
PUTTING YOUR DICTIONARY ON A DIET

Pat Morin

School of Computer Science, Carleton University

morin@cs.carleton.ca

ABSTRACT. We show that any comparison-based dictionary data structure that requires cn memory in

addition to the storage required for the data elements can be transformed into a dictionary that requires

only εn additional memory, for any ε > 0. This transformation does not increase the running times of

algorithms for searching, inserting and deleting, except by a small constant factor that is independent of

ε and an additive term of O(1/ε) or O(1/ε2) depending on the implementation used.

Keywords: Data structures, algorithms, space efficiency

1 Introduction

A dictionary is an abstract data type that stores a set of elements from some total order (X,<). A

dictionary supports insertions and deletions of elements inX and searches of the form: Given an element

x ∈ X, report the smallest value y currently stored in the dictionary that is larger than X, or nil if no

such value exists.

Dictionaries are a fundamental data type and many data structures that implement dictionary

operations have been proposed, each having its own advantages and disadvantages. Issues include

complexity of implementation, memory overhead, constants involved in running times, worst-case versus

expected versus amortized performance guarantees, and so on. Many dictionary implementations are

also special because they have certain properties such as the working-set property [8, 12], the queueish

property [9], the unified property [8, 12], the ability to insert and delete in constant time [7], and the

(static or dynamic) finger property [1, 3, 4, 6, 7].

These special properties are a large part of the reason that so many dictionary implementations

exist. Many algorithmic applications require dictionaries that have some of these properties to ensure

the bounds on their running times or storage requirements. Thus, it is not always possible to substitute

one dictionary implementation for another.

1

One particular aspect of dictionary implementations that has received much attention is the

issue of memory overhead. Memory overhead is any storage used by the data structure beyond what is

actually required to store the data elements. Several implementations of dictionaries, including splay

trees [12], skiplists [10], scapegoat trees [5], and variants of treaps [1] have been proposed that reduce

the extra storage to 2 pointers per data item. In fact, with an increase in search cost, skiplists can reduce

the overhead to 1 + ε pointers per item.

Much research effort has gone into these attempts to reduce the memory overhead of dictionary

data structures. For example, in a recent paper, Blelloch et al [2] describe a fairly intricate data structure

of size O(log n) called a hand that sits on top of a degree-balanced search tree (e.g., an (a, b)-tree [7]) so

that it supports efficient finger searches. However, it has long been known that degree-balanced search

trees easily support efficient finger searches if we augment each node with three pointers [3]. Thus, the

main contribution of the hand is to eliminate these three pointers per node.

In this paper, we consider the problem of implementing dictionaries that use only εn additional

storage, for any ε > 0. One way to achieve this is with a (b, 2b)-tree [7]. If implemented carefully,

such a tree uses only O(1/b) pointers per item. However, this solution is somewhat unsatisfactory since,

although a (b, 2b)-tree can be augmented with a hand so that it supports finger searches, it nevertheless

lacks some of the other properties mentioned above.

In this paper we point out a trick that can be used to make any pointer-based dictionary data

structure that uses cn additional storage, for any constant c, into an equivalent data structure that uses

εn + O(1) additional storage, for any ε > 0. By applying this simple trick, it is possible to use any

dictionary data structure (and its properties) that is required by the underlying application without

worrying about the memory overhead.

The trick we use is quite simple, and is similar to the idea used in degree-balanced search trees

[7]. Each node contains at least a elements and at most b elements for appropriately chosen a and b.

However, unlike degree-balanced search trees, we are able to maintain this property under insertions

and deletions without causing changes that cascade throughout the data structure. This trick does not

increase the running times of algorithms for searching, inserting and deleting, except by a small constant

factor that is independent of ε and an additive term of O(1/ε) or O(1/ε2) depending on which of our

two implementations are used.

The remainder of the paper is organized as follows. In Section 2, we introduce fat items and

show how they reduce the memory overhead of any comparison-based dictionary data structure. In

Section 3 we give an alternative implementation of fat items that increases the additive constant while

decreasing the multiplicative constant. Finally, in Section 4 we summarize and conclude with some final

remarks.

2

2 Slimming Down with Fat Items

For simplicity, in the following, we assume that our dictionary never contains fewer than b elements

(b2 in the subsequent section). This is not a restrictive assumption, since we can achieve any memory

overhead ε > 0 with a value of b = O(1/ε). Our approach is to group dictionary items together into

fat items, and use any dictionary data structure (skiplist, 2-3 tree, red-black tree, etc) to store these fat

items. To help reduce confusion, we will refer the data structure we are describing as “the dictionary”

and the data structure we are using as “the data structure.” Similarly, we will use the term fat items and

elements to refer to groups of elements of X and individual elements of X, respectively.

