinite grids, we consider both minimization and maximization versions
of the following problems where G is free to be translated by any vector and k
is part of the input:

Problem 1. Find a translation of G that optimizes the occupancy of G.

Problem 2. Find a translation of G that optimizes the k-occupancy of G.

*This work was partly funded by the Natural Sciences and Engineering Research Council
of Canada and the Dutch Organization for Scientific Research (N.W.O).

tSchool of Computer Science, Carleton University, 1125 Colonel By Drive, Ottawa, Canada,
K1S 5B6, {jit,maheshwari,morrison}@scs.carleton.ca .

tDepartment of Computer Science, Utrecht University, P.O. Box 80.089, 3508 TB, Utrecht,
The Netherlands, marc@cs.uu.nl .

8School of Computer Science, McGill University, 3480 University Street, McConnell Engi-
neering Building., Room 318, Montreal, Quebec, Canada, H3A 2A7, morin@cgm.cs.mcgill.ca

Problem 3. Find a translation of G (if one exists) so that no cell of G s
k-occupied.

We also consider the following problems of optimizing k:

Problem 4. Find the smallest integer k such that there exists a translation of
G with k-occupancy 0.

Problem 5. Find the largest integer k such that there exists a translation of G
with k-occupancy at least r.

For a finite grid G and a fixed integer k& we also consider the following
problem:

Problem 6. Find a translation of G that mazimizes k-occupancy.

This problem arises in several applications. For example, a problem from
cartography is that of laying out maps into books, where one wants to avoid
book pages with no features or with too many features. In the problem of
gridding/interpolation one wants to derive a regular grid from irregular data.
In order to minimize the interpolation error one would like to ensure that every
grid cell contains at least 1 point to interpolate from. Finally, in the design of
hash functions [2, 5], one wants to minimize the maximum number of points
contained in any bucket.

The main tools we use to solve these problems are plane sweep [4] and
a dynamic data structure for maintaining the maximum clique in an interval
graph under insertions and deletions of intervals. Our approach is to reduce the
grid translation problem to that of finding a maximally (or minimally) covered
point in an arrangement of rectangles and then apply plane sweep and our data
structure to find this point.

The previous work most closely related to our results is the work of Lee [9]
on finding the maximum clique in a rectangle intersection graph. A rectangle
intersection graph G = (V, E) has vertices V, |V| = n, such that each vertex
represents one of n iso-oriented rectangles. Every edge in E corresponds to a
pair of rectangles that intersect and all such intesections are represented in FE.
Lee also uses plane sweep along with a data structure for maintaining the size of
a maximum clique in an interval graph. The data structure is based on segment
trees [3] and has O(logn) time for insertions, deletions and queries.

As we were previously unaware of Lee’s work, we developed a data structure
based on prefix-sum trees that also has O(log n) running time for all operations.
This data structure seems to be more flexible than the segment tree data struc-
ture. For example, it is fully dynamic, not requiring that the endpoints of the
segments be known in advance. It can also report a value that is contained in
the largest number of intervals. It is unclear whether the segment tree data
structure can be extended to do either of these without increasing the running
time. We conjecture that this data structure will find applications beyond those
in this paper.

Several other researchers have considered grid placement problems in which
rotations and resizing of the grid cells can take place [1, 2]. In these applications

Problem Running Time Memory
Problem 1 | O(nlogn) O(n)
Problem 2 | O(knlogn) O(kn)
Problem 3 | O(knlogn) O(kn)
Problem 4 | O(knlognlogk) O(kn)
Problem 5 | O(knlognlogk) O(kn)
Problem 6 | O(kmnlogmn) O(kn)

Table 1: Summary of results.

the objective function that is minimized is usually the maximum number of
points that fall in any given cell. Because of the increased number of degrees
of freedom, the running times of the algorithms are quite high (usually close to
quadratic in n).

In comparison, we study a constrained version of the problem where only
rigid translation is allowed. With this constraint we are able to consider varia-
tions with k-occupancy rather than just 1-occupancy. We obtain the low-order
running times and memory requirements shown in Table 1. All results are valid
for grid cells of arbitrary aspect ratio and scale. When we do use the idea of
square unit size cells in our descriptions it is only for the sake of clarity and no
results are affected by the change.

