
Range Mode and Range Median Queries
on Lists and Trees?

Danny Krizanc1, Pat Morin2, and Michiel Smid2

1 Department of Mathematics and Computer Science, Wesleyan University,
Middletown, CT 06459 USA dkrizanc@wesleyan.edu

2 School of Computer Science, Carleton University, 1125 Colonel By Drive, Ottawa,
ON K1S 5B6, CANADA {morin,michiel}@cs.carleton.ca

Abstract. We consider algorithms for preprocessing labelled lists and
trees so that, for any two nodes u and v we can answer queries of the
form: What is the mode or median label in the sequence of labels on the
path from u to v.

1 Introduction

Let A = a1, . . . , an be a list of elements of some data type. Many researchers
have considered the problem of preprocessing A to answer range queries. These
queries take two indices 1 ≤ i ≤ j ≤ n and require computing F (ai, . . . aj) where
F is some function of interest.

When the elements of A are numbers and F computes the sum of its inputs,
this problem is easily solved using linear space and constant query time. We
create an array B where bi is the sum of the first i elements of A. To answer
queries, we simply observe that ai + · · ·+ aj = bj − bi−1. Indeed this approach
works even if we replace + with any group operator for which each element x
has an easily computable inverse −x.

A somewhat more difficult case is when + is only a semigroup operator,
so that there is no analagous notion of −. In this case, Yao [18] shows how
to preprocess a list A using O(nk) space so that queries can be answered in
O(αk(n)) time, for any integer k ≥ 1. Here αk is a slow growing function at the
kth level of the primitive recursion hierarchy. To achieve this result the authors
show how to construct a graph G with vertex set V = {1, . . . , n} such that, for
any pair of indices 1 ≤ i ≤ j ≤ n, G contains a path from i to j of length at
most αk(n) that visits nodes in increasing order. By labelling each edge (u, v)
of G with the sum of the elements au, . . . , av, queries are answered by simply
summing the edge labels along a path. This result is optimal when F is defined
by a general semigroup operator [19].

A special case of a semigroup operator is the min (or max) operator. In
this case, the function F is the function that takes the minimum (respectively

? This work was partly funded by the Natural Sciences and Engineering Research
Council of Canada.

maximum) of its inputs. By making use of the special properties of the min and
max functions several researchers [1, 2] have given data structures of size O(n)
that can answer range minimum queries in O(1) time. The most recent, and
simplest, of these is due to Bender and Farach-Colton [1].

Range queries also have a natural generalization to trees, where they are
sometimes call path queries. In this setting, the input is a tree T with labels
on its nodes and a query consists of two nodes u and v. To answer a query, a
data structure must compute F (l1, . . . , lk), where l1, . . . , lk is the set of labels
encountered on the path from u to v in T . For group operators, these queries
are easily answered by an O(n) space data structure in O(1) time using data
structures for lowest-common-ancestor queries. For semi-group operators, these
queries can be answered using the same resource bounds as for lists [18, 19].

In this paper we consider two new types of range queries that, to the best of
our knowledge, have never been studied before. In particular, we consider range
queries where F is the function that computes a mode or median of its input.
A mode of a multiset S is an element of S that occurs at least as often as any
other element of S. A median of S is the element that is greater than or equal
to exactly b|S|/2c elements of S. Our results for range mode and range median
queries are summarized in Table 1. Note that neither of these queries is easily
expressed as a group, semi-group, or min/max query so they require completely
new data structures.