A fat item f is a data structure that contains two pointers pred(f) and succ(f) that point to other

fat items, a pointer to an array elem(f) that contains anywhere between b and 2b elements of X, and an

integer size(f) that tells the number of elements in elem(f). The pred and succ fields are used to link

all fat items together into a doubly-linked list. The elements of elem(f) are always sorted in increasing

order, and the elements of elem(f) are all less than the elements of elem(g) if f appears before g in the

doubly-linked list. In this way, the list of fat items gives the elements of the dictionary in sorted order.

Note that comparing two fat items is a constant time operation, since to test if f < g we compare

the last element of elem(f) to the first element of elem(g). Similarly, given an element x of our total

order we can test if x < f , respectively f < x, by comparing x with the first, respectively last, element

in elem(f). Therefore, to reduce the storage requirements of a dictionary, we make a data structure

(skiplist, splay tree, binary search tree, etc.) on a set of fat items whose elem arrays contain all the

elements in our dictionary.

Searching. If we search for some element x in the data structure, we find the fat item f such that

elem(f) contains the smallest key greater than or equal to x. An additional search in elem(f) finds the

actual element we are looking for at a cost of O(b), or O(log b) if we use binary search. If the data

structure takes S(n) time to perform a search on a set of n keys, then the dictionary takes S′(n) =

O(S(n/b) + log b) time to perform the search.

Insertion. Assume we are given a pointer to the dictionary node containing the fat item f we would

find if we searched for x. To insert x, we proceed as follows. If elem(f) contains fewer than 2b elements

then we simply reallocate elem(f) to increase its size by 1 and add x to elem(f). Otherwise (elem(f)

contains 2b items), we split elem(f) into two fat items, one that contains b elements and one that contains

b + 1 elements and insert the newly created fat item into our data structure. Therefore, if the data

structure takes I(n) time to perform an insertion on a set of n elements then insertion in the dictionary

takes I ′(n) = O(I(n/b) + b) time.

3

Deletion. To delete an element x from the dictionary, we assume we are given a pointer to the dic-

tionary node containing the fat item f such that elem(f) contains x. If elem(f) has size greater than

b, then we simply reallocate elem(f) to decrease its size by 1 and exclude x. Otherwise (elem(f) has

size b), we examine a fat item g that is a neighbour of f in the linked list. If elem(g) contains more

than b elements then we take the first or last element in elem(g) (depending on whether g = succ(f) or

g = pred(f)) and use it to replace x in g. Otherwise (elem(f) and elem(g) both have size b), we merge f

and g into a single fat node and delete one of them from the data structure. If D(n) is the time it takes

to delete an element x from a data structure of size n, then deletion in the modified data structure takes

D′(n) = O(D(n/b) + b) time.

Memory Overhead. A data structure containing m fat items contains at least n = bm elements of X.

Each fat item has a constant amount of overhead, and the data structure has an overhead of cm for some

constant c, so the overhead is O(n/b).

Theorem 1. Given a comparison-based dictionary data structure that requires S(n), I(n), and D(n) time

to search, insert, and delete (respectively) an item from a set of n items and that has a memory overhead of

cn for some constant c, we can construct a dictionary data structure that requires S′(n) = O(S(nb) + log b),

I ′(n) = O(I(nb) + b), and D′(n) = O(D(nb) + b) time to search, insert, and delete (respectively) and that

has a memory overhead of O(nb).

3 Less Memory Management and Less Searches

In the implementation described in the previous section, each insertion and deletion results in one or

two small arrays being resized. In some systems, all this allocating and freeing of memory can become

expensive (this is one of the main drawbacks of pointer-based data structures). To avoid this, we can use

an alternative design in which the elem arrays of fat items are all of size b + 1 and contain somewhere

between b−1 and b+1 items, so that at most two array spaces may be wasted in each fat item. It follows

immediately that this scheme, like the previous one, creates a dictionary with a memory overhead of

O(n/b).

Insertion. To insert the item x into the fat item f , we consider a set of b consecutive fat items, one of

which is f . If one of these fat items has an elem array containing fewer than b + 1 elements of X then

we can insert x by redistributing the elements across the b fat items. Otherwise (all b fat items hold b+ 1

elements of X), we can create a new fat item and redistribute the b2 + b elements of X across the b+ 1

fat items so that each fat item contains b elements. Once this is done, one of the fat items has room to

insert x.

4

Deletion. Deletion of the item x from the fat item f is similar. If one of the b consecutive fat items

contains more than b − 1 elements then we can delete x by redistributing elements across these b fat

items. Otherwise (all b fat items contain b− 1 elements of X), we can delete a fat item and redistribute

the b2 − b elements of X across the remaining b− 1 fat items so that each fat item receives b elements of

X. Once this is done, we can delete x from the fat item containing x.

Analysis. One aspect of the cost of insertion and deletion is the cost of redistributing the elements

among the b fat nodes. This cost is clearly O(b2), which is a factor b worse than the cost of the method

outlined in the previous section. However, as we will see below, this method does have its advantages.