The remainder of this paper is organized as follows: In Section 2 we describe
our new data structure for maintaining the maximum clique in an interval graph.
In Section 3 we show how to use this data structure to solve Problems 1-6. In
Section 4 we summarize and conclude with open problems.

2 The Data Structure

In this section we describe a data structure that maintains a function f : R — Z
under the following update and query operations.

1. INSERT(T, a,b): Increase the value of f(z) by 1 for all = € [a, b).
2. DELETE(T, a,b): Decrease the value of f(x) by 1 for all € [a, b).
3. MAX-COVER(): Return max{f(z):x € R}.

4. MAX-COVER-WITNESS(): Return a value z* such that f(2*) = max{f(z) :
x € R}.

Furthermore, a simple modification of this data structure answers the mini-
mization queries MIN-COVER() and MIN-COVER-WITNESS() without any diffi-
culties.

The data structure we use is a binary search tree T" whose root is denoted
by r. Each node v of T stores an interval. We denote by INT(v) the interval

stored at v, and by START(v), respectively STOP(v), the left, respectively right,
endpoint of INT(v). For an internal node v, the left, respectively right, child
of v is denoted by LEFT(v), respectively RIGHT(v). The interval of an internal
node v is always INT(v) = INT(LEFT(v)) U INT(RIGHT(v)). Initially, T' contains
one node r with INT(r) = [—o0, +00).

In addition to this information, each node v of T also maintains two val-
ues, STAB(v) and A(v). Let K(v) = max{f(z) : ¢ € INT(v)} so that K(r) =
MAX-COVER(). Intuitively, we would like value of STAB(v) to be K(v). How-
ever, maintaining this property would take linear time for each INSERT and
DELETE operation. Instead, we maintain the following less strict invariant.

Invariant 1. For every node v of T, K(v) = STAB(v) + }_,c p(,) A(v), where
P(v) is the set of nodes (including v) on the path from v to the root of T.

Invariant 1 has several implications. One of these is that an answer to MAX-
COVER queries can be given in constant time since K (r) = STAB(r) + A(r).
Furthermore, for a node v, if A(u) = 0 for all nodes u on the path from v to r
then STAB(v) = K (v).

Our strategy for maintaining the STAB information is a lazy one. We try
to avoid updating the values of nodes whenever possible. Van Kreveld and
Overmars [10] use a similar mechanism in the design of concatenable segment
trees. When it becomes necessary, the procedure that we use to update values
at internal nodes of T' is PUSH-DELTA(v), defined as follows.

PUSH-DELTA(v)
1: STAB(v) « STAB(v) + A(v)
2: A(LEFT(v)) « A(LEFT(v)) + A(v)
3: A(RIGHT(v)) <« A(RIGHT(v)) + A(v)
4: A(’U) —0
It is clear that, if Invariant 1 holds for node v and its two children before
calling PUSH-DELTA (v), then it continues to hold after calling PUSH-DELTA (v).

2.1 Query Operations

Because of Invariant 1, the MAX-COVER() operation can be implemented triv-
ially in constant time since MAX-COVER() = K(r) = STAB(r) + A(r). The
procedure MAX-COVER-WITNESS() requires a little more care, and is imple-
mented by the following algorithm.

Max-CoOVER-WITNESS()
1: vr
2: while v is not a leaf do
3: PusH-DELTA(v)

4: if STAB(LEFT(v)) + A(LEFT(v)) > STAB(RIGHT(v)) + A(RIGHT(v)) then
5: v « LEFT(v)

6: else

7: v +— RIGHT(v)

8 end if

9: end while
10: report any z* € INT(v)

To see that this procedure is correct note that, before line 4 is executed,
A(u) = 0 for all w € P(v). Therefore, by Invariant 1, K(u) = STAB(u) + A(u)
for each child u of v. So, during each iteration, v is reset to the child u of v that
maximizes K (u). It follows that the algorithm reports a point in INT(v) where v
is a leaf such that all values in INT(v) maximize f. Since the only modifications
to T are made by calls to PUSH-DELTA, which maintain Invariant 1, Invariant 1
is still true for all nodes after calling MAX-COVER- WITNESS().

