Fast Approximations for Sums of Distances,
Clustering and the Fermat-Weber Problem '

Prosenjit Bose, Anil Maheshwari and Pat Morin

School of Computer Science, Carleton University, 1125 Colonel By Dr., Ottawa,
ON, CANADA, K18 5B6, {jit,maheshwa,morin}@scs.carleton.ca

Abstract

We describe two data structures that preprocess a set S of n points in R¢ (d con-
stant) so that the sum of Euclidean distances of points in S to a query point ¢
can be quickly approximated to within a factor of €. This preprocessing technique
has several applications in clustering and facility location. Using it, we derive an
O(nlogn) time deterministic and O(n) time randomized e-approximation algorithm
for the so called Fermat-Weber problem in any fixed dimension.

1 Introduction

Let S = {p1,...,pn} be a set of points in R?, with d constant. For a query
point g we define the weight of ¢q as

n

w(g) =Y d(g,p) , (1)

i=1

where d(z,y) denotes the Euclidean distance between = and y. This function
appears frequently as the objective function in facility location and clustering
problems [2,3,5,6,10,20].

Unfortunately, even with preprocessing, it appears that little can be done in
order to speed up the evaluation of w(g) for an arbitrary query point ¢, and
the only known result is the trivial one, namely to evaluate w(q) in ©(n) time
using (1) directly. In fact, in any realistic model of computation, it may be

1 This work was partly funded by the Natural Sciences and Engineering Research
Council of Canada.

Preprint submitted to Elsevier Science

impossible to evaluate w(q) exactly, since it contains square roots that can be
irrational numbers [1].

A famous problem related to the function w is the Fermat-Weber problem
[4] which asks for the point p* that minimizes (1). Currently, no exact solu-
tion to the Fermat-Weber problem is known, even in the real RAM model of
computation. Indeed, Bajaj [1] shows that even for 5 points, the coordinates
of p* may not be representable even if we allow radicals. In particular, it is
impossible to construct an optimal solution by means of ruler and compass.

A review of the literature shows that very little has (or can be) done to get
around the numerical difficulties associated with the function w(q). In fact,
in many cases, the function w'(q) = 7 ;(d(g,p;))? is used simply because
it is more convenient and can be evaluated in constant time after a linear
amount of preprocessing. It has been pointed out that the use of Euclidean
distance is statistically more robust than squared Euclidean distance [11], and
is preferable in many geographic situations [19,7]. These observations motivate
research into approximations of w(q) that can be evaluated more efficiently.

In this paper we show how to preprocess S so that we can quickly evaluate an
approximation to w(q). More specifically, we describe two data structures for
computing approximations to w(q). The first data structure is based on range
trees and evaluates a function wy(¢) that can be evaluated in O(klog® ' n)
time after preprocessing requiring O(knlog? ' n) time and space. The value
of wi(q) obeys the inequalities

w(g) < wk(g) < (1+¢)-wlq) , (2)

where € is a constant that decreases as k increases.

The second data structure is based on quadtrees and evaluates a function we(q)
in O(klogn) time after preprocessing requiring O(knlogn) time and using
O(n) space. Again, k is a function of € and d and w.(q) satisfies (1 — €)w(q) <
we(g) < (1+¢)w(q).

The running time and storage requirements of the quadtree data structure are
asymptotically better than those of the range-tree based data structure which
raises the question “why talk about it?” The reason we describe both data
structures is that the range tree data structure has three advantages. The first
is that the constants in the big-Oh notation are significantly lower, especially
in the query time. The second advantage is that it generalizes immediately
to the weighted case in which each point is assigned a weight w; and the
objective function is w(q) = >I, w;d(¢, p;). The third advantage is that it
also generalizes immediately to the dynamic case in which we insert and delete
points in the set S.

We also study applications of these preprocessing techniques to clustering and
facility location. One of these applications is an O(nlogn) time deterministic
and O(n) time randomized e-approximation algorithm for the Weber-Fermat
problem in any fixed dimension d.

The remainder of this paper is organized as follows. Section 2 reviews the data
structuring techniques used by our preprocessing and querying algorithms.
Section 3 describes our range tree based data structure. Section 4 describes
the quadtree based data structure. Section 5 presents applications of our tech-
niques to clustering and facility location problems. Finally, Section 6 summa-
rizes and concludes with directions for continuing work.

