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Abstract. We consider data structures and algorithms for preprocess-
ing a labelled list of length n so that, for any given indices i and j we can
answer queries of the form: What is the mode or median label in the se-
quence of labels between indices i and j. Our results are on approximate
versions of this problem. Using O( n

1−α
) space, our data structure can find

in O(log log 1
α

n) time an element whose number of occurrences is at least
α times that of the mode, for some user-specified parameter 0 < α < 1.
Data structures are proposed to achieve constant query time for α =
1/2, 1/3 and 1/4, using storage space of O(n log n), O(n log log n) and
O(n), respectively. Finally, if the elements are comparable, we construct
an O( n

1−α
) space data structure that answers approximate range median

queries. Specifically, given indices i and j, in O(1) time, an element whose
rank is at least α × �|j − i + 1|/2� and at most (2 − α) × �|j − i + 1|/2�
is returned for 0 < α < 1.

1 Introduction

Let A = a1, . . . , an be a list of elements of some data type. We wish to con-
struct data structures on A, such that we can quickly answer range queries.
These queries take two indices i, j with 1 ≤ i ≤ j ≤ n and require computing
F (ai, . . . , aj) = ai ◦ ai+1 ◦ · · · ◦ aj−1 ◦ aj . If the inverse of the operation “◦”
exists, then range queries have a trivial solution of linear space and constant
query time. For example, if “◦” is arithmetic addition (subtraction being its in-
verse), we precompute all the partial sums bi = a1 + · · · + ai, i = 1, . . . , n, and
the range query F (ai, . . . , aj) = ai + · · · + aj can be answered in constant time
by computing bj − bi−1. Yao [13] (see also Alon and Schieber [1]) showed that
if “◦” is a constant time semigroup operation (such as maximum or minimum)
for which no inverse operation is allowed, and a ◦ b can be computed in constant
time then it is possible to answer range queries in O(λ(k, n)) time using a data
structure of O(kn) size, for any integer k ≥ 1. Here λ(k, ·) is a slowly growing
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function at the �k/2�-th level of the primitive recursive hierarchy. For example,
λ(2, n) = O(log n), λ(3, n) = O(log log n) and λ(4, n) = O(log∗ n).

Krizanc et al [10] studied the storage space versus query time tradeoffs for
range mode and range median queries. These occur when F is the function that
returns the mode or median of its input. Mode and median are two of the most
important statistics [2, 3, 11, 12]. Given a set of n elements, a mode is an element
that occurs at least as frequently as any other element of the set. If the elements
are comparable (for example, real numbers), the rank of an element is its position
in the sorted order of the input. For example, the rank of the minimum element is
1, and that of the maximum element is n. The φ-quantile is the element with rank
�φn�. The 1/2-quantile is also called the median. Note the trivial solution does
not work for range mode or range median queries as no inverse exists for either
operation. Yao’s approach does not apply either because neither range mode nor
range median is associative and therefore not a semigroup query. Also, given
two sets S1 and S2 and their modes (or medians), the mode (or median) of the
union S1

⋃
S2 cannot be computed in constant time. New data structures are

needed for range mode and range median queries. Krizanc et al [10] gave a data
structure of size O(n2−2ε) that can answer range mode queries in O(nε log n)
time, where 0 < ε ≤ 1/2 is a constant representing storage space-query time
tradeoff. For range median queries, they show that a data structure of size O(n)
can answer range median queries in O(nε) time and a faster O(log n) query time
can be achieved using O( n log2 n

log log n ) space.
In this paper we consider the approximate versions of range mode and range

median queries. We show that if a small error is tolerable, range mode and range
median queries can be answered much more efficiently in terms of storage space
and query time. Given a sublist S = ai, ai+1, . . . , aj , an element is said to be an
approximate mode of S if its number of occurrences is at least α times that of
the actual mode of S, where 0 < α < 1 is a user-specified approximation factor.
If the elements are comparable, the median is the element with rank (relative to
the sublist) �(j − i+ 1)/2�. An α-approximate median of S is an element whose
rank is between α× �(j − i+ 1)/2� and (2 − α) × �(j − i+ 1)/2�. Clearly, there
could be several approximate modes and medians.

