
DISTRIBUTION-SENSITIVE POINT LOCATION IN CONVEX SUBDIVISIONS∗

Sébastien Collette
Université Libre de Bruxelles

John Iacono
Polytechnic University

Stefan Langerman
Université Libre de Bruxelles

Pat Morin
Carleton University

ABSTRACT. A data structure is presented for point location in convex planar subdivisions when the
distribution of queries is known in advance. The data structure has an expected query time that is
within a constant factor of optimal.

Keywords: Planar point location, Entropy

1 Introduction

The planar point location problem is one of the classic problems in computational geometry. Given a
planar subdivision G,1 the planar point location problems asks us to construct a data structure so that,
for any query point p, we can quickly determine which face of G contains p.2 The history of the planar
point location problem parallels, in many ways, the study of binary search trees.

After a few initial attempts [7, 14, 17], asymptotically optimal (and quite different) linear-space
O(log n) query time solutions to the planar point location problem were obtained by Kirkpatrick [12],
Sarnak and Tarjan [20], and Edelsbrunner et al [8] in the mid 1980s. These results were based on
hierarchical simplification, data structural persistence, and fractional cascading, respectively. All three
of these techniques have subsequently found many other applications. An elegant randomized solution,
combining aspects of all three previous solutions, was later given by Mulmuley [16]. Preparata [18]
gives a comprehensive survey of the results of this era.

In the 1990s, several authors became interested in determining the exact constants achievable in
the query time. Goodrich et al [9] gave a linear size data structure that, for any query, requires at most
2 log n + o(log n) point-line comparisons and conjectured that this query time was optimal for linear-
space data structures. Here and throughout, logarithms are implicitly base 2 unless otherwise specified.
The following year, Adamy and Seidel [1] gave a linear space data structure that answers queries using
log n + 2

√
log n + O(log log n) point-line comparisons and showed that this result is optimal up to the

third term.
∗The research presented in this article took place while the fourth author was a visiting researcher at the Université Libre de

Bruxelles, supported by a grant from FNRS. The researchers are partially supported by NSERC and FNRS.
1A planar subdivision is a partitioning of the plane into points (called vertices), open line segments (call edges), and open

polygons (called faces).
2In the degenerate case where p is vertex or contained in an edge of G any face incident on that vertex/edge may be returned

as an answer.

1

Still not done with the problem, several authors considered the point location problem under
various assumptions about the query distribution. All these solutions compare the expected query time to
the entropy bound; in a planar subdivision with f faces, if the query point p is chosen from a probability
measure over R2 such that pi is the probability that p is contained in face i of G, then no algorithm that
makes only binary decisions can answer queries using an expected number of decisions that is fewer
than

H(p1, . . . , pf) =
f∑

i=1

pi log(1/pi) . (1)

In the previous results on planar point location, none of the query times are affected significantly
by the structure of G; they hold for arbitrary planar subdivisions. However, when studying point location
under a distribution assumption the problem becomes more complicated and the results become more
specific. A convex subdivision is a planar subdivision whose faces are all convex polygons, except the
outer face, which is the complement of a convex polygon. A triangulation is a convex subdivision in
which each face has at most 3 edges on its boundary. Note that, if every face of G has a constant number
of sides, then G can be augmented, by the addition of extra edges, so that it is a triangulation without
increasing (1) by more than a constant. Thus, in the following we will simply refer to results about
triangulations where it is understood that these also imply the same result for planar subdivisions with
faces of constant size.

Arya et al [2] gave two results for the case where the query point p is chosen from a known
distribution where the x and y coordinates of p are chosen independently and G is a convex subdivision.
They give a linear space data structure for which the expected number of point-line comparisons is
at most 4H + O(1) and a quadratic space data structure for which the expected number of point-line
comparisons is at most 2H + O(1). The assumption about the independence of the x and y coordinates
of p is crucial to the these results.

For arbitrary distributions that are known in advance, several results exist. Iacono [10, 11]
showed that, for triangulations, a simple variant of Kirkpatrick’s original point location structure gives
a linear space, O(H + 1) expected query time data structure. A result by Arya et al [3] gives a data
structure for triangulations that uses H + O(H2/3 + 1) expected number of comparisons per query and
O(n log n) space. The space requirement of this latter data structure was later reduced, by the same
authors, to O(n log∗ n) [4]. Finally, the same three authors [5] showed that a variant of Mulmuley’s
randomized algorithm gives, for triangulations, a simple O(H + 1) expected query time, linear space
data structure.