2 Data Structures

In this section we review the main data structures used in our preprocessing
and query algorithms. Throughout this section, and in the remainder of the
paper we will use the notation z[i] for the ith coordinate of a point z.

Let x1,...,x, be a sequence of real numbers in increasing order. A segment
tree on x1,...,x, is a complete binary search tree whose leaves correspond to
the intervals

[-Tb xZ)v [-/'C27 $3): HRI ['Tn—lv xn)v ['/'Cn; .an]

and for which an internal node v corresponds to the interval z;, z; spanned by
the subtree rooted at v.

The range tree is defined recursively as follows: A range tree T' of dimension
1 is a balanced binary search tree. A range tree of dimension d consists of a
primary segment tree 7" on the set pi[1],. .., p,[1]. Each node v of 7" contains
a pointer to a d — 1 dimensional range tree that contains all points p; such
that p;[1] is contained in the interval of v.

We say that a point p; dominates a point p;, denoted p; > p; if and only if
pilk] > p,[k] for all 1 < k < d. Range trees can be used to answer dominance
queries! of the form: Report the set of points S’ C S that dominate the query
point q. Indeed, using standard data structuring techniques, range trees can
be used to compute any associative function on the points of S’. We call such
queries generalized dominance counting queries. In our particular case, we use
range trees to store sums of coordinates of points in S’.

! These are sometimes called d sided range queries.

The performance of range trees is described by the following theorems [16].
In the first case, fractional-cascading is used to reduce the running time by a
logarithmic factor.

Theorem 1 For a static set S of n points in R¢, a d-dimensional range tree
can be constructed in O(nlog® ' n) time and space that answers generalized
dominance counting queries in O(log® ' n) time.

Theorem 2 The d dimensional range tree supports insertion, deletion and
generalized dominance counting queries in O(log? n) time and requires O(nlog®* n)
space, where n s the marimum number of points stored in the range tree at

any given time.

The second data structure we use is a quadiree [18]. Let S = {p1,...,p,} be
a set of n points in R? contained in a hypercube C of side length . A quad
tree T is constructed recursively as follows: The root of 7" corresponds to the
hypercube C. The root has 2¢ children corresponding to the 2¢ subcubes of C
of side length /2. The leaves of T" are nodes with side length le/n. Associated
with each leaf v of T is a list of the points of S contained in the hypercube
spanned by v. Associated with each internal node is the number of points
contained in the hypercubes spanned by the children of v.

From the above definition, it follows that 7" has ©(n?) nodes. However, a com-
pressed quadtree reduces this size to O(n) by removing nodes not containing
any points of S and eliminating nodes having only one child. The following
theorem describes the performance of the compressed quadtree [18]:

Theorem 3 For a static set S of n points in R, a d-dimensional compressed
quadtree can be constructed in O(nlogn) time and O(n) space.

3 A Range Tree Based Data Structure

In this section we describe our range tree based data structure for approxi-
mating the sum w(q). We begin by defining a distance function w(q) that
approximates w(q) and then show how wg(g) can be evaluated exactly using
range trees.

8.1 The dy Distance Function

A simplicial cone in R? is the intersection of d (open or closed, as convenient)
half-spaces, each of whose supporting planes contain the origin, O. Note that
for any set of d points on the unit hypersphere, there is a unique minimal

Fig. 1. The definition of (a) ¢;(z) and (b) dg(z,y) (shown in bold).

simplicial cone ¢ that contains these points. This set of d points defines a
set of d rays, where each ray originates at the origin and contains one of the
points. We call these the azes of c. A simplicial cone ¢ has diameter bounded
by 0 if for any two points x and y in ¢, ZzOy < 0.

Let C ={ecy,...,cx} be a set of simplicial cones with diameter bounded by 6
and that form a partition of R?. It has been shown by Yao [21] that such sets
of cones exist, and that the number of cones, k, is a function only of d and 6.

For example, in the plane C could be the set of cones defined by directions
{0,27/k, 47 [k, 87 [k, ..., 2m(k — 1)/k}.

For a point z in R?, we use the notation ||z|| to denote the sum ¥0_; z[5]. We
use the notation ¢;(z) to denote x represented in the coordinate system whose
axes are parallel to the axes of ¢;. See Fig. 1.a for an illustration.