We show that approximate range mode queries can be answered in
O(log log 1

α
n) time using a data structure of size O(n). We also show that con-

stant query time can be achieved for α = 1/2, 1/3 and 1/4 using storage space
of size O(n log n), O(n log log n) and O(n), respectively. We introduce a constant
query time data structure for answering approximate range median queries. We
also study the preprocessing time required for the construction of these data
structures.

To the best of our knowledge, there is no previous work on approximate range
mode or median queries. Two problems related to range mode and range median
queries are frequent elements and quantile summaries over sliding windows [2, 11].
For many applications, data takes the form of continuous data streams, as op-
posed to finite stored data sets. Examples of such applications include network
monitoring and traffic measurements, financial transaction logs and phonecall
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records. All these applications view recently arrived data as more important
than those a long time back. This preference for recent data is referred to as
the sliding window model [6] in which the queries are answered regarding only
the most recently observed n data elements. Lin et al [11] studied the problem
of continuously maintaining quantile summaries over sliding windows. They de-
vised an algorithm for approximate quantiles with an error of at most εn using
O( log ε2n

ε + 1
ε2 ) space in the worst case for a fixed window size n. For windows

of variable size at most n (such as timestamp-based windows in which the exact
number of arriving elements cannot be predetermined), O( log

2 εn
ε2 ) storage space

is required. Arasu and Manku [2] improved both bounds to O( 1ε log 1
ε log n) and

O( 1ε log 1
ε log εn log n) respectively. They also proposed deterministic algorithms

for the problem of finding all frequent elements (i.e., elements with a minimum
frequency of εn) using O( 1ε log2 1

ε ) and O( 1ε log2 1
ε log εn) worst case space for

fixed- and variable-size windows, respectively.

2 Approximate Range Mode Queries

Given a list of elements a1, . . . , an and an approximation factor 0 < α < 1, the
approximate range mode queries can be specified formally as follows.
INPUT: Two indices i, j with 1 ≤ i ≤ j ≤ n.
OUTPUT:An element x in ai, . . . , aj such that Fx(ai, . . . , aj)≥α×F (ai, . . . , aj),
where Fx(ai, . . . , aj) is the frequency1 of x in ai, . . . , aj and F (ai, . . . , aj)
= maxx Fx(ai, . . . , aj) is the number of occurrences of a mode in ai, . . . , aj .

Our data structure is based on the observation that given a fixed left end i
of a query range, as the right end j of the range increases, the number of times
the approximate mode changes as j varies from i to n is at most log 1

α
(n − i).

This is because the same element can be output as approximate mode as long
as no other element’s frequency exceeds 1/α times that of the current approxi-
mate mode. When the actual mode’s frequency has exceeded 1/α times that of
the approximate mode, the approximate mode is replaced and the actual mode
becomes the new approximate mode.

For example, given the list of 20 elements shown in Figure 1 and approxi-
mation factor α = 1/2, b is an approximate mode of a1, . . . , a9 because b occurs
2 times in the sublist, while the actual mode a occurs 4 times in the same
sublist. But this is no longer true for query a1, . . . , a10, as the number of oc-
currences of b is still 2 while the actual mode a occurs 5 times in the sublist
(Fa(a1, . . . , a10) = 5). In this case, either a or c (Fc(a1, . . . , a10) = 3) is a valid
approximate mode.