To analyze the above scheme, we use the potential function method of amortized analysis [11].

We say that the potential of a fat item f is Φ(f) = 1
b |b − size(f)| and the potential Φ of the entire data

structure is the sum of the potentials of all fat items in the data structure. Clearly this potential function

is always non-negative. We will use the convention that one unit of potential is equivalent to K units

of work, which is the cost of one memory allocation or deallocation and one insertion or deletion in the

data structure.

We analyze the amortized cost of the insertion procedure. The analysis of the deletion procedure

is exactly the same. The insertion procedure has two cases. In the first case (no new node is allocated),

the redistribution of the b elements across b nodes is easily done so that the increase in potential is at

most 1/b (one array goes from having b elements to having b + 1 elements), so the amortized cost in

this case is O(K/b + b2). In the second case, one memory allocation is done and one insertion in the

data structure is done, so the actual cost is K +O(b2). However, in this case, the potential decreases by

(b− 1)/b, since b− 1 fat items go from having b+ 1 elements in their elem arrays to having b elements in

their elem arrays, so the amortized cost in this case is also O(K/b+ b2).

Theorem 2. Given a comparison-based dictionary data structure that requires S(n), I(n), and D(n) time

to search, insert, and delete (respectively) an item from a set of n items and that has a memory overhead

of cn for some constant c, we can construct a dictionary data structure that requires S′(n) = O(S(nb) +

log b), I ′(n) = O(1
b I(nb) + b2), and D′(n) = O(1

bD(nb) + b2) amortized time to search, insert, and delete

(respectively) and that has a memory overhead of O(nb).

4 Summary and Remarks

We have shown that any comparison-based dictionary data structure of linear size can be put on a diet,

so that its memory overhead is reduced to εn, for any ε > 0. This diet does not change the running times

of the operations on the dictionary except by a small constant factor independent of ε and an additive

term of O(1/ε) or O(1/ε2) depending on the scheme used.

5

The practical value of this is that users of dictionary data structures need not worry about the

storage overhead associated with the dictionary data structure they choose. If it becomes a problem

then they can simply apply this technique and the problem is solved. The theoretical value of this is

that designers of dictionary data structures need no longer make unnecessarily complicated algorithms

and representations for the sake of reducing the memory overhead. They can get on with the prob-

lem of designing dictionaries that have useful running time properties without worrying about memory

overhead.

References

[1] C. R. Aragon and R. Seidel. Randomized search trees. Algorithmica, 16(4):464–497, 1996.

[2] G. E. Blelloch, B. Maggs, and M. Woo. Space-efficient finger search on degree-balanced search

trees. In Proceedings of the 14th Annual ACM/SIAM Symposium on Discrete Algorithms (SODA 2003),

2003. To appear.

[3] M. R. Brown and R. E. Tarjan. The design and analysis of a data structure for representing sorted

lists. SIAM Journal on Computing, 9(3):594–614, 1980.

[4] R. Cole. On the dynamic finger conjecture for splay trees part II: The proof. Technical Report

TR1995-701, Courant Institute, New York University, 1995.

[5] I. Galperin and R. Rivest. Scapegoat trees. In Proceedings of the 4th Annual ACM-SIAM Symposium

on Discrete Algorithms (SODA ’93), pages 165–174, 1993.

[6] L. J. Guibas, E. M. McCreight, M. F. Plass, and J. R. Roberts. A new representation for linear lists.

In Proceedings of the 9th Annual ACM Symposium on the Theory of Computing (STOCS’77), pages

49–60, 1977.

[7] S. Huddleston and K. Mehlhorn. A new data structure for representing sorted lists. Acta Informat-

ica, 17:157–184, 1982.

[8] J. Iacono. Alternatives to splay trees with O(log n) worst-case access times. In Proceedings of the

Twelfth Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2001), pages 516–522, 2001.

[9] J. Iacono and S. Langerman. Queaps. In Proceedings of the 13th Annual International Symposium

on Algorithms and Computation (ISAAC 2002), 2002. To appear.

[10] W. Pugh. Skip lists: A probabilistic alternative to balanced trees. Communications of the ACM,

33(6):668–676, 1990.

[11] D. D. Sleator and R. E. Tarjan. Self-adjusting binary search trees. Journal of the ACM, 32(2):652–

686, 1985.

6

[12] Daniel D. Sleator and Robert E. Tarjan. Amortized Efficiency of List Update and Paging Rules.

Communications of the ACM, 28:202–208, 1985.

7