We are now ready to define our distance function: The k-oriented distance
from the origin O to a point z contained in ¢;, denoted dx(O,), is ||t;(z)]],
i.e., the k-oriented distance from O to x is the length of the shortest path from
O to x travelling only in directions parallel to the axes of ¢;. The k-oriented
distance between two points x and y is obtained by translating x to the origin,
ie., dg(z,y) = di(O,y — z). See Fig. 1.b for an illustration.

The following lemma follows easily from trigonometry [17].

Lemma 4 Foralla,b € R? and any fized d, d(a,b) < di(a,b) < (1+¢€)-d(a,b),
where € is a positive constant that decreases as k increases.

In the important special case of R?, the exact bound is d(a,b) < dg(a,b) <
1/ cos(6/2)d(a, b). For larger values d, we do note have an explicit bound on
the value of k although k is bounded above by (c;/¢)*¢ for some constants c;
and Co.

The set of points y such that dg(z,y) < 1 form a convex polytope whose
vertices lie on the unit circle centered at z, i.e., under the d; distance function,
a “unit disk” is a convex polytope inscribed in the standard (Euclidean) unit

circle. It is also worth noting that the dj distance function is not necessarily
symmetric.

3.2 Fast Evaluation of wi(q)

Next we show how to preprocess the set S so that for any query point g we
can evaluate the sum

n

wi(q) = de(q,pz‘) 3)

i=1
in O(klog? * n) time. By Lemma 4 this gives an approximation of w(q) that
is accurate to within a factor of e.

Let c; be c; translated so that it’s apex lies at ¢. It now becomes convenient
to rewrite (3):

=S) I - (4)

j=1i=1

We adopt Kenneth Iverson’s notation where [X] takes on the value 1 if the
predicate X is true and 0 otherwise [12]. From this reformulation, we can con-
centrate on evaluating the contribution of the points in each cone individually.

At this point, we make two key observations. The first is that a point p; is in
c; if and only if ¢;(q) < t;(p;), i.e., p; dominates ¢ in the coordinate system of
¢;- The second is that for a point p; in c;-,

di(q,p) = dr(O,p: — @) = lIt;(pi —)l = lIt;(a) |l = lI5(a)]] -

Using these two observations, we can rewrite (4) as

0= 3 dila) - [5(0) < 640 5)
=§§;(||tj(pi>|| (@) - 15(@) < t(po)

—Z (Xn: 125)l - [t5(q) < ()] = NIt; (@] - {pi = £5(q) < tj(pz-)}\>(7)

Next, note that

S 5@l 5(0) < 400) ®)

can be expressed as a dominance counting query that asks for the number of
points in {¢;(p1),...,t;(p,)} that dominate ¢;(¢). Similarly,

15 (DI - {pe = t5(q) < t;(p)} (9)

is the number of points in {¢;(p1),...,t;(p,)} that dominate ¢ times ||g||.
Therefore, by storing {¢;(p1),...,t;(p,)} in a range tree, for each 1 < j < k
we can evaluate (7) in O(klog® ' n) time.

To summarize, our preprocessing is as follows:
1: for 1 <j<kdo
2: Construct a range tree T; containing {t;(p1),...,%;(pn)}
3: end for

The query algorithm is as follows:
1: s+ 0
2: for1 <j<kdo
3: Use T} to compute s < s+ (8) — (9)
4: end for

The correctness of this algorithm follows from the above discussion, while the
running time follows from the running times of range tree operations.

Theorem 5 Given a set S of n points in R?, S can be preprocessed in O (kn log?™* n)

time and space so that for any query point q, wi(q) can be evaluated in
O(klog®'n) time.

In a dynamic setting, we obtain the following result.

Theorem 6 There exists a dynamic data structure supporting, in O(klog®n)
time and O(knlog?'n) space, insertion, deletion, and queries of the form:
Compute wi(q) for an arbitrary query point q.

4 A Quadtree Based Data Structure

In this section, we show how a similar result can be obtained using quadtrees.
Suppose that the smallest axis-aligned hypercube containing S has side length

[and that we have computed a compressed quadtree T on S.