Assuming a is chosen to be the new approximate mode, it remains a valid
approximate mode as the right end of the query range increases until j = 19
at which point the actual mode c occurs 11 times (Fc(a1, . . . , a19) = 11). Since

1 We use frequency and the number of occurrences interchangeably throughout the
paper.
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A

      B 1,b 10,a 19,c

b a b a c c a c a a c c c c b c c c c b

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Fig. 1. α = 1/2. A lookup table of size 3 is used for answering queries a1, . . . , aj ,
j = 1, . . . , 20. For example, a is an approximate mode of a1, . . . , a15 because a occurs
at least 5 times in the query range (Fa(a1, . . . , a15) = 5) while no other element occurs
more than 10 times until j = 19 (Fc(a1, . . . , a19) = 11)

no other element (a or b) occurs more than or equal to half of the actual mode
(Fa(a1, . . . , a19) = 5, Fb(a1, . . . , a19) = 3), c is now the only approximate mode
until j = 20. Since an approximate mode remains valid until another element
occurs more than 1/α times the current approximate mode, the number of ap-
proximate modes that have to be stored is much less than the number of elements
of the original list. As shown in the example of Figure 1, instead of storing the
complete original array of 20 elements, a table of 3 approximate modes is used
to answer all approximate range mode queries a1, . . . , aj , 1 ≤ j ≤ 20.

Given an approximation factor α, all approximate range mode queries with a1
being the left end: a1, . . . , aj (1 ≤ j ≤ n) can be answered using O(log 1

α
n) stor-

age space. The data structure is a lookup table B = ac1 , . . . , acm(1 ≤ c1 < c2 <
. . . < cm ≤ n) in which we store m approximate modes. The first entry is always
a1 (c1 = 1). The second entry ac2 is the first element in A that occurs 	1/α

times, i.e., Fac2

(a1, . . . , ac2) = 	1/α
 and Fac2
(a1, . . . , ac2) > Fai(a1, . . . , ac2) for

∀i �= c2. In general, the kth entry in the table is the first element in A that occurs
	1/αk−1
 times in the sublist as the right end of the query range increases. Note
that ack

is an approximate mode of a1, . . . , aj for any ck ≤ j < ck+1 since ack
oc-

curs at least 	1/αk−1
 times in a1, . . . , aj (Fack
(a1, . . . , aj) ≥ Fack

(a1, . . . , ack
) =

	1/αk−1
), while no other element occurs more than 1/αk times in the same
range (Fx(a1, . . . , aj) < Fck+1(a1, . . . , ack+1) = 	1/αk
).

The last approximate mode in the table, acm
, occurs at least 	1/αm−1
 times

in a1, . . . , an. It follows immediately that the number of approximate modes
stored in the lookup table m is at most log 1

α
n+ 1.

To answer approximate range mode queries in the range a1, . . . , aj , binary
search is used to find in O(log log 1

α
n) time the largest ck that is less than or

equal to j and output ack
as the answer.

Lemma 1. There is a data structure of size O(log 1
α
n) that can answer approx-

imate range mode queries in the range a1, . . . , aj (1 ≤ j ≤ n) in O(log log 1
α
n)

time.

An immediate application of Lemma 1 is a data structure for answering ap-
proximate range mode queries with arbitrary ends. The data structure is a collec-



Approximate Range Mode and Range Median Queries 381

tion of n lookup tables (Ti, i = 1, . . . , n), one table for each left end. An auxiliary
array of n pointers is used to locate a table in O(1) time. A query ai, . . . , aj can
be answered by first locating table Ti in O(1) time, and then searching in Ti to
find the approximate mode of ai, . . . , aj , which takes O(log log 1

α
n) time since Ti

contains at most O(log 1
α

(n− i)) = O(log 1
α
n) approximate modes.

Corollary 1. There is a data structure of size O(n log 1
α
n) that can answer

approximate range queries in O(log log 1
α
n) time.

2.1 An Improvement Based on Persistent Search Trees

We have seen that by maintaining a lookup table Ti of size O(log 1
α
n) for each

left end i (1 ≤ i ≤ n) and using O(n log 1
α
n) total storage space, any approximate

range mode query in the range ai, . . . , aj can be answered in O(log log 1
α
n) time.