2.2 Update Operations

Insertion and deletion operations are done using one general operation, INSERT-
INFINITE-INTERVAL(a, §), where a is a real number and ¢ is an integer. INSERT-
INFINITE-INTERVAL(a, §) has the effect of increasing f(x) by ¢ for all x €
[a, +00). It should be clear that INSERT(a,b) and DELETE(a,b) can each be
implemented with two calls to INSERT-INFINITE-INTERVAL (using values of
0==1).

We implement INSERT-INFINITE-INTERVAL by first creating a new leaf w
with START(w) = a if T' does not already contain such a leaf. We then traverse
P(w) from r to w calling PUSH-DELTA for each node we encounter. At the
same time, we update the A values for nodes that lie to the right of P(w).
After doing this, Invariant 1 is maintained for all nodes except those on P(w).
A final traversal from w back up to r corrects the STAB and A values for all
nodes of P(w) thereby restoring Invariant 1.

These ideas are implemented by the following pseudocode.

INSERT-INFINITE-INTERVAL(a, §)

1: BASIC-INSERT(a)
VT
: while v is not a leaf do
PusH-DELTA(v)
if a > START(RIGHT(v)) then
v+ RIGHT(v)
else
A(RIGHT(v)) «— A(RIGHT(v)) + §
: v «— LEFT(v)
10: end if
11: end while
12: STAB(v) < STAB(v) + ¢
13: repeat
14: v < PARENT(v)
15: STAB(v) <« max{STAB(LEFT(v)) + A(LEFT(v)),STAB(RIGHT(v)) +
A(RIGHT(v))}
16: until v =r

We are now considering two different versions of the function f. To avoid
confusion, we let f, denote the function f before the operation and fi, denote
the function f after the operation. Similarly, we refer to Invariant 1.a as Invari-
ant 1 using the function f = f, and Invariant 1.b as Invariant 1 using f = f}.
Finally, K,(v) and Ky(v) refer to the function K (v) using f = fa and f = fp,
respectively.

The function BASIC-INSERT(a) creates a node w with START(w) = « if one
does not already exist and rebalances T'. How this is accomplished is the topic
of the next section. For now, we can assume that after calling BASIC-INSERT(a),
there exists a node v with START(v) = a and Invariant 1 holds for every node
inT.

Claim 1. Let w denote the value of v in Line 12. Then, by the time Line 12
is executed, Invariant 1.b holds for all nodes not on P(w).

2
3
4
5:
6:
7
8
9

Proof. Suppose x is a node that has an ancestor v which is a node not on
P(w) that is a left child of a node on P(w) (Fig. 1.a). Then Invariant 1.a and
Invariant 1.b are the same for z. The only changes to nodes in P(z) are caused
by calls to PUSH-DELTA, which maintains Invariant 1.a. Therefore Invariant 1.b
holds for x.

Suppose therefore that = has an ancestor u that is a node not on P(w) but
which is the right child of a node on P(w) (Fig. 1.b). Then Ky(z) = K,(z) + 9.
If the pseudocode omitted Line 8, then Invariant 1.a would hold. However,
because we do not omit Line 8 Invariant 1.b holds. U

Claim 2. After Line 16, Invariant 1.b holds for all nodes in T .

Proof. After Line 11, we only update STAB values of nodes in P(w), so we can
not invalidate Invariant 1.b for any node not on P(w). Therefore, we need only
show that Invariant 1.b is maintained for nodes of P(w).

w w

Figure 1: The two cases in the proof of Claim 1.

To show that Invariant 1.b is maintained for a node v € P(w), we use
induction on the distance from v to w to show that, after time Line 15 is
executed for v, Invariant 1.b holds for v. For the case v = w, we note that,
because of the calls to PUSH-DELTA in Line 4, by the time Line 12 is executed,
the value of STAB(v) + A(v) = K,(v). But K}, (v) = Ka(v) + 0 and is therefore
correctly updated in Line 12.