Consider a node v of 1" corresponding to a hypercube C, of side-length [,.
Let ¢, denote the center of C,. For any point in C,, d(z,¢,) < l,v/d/2.
Therefore, for any point ¢ € R?,

d(g, ¢,) — l,Vd/2 < d(q,z) < d(q,c,) + l,Vd/2

Therefore, for any point ¢ such that d(q, c,) > l,/€ + 1,v/d/2 we have

(1- e\/g/Q)d(q,x) <d(g,c,) < (1+ ex/&/?)d(q,x)) (10)

Therefore, the point ¢, is a good substitute for any point in C,. Let card(v)
denote the number of points of S contained in C,, and let children(v) denote
the children of v. The following algorithm, applied to the root of 7', gives a
method of computing the approximate value of w(q).

CoMPUTE-SuM(q, v)

1: if v is a leaf or d(g, ¢,) > l,/€ + [,v/d/2 then
return card(v) - d(q, ¢,)
else
s+0
for v’ € children(v) do
s < s+COMPUTE-SUM(q, v')
end for

return s
end if

Lemma 7 The above algorithm, when applied to the root of T runs in O((1/e+
Vd/2)%logn) time and outputs a value w(q) satisfying (1 — ev/d)w(q) <

we(q) < (14 evd)w(g).

Proof. First we prove the upper and lower bounds on w(q). Let v; denote the
unique node of T for which line 2 of the algorithm was executed and which
contains the point p;. Partition the point set .S into two sets S; and S,. If v;
is a leaf, then we assign p; to S, otherwise we assign v; to Ss.

We proceed by bounding the error in the computation of the value s. The
leaves of T are associated with hypercubes of side length le/n. Therefore,
since there are at most n elements of S, the error introduced by elements
of S; is at most lev/d/2. Furthermore, (10) implies that an element p; of S,
contributes at most (ev/d/2)d(q,p;) to the error. Therefore,

w(g) = id(q,pi) = s+ (eVd/2) (i d(q,p;) + l) C s+ (eVd)w(g)

i=1

(The subset relationship follows from the observation that w(q) > [.)

To prove the bound on the running time, it is sufficient to count the number of
times that line 5 is executed. Therefore, we count how many nodes of T" at each
level i do not satisfy the conditions of line 1. Let f; = [/(€2°) +1/(2"*'V/d) and
let g; = f; + l\/a/ 2i*1 The quantity we are trying to count is the number of
nodes of T" at level 7 whose hypercubes have centers inside the hypersphere S
of radius f; centered at ¢. This is no more than the number of non-intersecting
hypercubes of side length [/2° that we can pack inside a hypersphere of radius
g;- Since a hypersphere of radius g; has volume less than (2g;)¢, this is no
more than (2/(12¢;))* = 1/e +1/(2Vd) + Vd/2 € O((1/e + Vd)?%). Since T
has O(logn) levels, this completes the proof. O

Combined with the existing results on quadtree construction, we obtain the
following theorem.

Theorem 8 Given a set S of n points in RY, S can be preprocessed in
O((1/e*)nlogn) time and O(n/e?) space so that for any query point q, w(q)
can be evaluated in O((1/e ++/d/2)*logn) time. The value of w.(q) satisfies

(1 - evVd)w(g) < we(g) < (1+eVd)w(g).

5 Applications

In this section we discuss some applications of our preprocessing technique.
In the following P(n) denotes the preprocessing time and @(n) denotes the
query time of an approximate data structure for evaluating w(g). In the case
of range trees, P(n) = O(knlog® ' n) and Q(n) = O(klog® 'n) while for
quadtrees P(n) = O(knlogn) and Q(n) = O(klogn).

5.1 k-Medoids Clustering

Clustering involves partitioning a set of points into “similar” groups. The
definition of similarity depends on the clustering method being used. The
dissimilarity measure used in the k-medoids clustering method [11,14] is

g(S):%-min{W(pi) 1<i<n} .

No method is known to compute g(5) exactly in subquadratic time. However,
it is possible to approximate the sum in O(P(n)+nQ(n)) time by first building
an approximate data structure for evaluating w(q) and querying that data

structure for each of the points in S. Of course, this approximation obeys the
inequalities (1 — €)g(S) < g.(S) < (1 4 €)g(95).

5.2 The Weber Problem

Let S = {pi,...,pn} be a set of points in RY. The Weber problem? is a
facility location problem that asks us to find the point p that minimizes w(p).
Currently, no exact solution to this problem (even in the real RAM model of
computation) is known. Under the L; (Manhattan) metric, the Weber problem
can be solved in linear time by finding a point whose coordinates are the
median in each dimension. Under the Euclidean metric, Chandrasekaran and

Tamir [4] give a polynomial time approximation scheme based on the ellipsoid
method (c.f., [15]).