Given a fixed left end i, storing an answer for each right end j is not necessary
since the answer to the query changes less frequently as j varies. The approximate
modes of two query ranges with adjacent right ends are unlikely to be different.
In this section, we pursue this idea and show that storage of a complete lookup
table for each left end is not necessary because of the similarity between two
tables with adjacent left ends.

To see how the approximate range mode changes gradually as the two ends
of a query range move, we need a systematic way to keep track of the range
within which the current approximate mode remains a valid approximation of
the actual mode and its number of occurrences in that range. As the query range
changes, the frequency of the current approximate mode may also change. Once
it drops below a predetermined threshold value (flow, the calculation of which
will be discussed next), a new approximate mode is chosen and the query range
updated.

As shown in Table 1, each entry in the lookup table is a 5-tuple (flowr , fhighr ,
qr, ansr, fansr

). Given an approximation factor α, [flowr
, fhighr

] are precom-
puted for r = 1, . . . , 2	log 1

α
n
 and remain the same for all tables.

As noted before, the ith table Ti corresponds to all the range queries with the
same left end i. A counter is set for each element to keep track of its frequency
as the right end j varies. Given the fixed left end i, as the right end j proceeds,

Table 1. flow1 = 1, fhigh1 = 1, flowr+1 = fhighr
+ 1, fhighr+1 = �flowr /α	 + 1,

F (ai, . . . , aqr ) = fhighr
, fansr = Fansr (ai, . . . , aqr ), flowr ≤ fansr ≤ fhighr

Frequency Range Query Range Answer

...
[flowr, fhighr

] qr (ansr, fansr )
[flowr+1, fhighr+1 ] qr+1 (ansr+1, fansr+1)

...
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ansr is the first element whose frequency in ai, . . . , aj reaches fhighr
, and qr+1

is the rightmost point up to which ansr remains a valid approximate mode, i.e.,
no other element has a frequency higher than fhighr/α. Given a query ai, . . . , aj

with qr ≤ j < qr+1, ansr is a valid approximate mode since its frequency is
at least fhighr

while no other element has a frequency higher than or equal to
fhighr+1 − 1 = 	flowr/α
. To see how the subsequent tables are built based on
Ti with minimum number of changes, the right end of the query range is fixed,
as the left end of the query range proceeds, ansr’s frequency may decrease, but
it remains a valid approximate mode as long as fansr

≥ flowr and it is copied
to the next table along with a possibly smaller fansr (Note that fansr is needed
only for bookkeeping purposes). The only time that ansr must change for a table
is when its frequency drops below flowr

. At this point we update ansr and the
new approximate mode is the first element whose frequency reaches fhighr with
respect to the current left end of query range. The query range qr is also updated
to reflect the change on the approximate mode (Fansr (ai, . . . , aqr ) = fhighr ).

Table 2 shows the data structure for answering approximate range mode
queries on the same list as in Figure 1. For example, to look up the approximate
mode of a4, . . . , a12, we search in T4 and find the entry with the largest qr
that is smaller than 12: {[4, 5], 10, (a, 4)}. This tells us that, in the sequence of
a4, . . . , a12, a occurs at least 4 times (Fa(a4, . . . , a12) ≥ Fa(a4, . . . , a10) = 4) and
no element occurs more than 8 times (Fx(a2, . . . , a12) ≤ F (a2, . . . , a17)− 1 = 8).

After T1 is built, Ti (i ≥ 2) is built based on Ti−1 with necessary updates.
The number of updates made is given by the following lemma.

Lemma 2. If the rth row of the table is updated in Ti, then it does not need to
be updated in Tk for any i < k < i+ 1/α�r/2�.

Proof. When the rth row is updated in Ti, we set ansr to be the first element
such that Fansr (ai, . . . , aqr ) = fhighr . Its frequency fansr is initially fhighr in Ti.
Although fansr

may decrease as i increases, ansr does not need to be updated
again until fansr

drops below flowr
, which takes at least fhighr

− (flowr
− 1) =

fhighr − fhighr−1 = 1/α�r/2� steps.