Range Mode Queries on Lists

§ Space Query Time Space × Time Restrictions

2.1 O(n2−2ε) O(nε log n) O(n2−ε log n) 0 < ε ≤ 1/2
2.2 O(n2 log log n/ log n) O(1) O(n2 log log n/ log n) –

Range Mode Queries on Trees

§ Space Query Time Space × Time Restrictions

2.1 O(n2−2ε) O(nε log n) O(n2−ε log n) 0 < ε ≤ 1/2

Range Median Queries on Lists

§ Space Query Time Space × Time Restrictions

4.2 O(n log2 n/ log log n) O(log n) O(n log3 n/ log log n) –
4.3 O(n2 log log n/ log n) O(1) O(n2 log log n/ log n) –
4.4 O(n logb n) O(b log2 n/ log b) O(nb log3 n/ log2 b) 2 ≤ b ≤ n
4.4 O(n) O(nε) O(n1+ε) ε > 0

Range Median Queries on Trees

§ Space Query Time Space × Time Restrictions

5.1 O(n log2 n) O(log n) O(n log3 n) –

5.2 O(n logb n) O(b log3 n/ log b) O(nb log4 n/ log2 b) 2 ≤ b ≤ n

5.2 O(n) O(nε) O(n1+ε) –

Table 1. Summary of results in this paper.

The remainder of this paper is organized as follows: In Section 2 we consider
range mode queries on lists. In Section 3 we discuss range mode queries on trees.
In Section 4 we study range median queries on lists. In Section 5 we present data
structures for range median queries on trees.

Because of space constraints, we do not include proofs of any lemmata and
only sketch proofs of some theorems. Details are available in the full version of
the paper.

2 Range Mode Queries on Lists

In this section, we consider range mode queries on a list A = a1, . . . , an. More
precisely, our task is to preprocess A so that, for any indices i and j, 1 ≤ i ≤
j ≤ n, we can return an element of ai, . . . , aj that occurs at least as frequently
as any other element. Our approach is to first preprocess A for range counting
queries so that, for any i, j and x we can compute the number of occurences of
x in ai, . . . , aj . Once we have done this, we will show how a range mode query
can be answered using a relatively small number of these range counting queries.

To answer range counting queries on A we use a collection of sorted arrays,
one for each unique element of A. The array for element x, denoted Ax contains
all the indices 1 ≤ i ≤ n such that ai = x, in sorted order. Now, simply observe
that if we search for i and j in the array Ax, we find two indices k and l,
respectively, such that, the number of occurences of x in ai, . . . , aj is l − k + 1.
Thus, we can answer range counting queries for x in O(log n) time. Furthermore,
since each position in A contributes exactly one element to one of these arrays,
the total size of these arrays is O(n), and they can all be computed easily in
O(n log n) time.

The remainder of our solution is based on the following simple lemma about
modes in the union of three sets.

Lemma 1 Let A, B and C be any multisets. Then, if a mode of A ∪ B ∪ C is
not in A or C then it is a mode of B.

In the next two subsections we show how to use this observation to obtain
efficient data structures for range mode queries. In the first section we show
how it can be used to obtain an efficient time-space tradeoff. In the subsequent
section we show how to it can be used to obtain a data structure with O(1)
query time that uses subquadratic space.

2.1 A Time-Space Tradeoff

To obtain a time-space tradeoff, we partition the list A into b blocks, each of
size n/b. We denote the ith block by Bi. For each pair of blocks Bi and Bj , we
compute the mode mi,j of Bi+1 ∪ · · · ∪ Bj−1 and store this value in a lookup
table of size O(b2). At the same time, we convert A into an array so that we
can access any element in constant time given its index. This gives us a data
structure of size O(n + b2).

To answer a range mode query (i, j) there are two cases to consider. In
the first case, j − i ≤ n/b, in which case we can easily compute the mode of
ai, . . . , aj in O((n/b) log n) time by, for example, sorting ai, . . . , aj and looking
for the longest run of consecutive equal elements.