The above collection of results suggest that point location, and even distribution-sensitive point
location, is a well-studied and well-understood problem, with solutions that are optimal up to constant
factors. However, in the above results there is a glaring omission. Given a convex polygon P , a folklore
O(log n) time algorithm exists to test if a query point p is contained in P and this algorithm is optimal,
in the worst case [19]. Testing if p ∈ P is a special case of point location in a convex subdivision in
which the subdivision has only 2 faces. Thus, we might expect that, if p is drawn according to some
distribution over R2, it may be possible to do better in many cases. How much better? It is certainly not
possible to achieve the entropy bound in all cases since, when f = 2 the entropy bound is at most 1.

We begin our investigation of distribution-sensitive point location with the fundamental problem
of testing if a query point p, drawn from an arbitrary distribution D over R2, is contained in a convex
polygon P . We describe a hierarchical triangulation T of R2 that we use to simultaneously achieve two
objectives:

2

1. T is used with a query algorithm to check if a point p is contained in P , and

2. T is used to give a lower bound on the expected cost of any linear decision tree that tests if a point
p selected according to D is contained in P .

The lower bound in Point 2 matches, to within a constant factor, the expected query time of the algorithm
in Point 1. Thus, among algorithms that can be expressed as linear decision trees, our algorithm is
optimal. Our result is the first result to give any lower bound on the expected complexity of any point
location problem that exceeds the entropy bound. Proving the lower bound is by far the hardest part of
our result.

As an easy consequence of the above result we obtain a data structure for point location in con-
vex subdivisions. The expected query time of the resulting algorithm is optimal in the linear decision tree
model of computation. Note that all known algorithms for planar point location can be described in the
linear decision tree model of computation. This data structure for point location in convex subdivisions
where the query point is drawn according to an arbitrary distribution is the most general result known
about planar point location and implies, to within constant factors, all of the results discussed above.

The remainder of this paper is organized as follows: Section 2 presents definitions and notations
used throughout the paper. Section 3 discusses algorithms and lower bounds for point location in convex
polygons. Section 4 presents algorithms and lower bounds for point location in convex subdivisions.
Finally, Section 5 concludes with a discussion and points out directions for further research.

2 Preliminaries

In this section we give definitions, notations, and background required in subsequent sections.

Triangles. For the purposes of this paper, a triangle is the common intersection of at most 3 halfplanes.
This includes triangles with infinite area and triangles having 0, 1, 2, or 3, vertices.

Classification Problems and Classification Trees. A classification problem over a domain D is a func-
tion P : D 7→ {0, . . . , k − 1}. The special case in which k = 2 is called a decision problem. A d-
ary classification tree is a full d-ary tree3 in which each internal node v is labelled with a function
Pv : D 7→ {0, , d − 1} and for which each leaf ` is labelled with a value d(`) ∈ {0, . . . , k − 1}.
The search path of an input p in a classification tree T starts at the root of T and, at each internal node
v, evaluates i = Pv(p) and proceeds to the ith child of v. We denote by T (p) the label of the final (leaf)
node in the search path for p. We say that the classification tree T solves the classification problem P
over the domain D if, for every p ∈ D, P(p) = T (p).

Unless specifically mentioned otherwise, classification trees are binary classification trees. For
a node v in a (binary) classification tree, its left child, right child, and parent are denoted by left(v),
right(v) and parent(v), respectively.

Probability. For a distribution D and an event X, we denote by D|X the distribution D conditioned
on X. That is, the distribution where the probability of an event Y is Pr(Y |X) = Pr(Y ∩ X)/ Pr(X).

3A full d-ary tree is a rooted ordered tree in which each non-leaf node has exactly d children.

3

The probability measures used in this paper are usually defined over R2. We make no assumptions about
how these measures are represented, but we assume that an algorithm can perform the following two
operations in constant time:

1. given an open triangle ∆, compute Pr(∆), and

2. given an open triangle ∆ and a point t at the intersection of two of ∆’s supporting lines, compute a
line ` that contains t and that partitions ∆ into two open triangles ∆0 and ∆1 such that Pr(∆0) ≤
Pr(∆)/2 and Pr(∆1) ≤ Pr(∆)/2.