Note that there are no more than 2	log 1
α
n
 rows in a table and every time

we build a new table, the first row needs to be updated. Lemma 2 shows that
the rth (r ≥ 2) row changes no more than α�r/2�n times during the construction
of all n tables. The total number of updates we have to make is given by the
following theorem.

Theorem 1. The total number of updates we have to make is O(n/(1 − α)).

Proof. Total number of updates ≤ n+
∑2�log 1

α
n�

r=2 α�r/2�n = O( n
1−α ).

Theorem 1 says that, the majority of the table entries can be reconstructed by
referring to other tables. In other words, although n lookup tables are needed to
answer approximate range mode queries, many of them share common entries. A
persistent search tree [8] is used to store the tables efficiently. It has the property
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Table 2. An example showing the data structure for answering 1/2-approximate range
mode queries on a list of 20 elements. Updates are in bold

Ti T1 T2 T3 T4 T5

ai b a b a c
[1, 1] 1, (b, 1) 2, (a, 1) 3, (b, 1) 4, (a, 1) 5, (c, 1)
[2, 3] 7, (a, 3) 7, (a, 3) 7, (a, 2) 7, (a, 2) 8, (c, 3)
[4, 5] 10, (a, 5) 10, (a, 5) 10, (a, 4) 10, (a, 4) 12, (c, 5)
[6, 9] 17, (c, 9) 17, (c, 9) 17, (c, 9) 17, (c, 9) 17, (c, 9)

[10, 13] 20, (c, 11) 20, (c, 11) 20, (c, 11) 20, (c, 11) 20, (c, 11)

Ti T6 T7 T8 T9 T10

ai c a c a a
[1, 1] 6, (c, 1) 7, (a, 1) 8, (c, 1) 9, (a, 1) 10, (a, 1)
[2, 3] 8, (c, 2) 10, (a, 3) 10, (a, 2) 10, (a, 2) 13, (c, 3)
[4, 5] 12, (c, 4) 14, (c, 5) 14, (c, 5) 14, (c, 4) 14, (c, 4)
[6, 9] 17, (c, 8) 17, (c, 7) 17, (c, 7) 17, (c, 6) 17, (c, 6)

[10, 13] 20, (c, 10) — — — —

Ti T11 T12 T13 T14 T15

ai c c c c b
[1, 1] 11, (c, 1) 12, (c, 1) 13, (c, 1) 14, (c, 1) 15, (b, 1)
[2, 3] 13, (c, 3) 13, (c, 2) 16, (c, 3) 16, (c, 2) 18, (c, 3)
[4, 5] 14, (c, 4) 17, (c, 5) 17, (c, 4) 19, (c, 5) 19, (c, 4)
[6, 9] 17, (c, 6) 19, (c, 7) 19, (c, 6) — —

[10, 13] — — — — —

Ti T16 T17 T18 T19 T20

ai c c c c b
[1, 1] 16, (c, 1) 17, (c, 1) 18, (c, 1) 19, (c, 1) 20, (b, 1)
[2, 3] 18, (c, 3) 18, (c, 2) 19, (c, 2) — —
[4, 5] 19, (c, 4) — — — —
[6, 9] — — — — —

[10, 13] — — — — —

that the query time is O(logm) where m is the number of entries in each table,
and the storage space is O(1) per update. In the case of approximate range
mode queries, although each table can have as many as 2	log 1

α
n
 entries, many

tables share the same entries and the number of different nodes in the persistent
tree is O(n/(1 − α)), one for each update, and the query time for a node is
O(log log 1

α
n).

To build the search tree, we need to keep track of the frequency of each
element as query range varies. The idea presented in [7] leads to an algorithm
that maintains a counter for each element and the total preprocessing time is
O(n log 1

α
n+ n log n).
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Theorem 2. There exists a data structure of size O(n/(1−α)) that can answer
approximate range mode queries in O(log log 1

α
n) time, and can be constructed

in O(n log 1
α
n+ n log n) time.