The second case occurs when j − i > n/b, in which case ai and aj are in two
different blocks (see Fig. 1). Let Bi′ be the block containing i and let Bj′ be the
block containing j. Lemma 1 tells us that the answer to this query is either an
element of Bi′ , an element of Bj′ , or is the mode mi′,j′ of Bi′+1 ∪ · · · ∪ Bj′+1.
Thus, we have a set of at most 2n/b + 1 candidates for the mode. Using the
range counting arrays we can determine which of these candidates is a mode by
performing at most 2n/b+1 queries each taking O(log n) time, for a query time
of O((n/b) log n). By setting b = n1−ε, we obtain the following theorem:

Bi′ Bj′−1

i j

. . .Bi′+1

mi′,j′

Bj′

Fig. 1. The mode of ai, . . . , aj is either an element of Bi′ , an element of Bj′ or is the
mode mi′,j′ of Bi′+1, . . . , Bj′+1.

Theorem 1 For any 0 < ε ≤ 1/2, there exists a data structure of size O(n2−2ε)
that answers range mode queries on lists in time O(nε log n).3

2.2 A Constant Query-Time Subquadratic Space Solution

Initially, one might suspect that any data structure that achieves O(1) query
time must use Ω(n2) space. However, in the full version of the paper we prove:

Theorem 2 There exists a data structure of size O(n2 log log n/ log n) that can
answer range mode queries on lists in O(1) time.

3 Range Mode Queries on Trees

In this section we consider the problem of range mode queries on trees. The
outline of the data structure is essentially the same as our data structure for
3 The query time of Theorem 1 can be improved by observing that our range counting

data structure operates on the universe 1, . . . , n so that using complicated integer
searching data structures [15, 14, 16], the logarithmic term in the query time can be
reduced to a doubly-logarithmic term. We observed this but chose not to pursue
it because the theoretical improvement is negligible compared to the polynomial
factor already in the query time. The same remarks apply to the data structure of
Section 3.

lists, but there are some technical difficulties which come from the fact that the
underlying graph is a tree.

We begin by observing that we may assume the underlying tree T is a rooted
binary tree. To see this, first observe that we can make T rooted by choosing
any root. We make T binary by expanding any node with d > 2 children into
a complete binary tree with d leaves. The root of this little tree will have the
original label of the node we expanded and all other nodes that we create are
assigned unique labels so that they are never the answer to a range mode query
(unless no element in the range occurs more than once, in which case we can
correctly return the first element of the range). This transformation does not
increase the size of T by more than a small constant factor.

To mimic our data structure for lists we require two ingredients: (1) we should
be able to answer range counting queries of the form: Given a label x and two
nodes u and v, how many times does the label x occur on the path from u to
v? and (2) we must be able to partition our tree into O(b) subtrees each of size
approximately n/b.

We begin with the second ingredient, since it is the easier of the two. To
partition T into subtrees we make use of the well-known fact (see, e.g., Refer-
ence [3]) that every binary tree has an edge whose removal partitions the tree
into two subtrees neither of which is more than 2/3 the size of the original tree.
By repeatedly applying this fact, we obtain a set of edges whose removal par-
titions our tree into O(b) subtrees none of which has size more than n/b. For
each pair of these subtrees, we compute the mode of the labels on the path from
one subtree to the other and store all these modes in a table of size O(b2). Also,
we give a new data field to each node v of T so that in constant time we can
determine the index of the subtree to which v belongs.

Next we need a concise data structure for answering range counting queries.
Define the lowest-common-ancestor (LCA) of two nodes u and v in T to be
the node on the path from u to v that is closest to the root of T . Let x(v)
denote the number of nodes labelled x on the path from the root of T to v,
or 0 if v is nil. Suppose w is the LCA of u and v. Then it is easy to verify
that the number of nodes labelled x on the path from u to v in T is exactly
x(u) + x(v) − 2x(parent(w)), where parent(w) denotes the parent of w in T or
nil if w is the root of T .

There are several data structures for preprocessing T for LCA queries that
use linear space and answer queries in O(1) time the simplest of which is due to
Bender and Farach-Colton [1]. Thus all that remains is to give a data structure
for computing x(u) for any value x and any node u of T . Consider the minimal
subtree of T that is connected and contains the root of T as well as all nodes
whose label is x. Furthermore, contract all degree 2 vertices in this subtree with
the possible exception of the root and call the resulting tree Tx (see Fig. 2). It is
clear that the tree Tx has size proportional to the number of nodes labelled x in
the original tree. Furthermore, by preprocessing Tx with an LCA data structure
and labelling the nodes of Tx with their distance to the root, we can compute,

for any nodes u and v in Tx, the number of nodes labelled x on the path from u
to v in T .