Next we consider a node v at distance greater than 0 from w. Note that every
ancestor u of v (including v itself) has A(u) = 0 (from Line 4), and Invariant 1.b
holds for both children of v (by the inductive hypothesis and Claim 1). This
implies that for each child of v, Ky, (z) = sTAB(2) +A(z). Since, by definition,
Ky (v) is the maximum of K}, (LEFT(z)) and K}, (RIGHT(2)), Invariant 1.b holds
after the execution of Line 15. |

Therefore, INSERT-INFINITE-INTERVAL correctly updates the tree T so as to
maintain Invariant 1. A simple examination of the code for INSERT-INFINITE-
INTERVAL and MAX-COVER-WITNESS shows that their running time is O(h)
where h is the height of the tree. Next we show that this height can be kept to
O(logn).

2.3 Rebalancing

One detail missing from the description of INSERT-INFINITE-INTERVAL is the
implementation of BASIC-INSERT. Implementations of this function are de-
scribed in many algorithms texts (c.f., Cormen et al [6]) so we do not go into
details here.

Several methods exists for rebalancing binary search trees so that their height
is O(logn). Usually, these methods use rotations to rebalance the tree. Which
method used is a matter of preference, the important fact is that if we can show
how to update the STAB, A, and INT, values during a rotation then any of the
methods can be used.

A left rotation is illustrated in Fig. 2. We leave it to the reader to verify
that the following wrapper, placed around a left rotation, correctly updates the
information stored at = and y. Right rotation is implemented symmetrically.

Figure 2: A left rotation

LEFT-ROTATE-WITH-UPDATE(Z, y)

PusH-DELTA(z)

PusH-DELTA(y)

LEFT-ROTATE(z, y)

INT(z) < INT(a) UINT(b)

STAB(z) < max{STAB(a) + A(a),STAB(b) + A(b)}
STAB(y) « max{STAB(xz),STAB(c) + A(c)}

We have just proven the following result.

Theorem 1. A set of n intervals can be stored in a data structure requiring
O(n) space and supporting the operations, INSERT, DELETE, MAX-COVER, and
Max-CovER-WITNESS in O(logn) time per operation.

3 Applications

In this section we show how the data structure from the previous section can be
applied to solve a number of problems related to placing a regular square grid
G over a set S = {p1,...,pn} of n points in the plane.

3.1 Infinite Grids

Throughout this section we assume that G is an infinite grid consisting of unit
squares and that one of G’s vertices is located at the origin. It is clear that
all translations of G are equivalent up to additions of integers to the = and
y components. Therefore we need only consider translations whose z and y
components are in the range [0, 1) so we represent translations as points in the
square [0,1) x [0, 1).

3.1.1 Optimizing 1-Occupancy

In this section, we consider the problem of optimizing the l-occupancy, i.e.,
optimizing the number of grid cells occupied by at least 1 point of S. We

® D Pi

Figure 3: The point p; will lie in one of four cells after the translation (left)
which partitions the set of possible translations into four rectangles (right).

focus on the maximization problem since the modifications required to solve
the minimization problem are obvious.

Since we only consider translation of at most 1 unit in the « and y directions,
each point p; € S must occupy 1 of 4 cells of G after translation, call these
C}, C% C32, and C!. This partitions the set of possible translations into four
rectangles R}, R?, R, and R} that contain the top-left, top-right, bottom-left,
and bottom-right corners of [0,1) x [0,1), respectively (see Fig. 3). We call R’
an occupation rectangle for cell C7.

For a cell C, let the k-occupied set of C' be the set of translations of G for
which C'is k-occupied. It follows that the k-occupied set of C is the set of points
contained in k£ or more occupation rectangles of C.

Lemma 1. The 1-occupied set of a cell C' can be computed in O(slogs) time,
where s is the number of occupation rectangles of C'.

Proof. 1t is clear from the above discussion that the 1-occupied set of C' is the
union of the occupation rectangles of C'. In general, the union of s rectangles
has complexity O(s?), however occupation rectangles have the property that
they are contained in the unit square, and each contains at least 1 corner of the
unit square.