2.2 Lower Bounds

Next we show there is no faster worst case algorithm to compute the approximate
mode for any fixed approximation factor α. To see this, let A be a list of n/	1/α

elements and B = A . . . A = b1, . . . , bn is a list of length n obtained by repeating
A 	1/α
 times. The problem of testing whether there exist two identical elements
in A (also called element uniqueness) can be reduced to asking if the mode of
B occurs more than 	1/α
 times. In the case of approximate range mode query,
the answer to query b1, . . . , bn is an element whose frequency is greater than 1
if and only if the actual mode of B occurs more than 	1/α
 times.

In the algebraic decision tree model of computation, the running time of
determining whether all the elements of A are unique is known to have a com-
plexity of Ω(n log n) [4]. However, this problem can also be solved by doing a
single approximate range mode query b1, . . . , bn after preprocessing B, which
implies the same lower bound holds for approximate range mode queries.

Theorem 3. Let P (n) and Q(n) be the preprocessing and query times, respec-
tively, of a data structure for answering approximate mode queries, we have
P (n) +Q(n) = Ω(n log n).

On the other hand, Ω(n) storage space is required by any data structure
that supports approximate range mode queries since the original list can be
reconstructed by doing queries (a1, a1), (a2, a2), . . . , (an, an), regardless of what
value α is.

2.3 Constant Query Time

Yao [13] (see also Alon et al [1]) showed that if a query ai, . . . , aj can be answered
by combining answers of queries ai, . . . , ax and ax+1, . . . , aj in constant time,
then Θ(nλ(k, n)) time and space is both necessary and sufficient to answer range
queries in at most k steps. We adapt the same approach to develop constant
query time data structures for some special cases of approximate range mode
queries. Namely, the approximation factor α = 1/k where k is some positive
integer.

The following lemma says that, if we can partition the range ai, . . . , aj into
k intervals and we know the mode of each interval, then one of these is an
approximate mode, for α = 1/k.

Lemma 3. If {B1, . . . , Bk} is a partition of ai, . . . , aj then maxpF (Bp) ≥
F (ai, . . . , aj)/k.

Proof. By contradiction. Otherwise for any element x we have Fx(ai, . . . , aj) =∑k
p=1 Fx(Bp) ≤ k ×maxpF (Bp) < F (ai, . . . , aj).
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Yao [13] and Alon et al [1] gave an optimal scheme of using a minimum set
of intervals such that any range ai, . . . , aj can be covered by at most k such
intervals.

Lemma 4. (Yao [13], Alon et al [1]) There exists a set of O(nλ(k, n)) intervals
such that any query range ai, . . . , aj can be partitioned into at most k of these
intervals. Furthermore, given i and j, these intervals can be found in O(k) time.

Given Lemma 3 and Lemma 4, we immediately obtain a constant query time
solution to approximate range mode queries with approximation factor 1/k. By
precomputing the mode of each interval, a query can be answered by first fetching
the partition of the query range, which is a set of at most k intervals, and then
outputting the one with the highest frequency among k modes of these intervals.

Theorem 4. There exists a data structure of size O(nλ(k, n)) that can answer
approximate range mode in O(k) time, for α = 1/k.

The results in Theorem 4 can be further improved using a table lookup
trick for k ≥ 4. We partition the list into n/ log n blocks of size log n, Bi =
a(i−1) log n+1, . . . , ai logn, i = 1, . . . , n/ log n. By Lemma 4, there exists a set of
O((n/ log n)λ(2, n/ log n)) = O(n) intervals such that any range with both ends
at the boundaries of the blocks can be covered with at most 2 of these intervals.
The exact modes of these intervals are precomputed. Inside every block, exact
modes of 2 intervals are precomputed for each element, one interval is between
the element and the beginning of the block and the other interval between the
element and the end of the block. Any query range that spans more than one
block can be partitioned into at most 4 intervals. The first one is the (possibly
partial) block in which the range starts; the last one is the the (possibly partial)
block in which the range ends and the other (at most) two intervals in between
cover all the remaining blocks (if any). Of these intervals the modes are all pre-
computed, and the one with the highest frequency is a 1/4-approximation of the
actual mode.