The difficulty now is that we can only do range counting queries between
nodes u and v that occur in Tx and we need to answer these queries for any u
and v in T . What we require is a mapping of the nodes of T onto corresponding
nodes in Tx. More precisely, for each node v in T we need to be able to identify
the first node labelled Tx encountered on the path from v to the root of T .
Furthermore, we must be able to do this with a data structure whose size is
related to the size of Tx, not T . Omitting the details, which can be found in
the full version of the paper, we claim that this mapping can be achieved by
performing an interval labelling of the nodes in T [11].

x

x

x x

x

x

T Tx

Fig. 2. The trees T and Tx and their interval labelling.

To summarize, we have described all the data structures needed to answer
range counting queries in O(log n) time using a data structure of size O(n). To
answer a range mode query (u, v) we first lookup the two subtrees Tu and Tv

of T that contain u and v as well as a mode mu,v of all the labels encountered
on the path from Tu to Tv. We then perform range counting queries for each of
the distinct labels in Tu and Tv as well as mu,v to determine an overall mode.
The running time and storage requirements are identical to the data structure
for lists.

Theorem 3 For any 0 < ε ≤ 1/2, there exists a data structure of size O(n2−2ε)
that answers range mode queries on trees in O(nε log n) time.

4 Range Median Queries on Lists

In this section we consider the problem of answering range median queries on
lists. To do this, we take the same general approach used to answer range mode
queries. We perform a preprocessing of A so that our range median query reduces
to the problem of computing the median of the union of several sets.

4.1 The Median of Several Sorted Sets

In this section we present three basic results that will be used in our range
median data structures.

An augmented binary search tree is a binary search tree in which each node
contains a size field that indicates the number of nodes in the subtree rooted
at that node. This allows, for example, determining the rank of the root in
constant time (it is the size of the left subtree plus 1) and indexing an element
by rank in O(log n) time. Suppose we have three sets A, B, and C, stored in
three augmented binary search trees TA, TB and TC , respectively, and we wish
find the element of rank i in A ∪B ∪ C. The following lemma says that we can
do this very quickly.

Lemma 2 Let TA, TB, and TC be three augmented binary search trees on the
sets A, B, and C, respectively. There exists an O(hA +hB +hC) time algorithm
to find the element with rank i in A ∪ B ∪ C, where hA, hB and hC are the
heights of TA, TB and TC , respectively.

Another tool we will make use of is a method of finding the median in the
union of many sorted arrays.

Lemma 3 Let A1, . . . , Ak be sorted arrays whose total size is O(n). There exists
an O(k log n) time algorithm to find the element with rank i in A1 ∪ · · · ∪Ak.

Finally, we also make use of the following fact which plays a role analagous
to that of Lemma 1.

Lemma 4 Let A, B, and C be three sets such that |A| = |C| = k and |B| > 4k.
Then the median of A∪B ∪C is either in A, in C or is an element of B whose
rank in B is in the range [|B|/2− 2k, |B|/2 + 2k].

4.2 A First Time-Space Tradeoff

To obtain our first data structure for range median queries we proceed in a
manner similar to that used for range mode queries. We partition our list A into
b blocks B1, . . . , Bb each of size n/b. We will create two types of data structures.
For each block we will create a data structure that summarizes that block.
For each pair of blocks we will create a data structure that summarizes all the
elements between that pair of blocks.