Given the apparent difficulty in solving the Weber problem exactly, it seems
reasonable to try and approximate the solution by finding the point p’ that
minimizes wg(p'). Towards this end, we give a simple and efficient prune-and-
search algorithm that works in O(P(n)+Q(n)logn) time when the dimension
d is fixed.

Our approximation algorithm solves the Weber problem exactly under the
wy, distance function. To understand the algorithm, one should consider the
surface z = wi(p) in R4*L. It follows from the definition of wy that this surface
is convex away from the origin (i.e, any local minimum is a global minimum)
and piecewise linear.

Consider the set of simplicial cones used in our data structure for evaluating
wi. These cones give rise to a set of hyperplanes in the following way: Each cone
c is the intersection of d hyperplanes. Let P be the set of all such hyperplanes.
Consider the arrangement of hyperplanes A obtained by adding for each point
p; € S a copy of each hyperplane in P translated so that it contains p;. Then
it should be clear that each cell of A is a linear piece of the surface z = w(p).
It follows then that w; is minimized at a vertex of A.

In order to find the lowest point on the surface z = wg(p) we use the fol-
lowing pruning algorithm. Initially, we have k sets Hy, ..., H; | of parallel
hyperplanes corresponding to the hyperplanes in the arrangement A. The al-
gorithm proceeds in rounds. During round ¢ we take the median hyperplane
h € H;moar that splits the hyperplanes in H; 04 % into two sets of roughly
equal size. Note that h partitions R? into two half spaces h; and hy, one (or
both) of which contains a minimum of wy. We then determine which of A,
or hy contains a minimum of wy (hg, say), at which point we can discard all

2 Also called the Fermat-Weber problem [8,13].

10

zs3

T

A

Fig. 2. Finding the minimum of wy, restricted to [.

the hyperplanes h € H;,0qx that are contained in h;. It is clear that this
process terminates after O(klogn) rounds. In the following, we show how to
implement each round in O(u + Q(n) logu) time, where u is the size of the set
U{H1,..., H}.

Each round consists of two phases. In the first phase, we find a point p; on
h that minimizes wy. In the second phase, we use p, to determine whether a
minimum lies in h; or hs.

To implement the first phase, we first note that the problem of minimizing wy
constrained to h is a d — 1 dimensional instance of our minimization problem.
Thus, we can recurse on the dimension. In the 1 dimensional case, we have a
line [, and we want to find the point p; on [that minimizes wg. Since z = wy
is piecewise linear, p; lies on an intersection of [with some other hyperplane
in H =U{H,,...,H}. Therefore, we compute all the intersections of [with
hyperplanes in H. We then find the median intersection point x; and the
two intersection points zo and z3 that are adjacent to z; on [(see Fig. 2).
By evaluating wg(z1), wg(z2) and wi(x3) we can determine whether p; comes
before, after, or is x; itself.

Therefore, if we have u candidate points, then half of these can be eliminated
in O(u 4+ Q(n)) time. The cost of finding p; is then given by the recurrence
T(u) =T(u/2) + O(u+ Q(n)), which solves to O(u + @(n)logu). Therefore,
the overall cost of computing the point p, on h that minimizes wy is given by
the recurrence

O(u+ Q(n)logu) ifd=1
T(d—1,n)+ O(u) otherwise,

T(d,n) =

which solves to O(u + Q(n)logu) for any fixed d.

Next we show how, given a point p, on h that minimizes wy, to decide whether
there is a global minimum of wy, in the halfspace hq or hy or on h itself. Suppose
that ho contains a minimum of wy. Then p, is a point in A; that minimizes
wg. Thus, if we can find a point pj in hg, such that wg(p}) < wi(ps) then
it must be that a minimum of w;, is contained in hy. Similar statements also

11

hold for A;.

To find the point p},, we consider the two opposite rays r; and ro originating
at pp, orthogonal to h and contained in hA; and hg, respectively. By examining
each hyperplane in H, we find the first hyperplane h,, € H and h,, € H
intersected by 71, respectively, ro. Let pi, respectively po, be the intersection
of h,, and rq, respectively h,, and ry. There are then four cases which can be
easily verified:

Case 1: wi(p1) < wi(pn) < wi(p2). In this case, p; = pj, is witness to the fact
that a minimum of wy, is contained in h;.