Requirement 2 is used only for convenience in describing our data structure. In Section 5 we show
that Requirement 2 is not really necessary and that Requirement 1 is sufficient to implement our data
structure.

For a classification tree T that solves a problem P : D 7→ {0, . . . , k−1} and a probability measure
D over D, the expected search time of T is the expected length of the search path for p when p is drawn at
random from D according to D. Note that, for each leaf ` of T there is a maximal subset r(`) ⊆ D such
that the search path for any p ∈ r(`) ends at `. Thus, the expected search time of T (under distribution
D) can be written as

µD(T) =
∑

`∈L(T)

Pr(r(`))× depth(`) ,

where L(T) denotes the leaves of T and depth(`) denotes the length of the path from the root of T to `.

The following theorem, which is a restatement of (half of) Shannon’s Fundamental Theorem for
a Noiseless Channel [21, Theorem 9], is what all existing results on distribution-sensitive planar point
location use to establish their optimality:

Theorem 9. Let P : D 7→ {0, . . . , k − 1} be a classification problem and let p ∈ D be selected from a
distibution D such that Pr{P(x) = i} = pi, for 0 ≤ i < k. Then, any d-ary classification tree T that solves
P has

µD(T) ≥
k−1∑
i=0

pi logd(1/pi) . (2)

Theorem 9 is applied to the point location problem by treating point location as the problem
of classifying the query point p based on which face of G contains it. In this way, we obtain the lower
bound in (1).

3 Point In Convex Polygon Testing

Let P be a convex n-gon whose boundary is denoted by ∂P and consider a probability measure D over
R

2. For technical reasons, we use the convention that P does not contain its boundary so that p ∈ ∂P
implies p 6∈ P . In this section we are interested in preprocessing P and D so that we can quickly solve
the decision problem of testing whether a query point p, drawn according to D, is contained in P .

4

In particular, we are interested in algorithms that can be described as linear decision trees. These
are decision trees such that each internal node v contains a linear inequality Pv(x, y) = [ax + by ≥ c].4

We require that, for every p ∈ R2 the leaf reached in the search path for p is labelled with a 1 if and only
if p ∈ P . Geometrically, each internal node of T is labelled with a directed line and the decision to go to
the left or right child depends on whether p is to the left or right (or on) this line.

Our exposition is broken up into three sections. We begin by describing a data structure (in fact,
a decision tree) that tests if query point p is contained in a convex polygon P . Next, we give an (easy)
analysis of the expected search time of this data structure. Finally, we give a (more difficult) proof that
this expected search time is optimal.

3.1 Triangle Trees

At a high level, our data structure works by creating a sequence of successively finer approximations
A0, . . . , Ak to ∂P . Each approximation Ai consists of two convex polygons; an outer approximation that
contains P and an inner approximation that is contained in P .

Each approximation Ai is completely defined by a set Si of points on ∂P . The inner approxima-
tion is simply the convex hull of Si. The outer approximation has an edge tangent to P at each of the
points of Si. More precisely, for each point x ∈ Si there is an edge e of the outer approximation that
contains x. If x is in the interior of an edge of P then e is contained in the same line that contains that
edge. Otherwise (x is a vertex of P) e is supported by the line containing the edge incident to x that
precedes x in counterclockwise order. We ensure that successive approximations have a containment
relationship, i.e., Ai ⊇ Ai+1, by choosing our boundary points so that Si ⊆ Si+1.

Next we define the sets S0, . . . , Sk that define our approximations. The set S0 is empty, and we
use the convention that the outer approximation in this case is the entire plane and the inner approxi-
mation is the empty set. The set S1 consists of any two points, x and y on ∂P such that Pr(h1) ≤ 1/2
and Pr(h2) ≤ 1/2, for each of the two open halfspaces h1 and h2 bounded by the line containing x and
y. The existence of x and y is guaranteed, for example, by the planar Ham Sandwich Theorem [6].