Let G1 be the set of occupation rectangles that contain the top-left or top-
right corner of the unit square and let G5 be the set of occupation rectangles
that contain the bottom-left or bottom-right corner of the unit square. Then
the boundary of UG is given by the lower envelope E; of the bottom edges of
rectangles in (G; and the boundary of UG is given by the upper envelope Fy of
the top edges of rectangles in G5. Since both of these are envelopes of at most s
parallel line segments they each have at most 2s vertices and can be computed
in O(slogs) time [8].

F1 and FE5 are both xz-monotone and the space above F; is UG, and the

space above Ey is UG5. Any vertex of U(G1 UGs) is either a vertex of Gy or Gy
or an intersection point of F; and E». Since two monotone polygonal chains of
length O(s) intersect at most O(s) times, the boundary of the 1-occupied set
of C is of size O(s) and can be obtained in an additional O(s) time by merging
FE; and Es. O

To determine a translation that maximizes 1-occupancy we proceed as fol-
lows: For each point p; € S we compute the four occupation rectangles generated
by p; in O(1) time using the floor function. Using an O(nlogn) time sorting
algorithm, we then gather the occupation rectangles of each cell C' and compute
the 1-occupied set for C' in O(slog s) time, where s is the number of occupation
rectangles of C'. Since each point in S generates at most 4 occupation rectangles,
this step takes O(nlogn) time for all cells.

Finally, we partition the l-occupied regions into rectangles. The problem
of computing the translation that maximizes the number of occupied cells then
becomes the problem of finding the point contained in the largest number of
rectangles, i.e., finding the maximum clique in a rectangle intersection graph.
This problem can be solved in O(nlogn) time using plane sweep along with the
data structure of Section 2. Refer to Lee [9] for details of the plane sweep.

Theorem 2. Given n points S = {p1,...,pn} and an infinite grid G it is
possible to report a translation of G which minimizes or mazximizes the occupancy
of G in O(nlogn) time and O(n) space.

3.1.2 Optimizing k-Occupancy

Next we consider the problem of optimizing the k-occupancy. As before, the
algorithm for maximizing k-occupancy is easily translated into an algorithm for
minimizing k-occupancy. Therefore, we focus on the maximization problem.

We use the same general approach of computing, for each cell C', the k-
occupied set of C. By partitioning these sets into rectangles and then applying
the algorithm for maximum clique in a rectangle intersection graph we obtain
our result. However, the difficulty comes from the fact that the k-occupied set
of a cell has a richer combinatorial structure than its 1-occupied set.

To compute the k-occupied set of a cell C' having s occupation rectangles,
we partition the occupation rectangles of C' into four sets Sy, So, S3 and Sy,
depending on which of the four corners of the unit square they contain (see
Fig. 4). Rectangles that contain more than one corner of the unit square are
assigned arbitrarily to one of their possible sets.

For each set S; we then compute an arrangement A; that partitions the
unit square into k + 1 regions RY, ... ,Rf_l,RiZ]~C where all points in Ry are
contained in x occupation rectangles (see the top-right of Fig. 4). This is done
by a vertical line sweep over the rectangles in S; starting at the corner of the
unit square contained in all elements of S;. The sweep line status is maintained
by a balanced-binary tree and we construct the arrangement by keeping track
of the k-smallest elements in the tree. The only events occur when rectangles
terminate, at which point an element is removed from the tree, causing at most

10

k of the k 4+ 1-smallest elements to change rank. Each event can therefore be
handled in O(k + logs) time and the resulting arrangement has complexity
O(ks).

Each A; consists of k x-y monotone chains (sometimes calls staircases), where
the directions of monotonicity are different for each. Because the chains are
monotone, the intersection of any horizontal or vertical line segment with all
chains consists of at most 4k points and line segments. Since the chains consists
of a total of O(s) line segments, this implies that the total number of inter-
sections between all chains is O(sk), and these intersections can be computed
in O(sklogs) time using plane sweep [4]. This results in an arrangement A of
orthogonal line segments that has O(sk) faces.