Case 2: wi(p1) > wi(pn) > Wi(p2). In this case, po = pj, is witness to the fact
that a minimum of w;, is contained in As.

Case 3: wi(p1) < wi(pn) and wg(pp) > wg(p2). This case can not occur,
because then p, would not be a minimum of wy, in h; or hs.

Case 4: wi(p1) > wWi(pn) and wg(pr) < Wi(p2)- In this case, p, is a minimum
of wy, since it is a minimum of wy in h; and a minimum of wy in hs,.

Thus, determining whether to discard h; or hy requires computing all the
intersections of hyperplanes in H with I’ and two calls to our data structure
for evaluating wi. The computational cost of determining whether to discard
hy or hy is therefore O(u + Q(n))

In summary, our algorithm consists of O(klogn) rounds. The cost of the kith
round is O(kn/2¢ + Q(n) log(kn/2')). Therefore, the time to compute a point
p' that minimizes wy is O(P(n)+k(kn+Q(n)logn)) = O(P(n)). Compared to
the point p that minimizes w(p), p’ satisfies (1—¢)w(p) < w(p') < (1+¢€)w(p).

Indyk [9] has given a randomized data structure for testing whether (1 —
e)w(p) > w(q) for any two query points p and ¢. The algorithm uses lin-
ear preprocessing time, has polylogarithmic query time and answers correctly
with high probability. When combined with the prune-and-search technique
described above, Indyk’s data structure yields a linear-time algorithm for the
Fermat-Weber problem that delivers an € approximation with high probability.

Theorem 9 Given a set S of n points in R?, in deterministic O(knlogn)
time and O(kn) space a point p' can be computed such that the value of w(p')
satisfies (1 — €)w(p) < w(p') < (1 4 €)w(p) where the point p minimizes the
function w(p), and k is a function of €. The point p' can be computed with
high probability in expected O(n) time and space.

12

Fig. 3. The set of edges not discarded form a convex chain on the boundary of P.

5.3 The Constrained Facility Location (Weber) Problem

Another version of the Weber problem is the so called constrained facility
location problem which asks us to find the point p which minimizes w(g) and
is contained in a constraining polyhedron P.

This problem can be solved as follows: First compute the unconstrained We-
ber center using the algorithm from the previous section. If this solution is
contained in P then it is also the constrained Weber center and we are done.
Otherwise, consider each f face of P in turn, and compute the solution con-
strained to the face f using essentially the same algorithm as in the previous
section and report the best solution over all faces. The correctness of this algo-
rithm follows from convexity. The running time is O(P(n)+m(n+Q(n) logn))
where m is the total complexity of all faces of P.

In the special case d = 2 and P is convex, we can do better. As before, we
begin by computing the unconstrained Weber center p*. If p* is contained in P
then we are done. Otherwise, we consider each edge (u,v) of P in turn. If the
triangle (u, v, p*) intersects the interior of P then we discard edge (u,v) from
consideration. The set of edges that we do not discard form a convex chain C
on the boundary of P (see Fig. 3). As in the previous section, for a point p on
C we can determine whether the constrained Weber center comes before, after
or is p by shooting two rays. This test takes in O(n + Q(n)) time. Using this
test in conjunction with binary search gives an O(P(n)+m-+(n+Q(n))logm)
time algorithm.

5.4 Constrained Obnozxious Facility Location

Let S = {p1,...,pn} be a set of points in R and let P be a polyhedron in R?
with m vertices. The constrained obnozious facility location problem is that of
finding a point p in P that maximizes w(p).

Since w is concave, it follows that p lies on a vertex of the convex hull of
P. Therefore, a straightforward way to solve the constrained obnoxious fa-
cility location problem is to evaluate w(v) at every vertex v of P and take

13

the maximum. The running time of this algorithm is clearly O(nm). Under
the Euclidean distance measure, no better algorithm is known. Under the L
metric, it is not very difficult to derive an O(nlogn + mlogn) time algorithm
for this problem.

We note simply that by using the preprocessing technique described here to
approximately evaluate w(v) at each vertex v of P, it is possible to find, in
O(P(n)+mQ(n)) time, a point p’ such that (1—e)w(p') < w(p) < (1+¢)w(p).