It remains to show that a query within a block can also be answered in O(1)
time. This is done by recursively partitioning the logn block into logn/ log log n
blocks of size log log n. The same method above is used to preprocess these
blocks, and the result is a data structure of O(n) size that can answer any query
that spans more than one log log n-block in O(1) time.

To answer queries within a log logn-block, a standard data structure trick
[9] of canonical subproblems is used. Note that we can normalize each block by
replacing each element with the index of its first occurrence within the block.
Because such index is a non-negative integer that is at most log log n and each
block consists of log log n such values, there are at most (log log n)log log n different
blocks. Among all n/ log log n blocks of size log log n, many are of the same
type. Thus, preprocessing of each block is unnecessary, and storage space can be
reduced by preprocessing a block once and reusing the results for all blocks of
the same type. The data structure used is a log logn× log log n matrix that can
answer range mode query in constant time. All the queries in blocks of the same
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type are done in the same matrix. There are at most (log logn)log log n possible
matrices which require O((log log n)log log n(log log n)2) = o(n) storage space.

Theorem 5. There exists a data structure of size O(n) that can answer approx-
imate range mode queries in O(1) time, for α = 1/4.

3 Approximate Range Median Queries

In this section, we consider approximate range median queries on a list of com-
parable elements A = a1, . . . , an. Given an approximation factor 0 < α < 1, our
task is to preprocess A so that, given indices 1 ≤ i ≤ j ≤ n, we can quickly
return an element of ai, . . . , aj whose rank is between α × �(j − i + 1)/2� and
(2 − α) × �(j − i+ 1)/2�.

To simplify the presentation we assume n = 2d for some integer d ≥ 1.
Generalization to arbitrary n is straightforward. As shown in Figure 2, d levels
of partitions are used. In level i, the list is partitioned into 2i non-overlapping
blocks of size n/2i. Exact medians of sublists with both ends at the boundaries
of the blocks (up to 2	2α/(1 − α)
 blocks away) are precomputed. The idea
behind our algorithm is that, if a query ai, . . . , aj spans many blocks, then the
contribution of the first and last block is minimal and can be ignored. Instead,
we could simply answer the (precomputed) median of the union of the internal
blocks. On the other hand, since we are using many different block sizes, we
can choose a partition level so that ai, . . . , aj spans just enough blocks for the
strategy above to give a valid approximation. This ensures that we do not have
to precompute too many medians.

At the lowest level, a1, . . . , an is partitioned into n blocks each consisting of a
single element. We precompute for each i = 1, . . . , n all the medians of ai, . . . , aj ,
for i ≤ j ≤ i+ 2	2α/(1 −α)
 − 1. This enables us to answer queries of length no
more than 2	2α/(1−α)
 inO(1) time usingO(n/(1−α)) space. To answer queries
of length greater than 	2α/(1−α)
−1, we search in a higher level where the query
spans at least 	2α/(1 − α)
 but no more than 2	2α/(1 − α)
 complete blocks.
Suppose the query spans 	2α/(1 − α)
 ≤ c ≤ 2	2α/(1 − α)
 complete blocks in
level i, let l denote the length of the query, we have cn/2i ≤ l < (c+2)n/2i. The
median of the union of these c blocks is precomputed and its rank in the query
range is at least cn/2i+1 ≥ αl/2 and at most cn/2i+1 + (l− cn/2i) ≤ (2 −α)l/2,
in other words, it is an α-approximate median of the query range.

In the subsequent subsections we give the preprocessing time, storage space
and query time of our data structure for answering approximate range median
queries.