For each face F' of A, we can examine the faces of Ay, A, A3 and A4 that
contain F'. Since each face F’ of A; is labelled as being contained in 0,...k — 1
or > k occupation rectangles of S;, we can determine whether the points in F
are contained in k or more occupation rectangles of C. Thus we can determine
whether for each face F' of A, whether or not F' is part of the k-occupied set.
This step can be performed in O(sklog s) time using point location or, if we are
a bit more careful, in O(sk) time by doing a depth-first traversal of the faces of
A.

Thus, for each cell C, we can find the k-occupied set of C' in O(sk) time,
where s is the number of occupation rectangles of C. As in the previous section,
once the the k-occupied sets have been computed for each cell, a plane sweep
over all sets yields an optimal translation of G in an additional O(knlogn) time.

Theorem 3. Given n points S = {p1,...,pn}, an integer 1 < k < n, and an
infinite grid G it is possible to report a translation of G which minimizes or
maximizes the k-occupancy of G in O(knlogn) time and O(kn) space.

3.1.3 Finding a Translation with k-Occupancy 0

We note that the problem of finding a translation with k-occupancy 0 is solvable
using the algorithm of the previous section. The translation with the minimum
k-occupancy is found and if that k-occupancy is 0 then the solution is found
otherwise none exists.

Theorem 4. Given n points S = {p1,...,pn}, an integer 1 < k < n, and an
infinite grid G it is possible to decide if there exists a translation of G such
that no cell of G is k-occupied and report such a translation if one exists in
O(knlogn) time and O(kn) space.

3.1.4 Optimizing &

To solve Problems 4 and 5, we can perform a “doubling search” on the value of
k. Initially, we guess k to be 1 and repeatedly double the value of k. For each
value of k we use Theorem 3 or Theorem 4 to test if the value of k£ has become
too large. If it has, we stop and perform binary search on the range (k/2, k) to
find the optimal value of k. The additional cost of this binary search is a log k
factor in the running time.

11

2
1
1
0
0
2 1
>3 2
rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr 1 2 D
1 2 0
0

Figure 4: The original set of occupation rectangles for C', the k-occupied set of
C and the four arrangements Ai,..., A4 for k = 3.

12

Theorem 5. Given n points S = {p1,...,pn} and an infinite grid G it is
possible to report the smallest integer k for which there exists a translation with
k-occupancy equal to 0 in O(knlognlogk) time and O(kn) space. Additionally,
given an arbitrary non-negative integer r, it is possible to report the largest
integer k for which there exists a translation with k-occupancy at least v in the
same time and space.

3.2 Placing a Finite Grid

Next we turn to the problem of placing an m, X m, grid G over the point set .S
so that the k-occupancy of G is optimized. This appears to be a very different
problem, since now all translations are not equivalent up to integer additions to
the x and y components. It should come as no surprise then that the grid size
m, X me, =m > 1 becomes a factor in the running time.

For each point p; € S, we transform p; into a unit square s; whose bottom
right corner is p;. Thus, if we place a grid square with its top-left corner inside of
s; then that square will be occupied. Next, we compute the region R contained
in k£ or more s;’s. This is achieved, as in Section 3.1.2, by overlaying an infinite
grid and calculating the k-occupancy region for each occupied cell. The region
R is simply the union of each of these disjoint k-occupancy regions. It follows
that if we place a unit square with its top-left corner in R, then that square is
k-occupied.

We then make m translated copies Ry, ..., R, of R, where R; is R translated
by the vector (—i mod me, |i/m.|). It follows that if we place the top-left corner
of a m, x m. grid G at a point that is contained in x of the R; then the number
of k-occupied cells of G is . Thus, we have reduced the problem of placing
G to a problem of finding a point contained in the largest number of regions
R;. Since each R; is a set of orthogonal polygons they can be decomposed
into rectangles thereby reducing the problem to maximum-clique in a rectangle
intersection graph.