To process each block we make use of persistent augmented binary search
trees. These are search trees in which, every time an item is inserted or deleted,
a new version of the tree is created. These trees are called persistent because
they allow accesses to all previous versions of the tree. The simplest method of
implementing persistent augmented binary search trees is by path-copying [6,
8–10, 13]. This results in O(log n) new nodes being created each time an element

is inserted or deleted, so a sequence of n update operations creates a set of n
trees that are represented by a data structure of size O(n log n).4

For each block Bi′ = bi′,1, . . . , bi′,n/b, we create two persistent augmented
search trees−→T i′ and←−T i′ . To create−→T i′ we insert the elements bi′,1, bi′,2, . . . , bi′,n/b

in that order. To create ←−T i′ we insert the same elements in reverse order, i.e.,
we insert bi′,n/b, bi′,n/b−1, . . . , bi′,1. Since these trees are persistent, this means
that, for any j, 1 ≤ j ≤ n/b, we have access to a search tree −→T i′,j that contains
exactly the elements bi′,1, . . . , bi′,j and a search tree ←−T i′,j that contains exactly
the elements bi′,j , . . . , bi′,n/b.

For each pair of blocks Bi′ and Bj′ , 1 ≤ i′ < j′ ≤ n, we sort the elements
of Bi′+1 ∪ · · · ∪ Bj′−1 and store the elements whose ranks are within 2n/b of
the median in a sorted array Ai′,j′ . Observe that, by Lemma 4, the answer to a
range median query (i, j) where i = i′n/b + x is in block i′ and j = j′n/b + y is
in block j′, is in one of ←−T i′,x, Ai′,j′ or −→T j′,y. Furthermore, given these two trees
and one array, Lemma 2 allows us to find the median in O(log n) time.

Thus far, we have a data structure that allows us to answer any range median
query (i, j) where i and j are in different blocks i′ and j′. The size of the data
structure for each block is O((n/b) log n) and the size of the data structure for
each pair of blocks is O(n/b). Therefore, the overall size of this data structure is
O(n(b + log n)). To obtain a data structure that answers queries for any range
median query (i, j) including i and j in the same block, we build data structures
recursively for each block. The size of all these data structures is given by the
recurrence

Tn = bTn/b + O(n(b + log n)) = O(n(b + log n) logb n) .

Theorem 4 For any 1 ≤ b ≤ n, there exists a data structure of size O(n(b +
log n) logb n) that answers range median queries on lists in time O(log(n/b)).

At least asymptotically, the optimal choice of b is b = log n. In this case,
we obtain an O(n log2 n/ log log n) space data structure that answers queries in
O(log n) time. In practice, the choice b = 2 is probably preferable since it avoids
having to compute the Ai′,j′ arrays altogether and only ever requires finding the
median in two augmented binary search trees. The cost of this simplification is
only an O(log log n) factor in the space requirement.

4.3 A Constant Query Time Subquadratic Space Data Structure

In the full version of the paper we prove:

Theorem 5 There exists a data structure of size O(n2 log log n/ log n) that can
answer range median queries on lists in O(1) time.

4 Although there are persistent binary search trees that require only O(n) space for
n operations [5, 12], these trees are not augmented and thus do not work in our
application. In particular, they do not allow us to make use of Lemma 2.

4.4 A Data Structure Based on Range Trees

Using the method of range trees [7, 17] we can reduce the range median prob-
lem to a problem of finding the median of O(b logb n) sorted arrays. Applying
Lemma 3 we obtain the following theorem (details are in the full paper):

Theorem 6 For any integer 1 ≤ b ≤ n, there exists a data structure of size
O(n logb n) size that answers range median queries on lists in O(b log2 n/ log b)
time. In particular, for any constant ε > 0 there exists a data structure of size
O(n) that answers range median queries in O(nε) time.

5 Range Median Queries on Trees

Next we present two data structures for answering range median queries on trees.
As with range mode queries, we may assume that T is a binary tree by doing a
small amount of preprocessing on T . Details of this preprocessing are included
in the full version.

5.1 More Space, Faster Queries

Our first method is essentially a binary version of the data structure of Section 4.2
modified to work on trees instead of lists. Details are included in the full version.