3.1 O(n logn/(1− α)2) Preprocessing Time

We preprocess A = a1, . . . , an and build d lookup tables as follows. To build Ti

(1 ≤ i ≤ d), we partition A into 2i blocks each of size n/2i: Bij = a(j−1)×n/2i+1,
. . . , aj×n/2i , j = 1, . . . , 2i. Ti has 2i entries (Tij , j = 1, 2, . . . , 2i), each corre-
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

3 12 11 101 15 2 6 13 7 14 16 8 5

6,8 8Level 1

7,8 8Level 2

Level 3

Level 4

6,7,8

4,9,8 14,8 5

... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ...

3,3,10,6

11,6,7,8

1,10,6,710,6,7,7 2,6,6,7 7,7,9,8

9 4

Fig. 2. α = 1/2. For each block up to 2�2α/(1−α)	 = 4 medians are precomputed. For
example, associated with the 2nd block in level 3 are 4 medians, each corresponds to a
union of up to 4 consecutive blocks: 1 = Median(B32); 10 = Median(B32

⋃
B33);

6 = Median(B32

⋃
. . .

⋃
B34); 7 = Median(B32

⋃
. . .

⋃
B35). Note that a 1/2-

approximate range median query that spans more than 4 complete blocks also spans
at least 2 complete blocks in the next higher level and therefore can be answered in
a higher level with sufficient accuracy. Range median queries are answered by look-
ing in the level where the query range spans just enough number of complete blocks.
For example, query a2, . . . , a11 spans 4 complete level 3 blocks (B32

⋃
. . .

⋃
B35) but

only 1 complete level 2 block (B22). Therefore, the 4th entry in the 2nd level 3 block
(T32(4) = Median(B32

⋃
. . .

⋃
B35) = 7, whose rank in a2, . . . , a11 is 4) is output as

the approximate median, while the rank of the actual median is 5 in the sublist of 10
elements

sponds to a block Bij
and contains a pointer to a list of 2	2α/(1 − α)
 ele-

ments of A: Tij
(k) = Median(Bij

⋃
. . .

⋃
Bij+k−1), k = 1, . . . , 2	2α/(1 − α)
.

Median(Bij

⋃
. . .

⋃
Bij+k−1) is the median of Bij

⋃
. . .

⋃
Bij+k−1 , which can be

computed in O(kn/2i) time [5]. There are logn tables to be computed. It follows

that the total preprocessing time is
∑log n

i=1
∑2i

j=1
∑2� 2α

1−α �
k=1 O(kn

2i ) = O
(

n log n
(1−α)2

)
.

3.2 O(n/(1− α)) Storage Space

The data structure for answering approximate range median queries is a set of
log n lookup tables. Each table Ti (1 ≤ i ≤ log n) has O(2i) entries and each
entry is a list of at most 2	2α/(1 − α)
 precomputed range medians, the total
space needed to store all log n tables is

∑log n
i=1 O(2iα/(1 − α)) = O(nα/(1−α)) =

O(n/(1 − α)).

3.3 O(1) Query Time

Next we show how to compute an approximate range median of ai, . . . , aj .

1. Compute the length of the query l = j− i+ 1, then locate table Tp in which
to continue the search: p = 	log 2αn

(1−α)l
.
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2. Compute bi = 	 i2p

n 
 and bj = � j2p

n �. Since p = 	log 2αn
(1−α)l
 < log 2αn

(1−α)l +1 =

log 4α
(1−α)l , we have 2p < 4αn

(1−α)l and bj − bi = � j2p

n � − 	 i2p

n 
 ≤ (j−i)2p

n ≤
4(j−i)α
(1−α)l ≤ 4α

1−α . In other words, Median(Bpbi

⋃
. . .

⋃
Bpbj

) is stored in a list
to which a pointer is stored in Tpbi

.
3. Output Tpbi

(bj − bi) = Median(Bpbi

⋃
. . .

⋃
Bpbj

) as the answer.

Because each of the three steps above takes O(1) time, the time required for
answering the approximate range median query is O(1).

Theorem 6. There exists a data structure of size O(n/(1−α)) that can answer
approximate range median queries in O(1) time, and can be built in O(n log n/(1−
α)2) time.
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