6 Conclusions

In this paper we have given algorithms for preprocessing a set of points so
that an approximation to the objective function w can be computed quickly.
Using this approximation we have shown how to approximately solve some
fundamental problems in clustering and facility location for which no exact
subquadratic time algorithms are currently known.

Another way of using the approximation algorithm would be as a filter. In cases
where the number of potential locations is finite (as in the obnoxious facility
location problem), it may be efficient to use our preprocessing algorithm to
compute an exact solution. Indeed, by approximately evaluating w(q) it is
possible to determine a (possibly empty) set of locations that are surely non-
optimal. By increasing the quality of the approximation until this set contains
all but one element the optimal solution is found. The resulting algorithm
has a “precision-sensitive” running time and has the advantage that it can be
interrupted at any time and yield an approximate solution with tight bounds
on its quality.

Acknowledgement

The authors would like to thank Piotr Indyk for bringing his paper [9] to our
attention and an anonymous referee for suggesting the quadtree based data
structure.

References

[1] C. Bajaj. The algebraic degree of geometric optimization problems. Discrete
and Computational Geometry, 3:177-191, 1988.

14

[2] S. Bespamyatnikh, K. Kedem, and M. Segal. Optimal facility location under
various distance functions. In Proceedings of the 6th International Workshop
on Algorithms and Data Structures (WADS’99), pages 318-329, 1999.

[3] J. Brimberg and G. O. Wesolowsky. The rectilinear distance minsum problem
with minimum distance constraints. Location Science, 3(3):203-215, 1995.

[4] R. Chandrasekaran and A. Tamir. Algebraic optimization: The Fermat-Weber
location problem. Mathematical Programming, 46(2):219-224, 1990.

[6] R. L. Church and R. S. Garfinkel. Locating an obnoxious facility on a network.
Transportation Science, 12(2):107-119, 1978.

[6] H. Elgindy and M. Keil. Efficient algorithms for the capacitated 1-median
problem. ORSA Journal of Computers, 4:418-424, 1982.

[7] Estivill-Castro and Houle. Robust distance-based clustering with applications
to spatial data mining. Algorithmica, 30(2):216-242, 2001.

[8] R. L. Francis. Facility Layout and Location: An Analytical Approach. Prentice-
Hall, 1974.

[9] P.Indyk. Sublinear time algorithms for metric space problems. In Proceedings of
the 81st ACM Symposium on Theory of Computing (STOC’99), pages 428-434,
1999.

[10] M. J. Katz, K. Kedem, and M. Segal. Improved algorithms for placing
undesirable facilities. In Abstracts for the Eleventh Canadian Conference on
Computational Geometry (CCCG’99), pages 6567, 1999. http://www.cs.ubc.
ca/conferences/CCCG/elec_proc/elecproc.html.

[11] L. Kaufman and P. J. Rousseeuw. Finding Groups in Data: An Introduction to
Cluster Analysis. John Wiley & Sons, 1990.

[12] D. E. Knuth. Two notes on notation. American Mathematical Monthly, 99:403—
422, 1992.

[13] Z. A. Melzak. Companion to Concrete Mathematics; Mathematical Techniques
and Various Applications. John Wiley & Sons, 1973.

[14] R. T. Ng and J. Han. Efficient and effective clustering methods for spatial
data mining. In Proceedings of the 20th Conference on Very Large Databases
(VLDB), pages 144-155, 1994.

[15] C. H. Papadimitriou and M. Yannakakis. = Combinatorial Optimization:
Algorithms and Complezity. Prentice-Hall, 1982.

[16] Franco P. Preparata and Michael Ian Shamos. Computational Geometry.
Springer-Verlag, 1985.

[17] J. Ruppert and R. Seidel. Approximating the d-dimensional complete Euclidean
graph. In Proceedings of the Third Canadian Conference on Computational
Geometry (CCCG’91), pages 207-210, 1991.

15

[18] H. Samet. The Design and Analysis of Spatial Data Structures. Addison-Wesley,
1990.

[19] C. Watson-Gandy. A note on the centre of gravity in depot location.
Management Science, 18:B478-481, 1972.

[20] R. Webster and M. A. Oliver. Statistical Methods in Land and Resource Survey.
Oxford University Press, 1990.

[21] A. C-C. Yao. On constructing minimum spanning trees in k-dimensional spaces
and related problems. SIAM Journal on Computing, 11(4):721-736, 1982.

16