In summary, we compute R in O(knlogn) time, partition R into rectangles

and create Ry, ..., R,,. This results in a set of rectangles of size O(mkn). We
then solve the maximum-clique problem in the resulting set of rectangles in time
O(mknlogmn). To reduce the space requirements we note that Ri,..., Ry,

need not be computed explicitly. Indeed, in the priority queue that implements
the plane sweep of the maximum clique algorithm, each edge of R need appear
only once at any given time. At all times during the sweep, an edge in the queue
represents each of the m, copies with the same y-coordinate. To initialize the
queue the left and upper most copy of each edge is inserted into the queue. When
an edge is swept over it generates the appropriate m. simultaneous events, one
for each grid column. After it has been swept the edge is translated downward
and reinserted into the queue to represent the next set of m. events. This
translation is performed only m, times for each edge thus providing the m
copies of each edge.

Theorem 6. Given n points S = {p1,...,pn}, an integer 1 < k < n, and a

13

finite grid G with m cells it is possible to report a translation of G with maximal
k-occupancy in O(mknlogmn) time and O(kn) space.

4 Conclusions

We have studied problems related to placing a regular square grid over a set of
points in the plane in order to optimize some function of the k-occupancy. For
small values of k£ most of our algorithms have near-linear running times.

To solve these problems we have introduced a new lazy data structure for
maintaining a point in the maximum-clique of an interval graph under insertions
and deletions of intervals. This data structure is fully dynamic as it doesn’t
require the interval endpoints to be known in advance.

The data structure is also rather general. Besides storing intervals, it could
be used to, e.g., store piecewise polynomial functions and return a value = that
maximizes or minimizes the sum of all the functions evaluated at . One could
imagine using such a data structure with plane-sweep to perform operations
like maintaining the minimum in sums of functions, or combining it with the
persistence paradigm [7] to get an efficient representation of sums of functions.

Open Problem 1. Find additional applications for our interval data structure.

Another obvious open problem is that of improving the running time of the
algorithm for Problem 6. In particular, it would be nice to produce an algorithm
which is output sensitive to the size of the k-occupied set.

Open Problem 2. Find an output sensitive algorithm which computes the
boundary of a k-occupied region.

References

[1] P. K. Agarwal, B. K. Bhattacharya, and S. Sen. Output-sensitive algo-
rithms for uniform partitions of points. In A. Aggarwal and C. P. Rangan,
editors, Proceedings of the 10th International Symposium on Algorithms
and Computation, ISAAC, volume 1741 of Lecture Notes in Computer Sci-
ence, pages 403-414. Springer, December 1999.

[2] T. Asano and T. Tokuyama. Algorithms for projecting points to give
the most uniform distribution with applications to hashing. Algorithmica,
9(6):572-590, June 1993.

[3] J. L. Bentley. Solutions to Klee’s rectangle problems. Technical report,
Carnegie-Mellon University, 1977.

[4] J. L. Bentley and T. A. Ottmann. Algorithms for reporting and counting
geometric intersections. IEFEE Transactions on Computers, C-28:643-647,
September 1979.

14

[5]

D. Comer and M. J. O’Donnell. Geometric problems with applications to
hasing. SIAM Journal on Computing, 11(2):217-226, May 1982.

T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introduction to Algo-
rithms. MIT Press, Cambridge, 1990.

J. R. Driscoll, N. Sarnak, D. D. Sleator, and R. E. Tarjan. Making data
structures persistent. Journal of Computer and System Sciences, 38(1):86—
124, February 1989.

J. Hershberger. Finding the upper envelope of n line segments in O(nlogn)
time. Information Processing Letters, 33(4):169-174, December 1989.

D. T. Lee. Maximum clique problem of rectangle graphs. In F. P. Preparata,
editor, Advances in Computing Research, pages 91-107. JAI Press, 1983.

M. J. van Kreveld and M. H. Overmars. Concatenable segment trees (ex-
tended abstract). In B. Monien and R. Cori, editors, Proceedings of the
6th Annual Symposium on Theoretical Aspects of Computer Science, vol-
ume 349 of Lecture Notes in Computer Science, pages 493-504. Springer,
February 1989.

15

	Introduction
	The Data Structure
	Query Operations
	Update Operations
	Rebalancing

	Applications
	Infinite Grids
	Optimizing 1-Occupancy
	Optimizing k-Occupancy
	Finding a Translation with k-Occupancy 0
	Optimizing k

	Placing a Finite Grid

	Conclusions