Theorem 7 There exists a data structure of size O(n log2 n) that can answer
range median queries in trees in O(log n) time.

5.2 Less Space, Slower Queries

There exists a method of decomposing a tree T into a set of paths such that
the path between any two nodes u and v in T visits O(log n) of these paths [4].
By treating each of these paths as a list and using the range-tree method of
Section 4.4 on each list we are able to obtain the following result (details are in
the full version):

Theorem 8 For any integer 1 ≤ b ≤ n, there exists a data structure of size
O(n logb n) that can answer range median queries in trees in O(b log3 n/ log b)
time. In particular, for any constant ε > 0, there exists a data structure of size
O(n) that answers range median queries in O(nε) time.

Acknowledgement

The second author would like to thank Stefan Langerman for helpful discussions.

References

1. M. A. Bender and M. Farach-Colton. The LCA problem revisited. In Proceedings
of Latin American Theoretical Informatics (LATIN 2000), pages 88–94, 2000.

2. O. Berkman, D. Breslauer, Z. Galil, B. Schieber, and U. Vishkin. Highly paralleliz-
able problems. In Proceedings of teh 21st Annual ACM Symposium on the Theory
of Computing, pages 309–319, 1989.

3. B. Chazelle. A theorem on polygon cutting with applications. In In Proceedings of
the IEEE Symposium on Foundations of Computer Science, pages 339–349, 1982.

4. R. Cole and U. Vishkin. The accelerated centroid decomposition technique for
optimal parallel tree evaluation in logarithmic time. Algorithmica, 3:329–346, 1988.

5. J. R. Driscoll, N. Sarnak, D. D. Sleator, and R. E. Tarjan. Making data structures
persistent. Journal of Computer and System Sciences, 38(1):86–124, February
1989.

6. T. Krijnen and L. G. L. T. Meertens. Making B-trees work for B. Technical Report
219/83, The Mathematical Center, Amsterdam, 1983.

7. G. S. Luecker. A data structure for orthogonal range queries. In Proceedings of the
19th IEEE Symposium on Foundations of Computer Science, pages 28–34, 1978.

8. E. W. Myers. AVL dags. Technical Report 82-9, Department of Computer Science,
University of Arizona, 1982.

9. E. W. Myers. Efficient applicative data structures. In Conference Record eleventh
Annual ACM Symposium on Principles of Programming Languages, pages 66–75,
1984.

10. T. Reps, T. Teitelbaum, and A. Demers. Incremental context-dependent analysis
for language-based editors. ACM Transactions on Programming Languages and
Systems, 5:449–477, 1983.

11. N. Santoro and R. Khatib. Labelling and implicit routing in networks. The Com-
puter Journal, 1:5–8, 1985.

12. N. Sarnak and R. E. Tarjan. Planar point location using persistent search trees.
Communications of the ACM, 29(7):669–679, July 1986.

13. G. Swart. Efficient algorithms for computing geometric intersections. Technical
Report #85-01-02, Department of Computer Science, University of Washington,
Seattle, 1985.

14. M. Thorup. On RAM priority queues. In Proceedings of the 7th ACM-SIAM
Symposium on Discrete Algorithms, pages 59–67, 1996.

15. P. van Emde Boas. Preserving order in a forest in less than logarithmic time and
linear space. Information Processing Letters, 6:80–82, 1977.

16. D. E. Willard. Log-logarithmic worst-case range queries are possible in space θ(n).
Information Processing Letters, 17(2):81–84, 1983.

17. D. E. Willard. New data structures for orthogonal queries. SIAM Journal on
Computing, pages 232–253, 1985.

18. A. C. Yao. Space-time tradeoff for answering range queries. In Proceedings of the
14th Annual ACM Symposium on the Theory of Computing, pages 128–136, 1982.

19. A. C. Yao. On the complexity of maintaining partial sums. SIAM Journal on
Computing, 14:277–288, 1985.