We now show how, for i ≥ 1, to obtain the set Si+1 from the set Si. Let p0, . . . , pmi−1 be the
points in Si as they occur in conterclockwise order around the boundary of P . The approximation Ai thus
consists of mi open triangles ∆0, . . . ,∆mi−1 where ∆j is the intersections of the following halfspaces:

1. the open halfspace to the right of the directed line through pj and pj+1,

2. the open halfspace bounded by the tangent to P at pj and that contains pj+1, and

3. the open halfspace bounded by the tangent to P at pj+1 and that contains pj .

Let tj be the intersection point of the two lines tangent to P at pj and pj+1.5 Refer to Figure 1. For each
triangle ∆j that is not completely contained in P we add a new point to Si+1 as follows: we subdivide
∆j into two open triangles ∆j,0 and ∆j,1 by a line ` through tj and such that

Pr(∆j,b) ≤ Pr(∆j)/2 ,

4Here, and throughout, we use Iverson’s notation where [X] = 0 if X is false and [X] = 1 if X is true [13].
5Throughout this discussion, subscripts are implicitly taken modulo mi.

5

`

tj

pj

pj+1
`

tj

pj

pj+1

(a) (b)

Figure 1: Starting with ∆j we (a) subdivide ∆j into two triangles ∆j,0 and ∆j,1 with a line through tj
and then (b) split ∆j into its two children.

for b ∈ {0, 1}. We then select a new point to add to Si+1 at the intersection of ` and ∂P that occurs in
∆j . Note that the next level of approximation Ai+1 now contains two triangles that are contained in
∆j . We call these two triangles the children of ∆j and we say that this operation splits ∆j into these two
triangles.

The entire process terminates at the first value of k for which Ak is completely contained in P .
The approximations A0, . . . , Ak are stored as a binary tree T = T (P,D) that we call a triangle tree for
P and D. Each node v of T at level i in T corresponds to an open triangle ∆(v) in approximation Ai

and the two children of v correspond to the two open triangles into which ∆(v) is split. See Figure 2. A
crucial property of this construction guaranteed by the splitting process is that, for any node v at level
distance i from the root of T , Pr(∆(v)) ≤ 1/2i.

To use the tree T to determine if a point p is contained in P we proceed top-down, starting at
the root. For a point p contained in ∆(v) one of two things can happen: (1) p is contained in one of
the two open triangles ∆(left(v)) or ∆(right(v)) in which case we recurse on the right or left child of v,
respectively, or (2) we can determine in constant time if p ∈ P .

3.2 Analysis of the Triangle Tree

Let T = T (P,D) be a triangle tree for a convex n-gon P and a distribution D. Define, for each node v of
T ,

Ξ(v) = ∆(v) \ (∆(left(v)) ∪∆(right(v)))

and define Pr(v) = Pr(Ξ(v)). Notice that the search for a point p terminates at v precisely when p ∈ Ξ(v).
Thus, Pr(v) is the probability that a search terminates at node v. For a set V of nodes in T we use the
notation Pr(V) =

∑
v∈V Pr(v) to denote the probability that the search path ends at some node in V .

Theorem 1. A triangle tree T contains O(n) nodes and can be constructed in O(n) time. Using the triangle
tree, the expected number of linear inequalities required to check if p ∈ P for a point p drawn from D is at
most

µD(T) ≤ O(1) + O(1)×
∑
v∈T

Pr(v) log(1/ Pr(v)) .

6

A1 A2 A3

P T

Figure 2: A convex polygon P , the triangles of the triangle tree T , and the sequence of approximations
A1, . . . , A3 that approximate ∂P .

Proof. For each 1 ≤ i ≤ n, let ei be the ith edge of P , defined so that it does not include its first
(clockwise) endpoint but does include its second (counterclockwise) endpoint. Observe that if, during
some iteration of the algorithm for constructing T , we select a point x ∈ ei then ei moves to the boundary
of the outer approximation and no point of ei will ever be selected again. This implies that T has O(n)
nodes.

To obtain an O(n) time algorithm to construct T we apply a trick used by Mehlhorn [15] in
the construction of biased binary search trees. Splitting a triangle ∆j involves finding the line ` and
computing the intersection of ` with ∂P ∩ ∆j . The former operation takes, by assumption, O(1) time.
The latter operation, by using two exponential searches in parallel, can be done in O(log(min{m−k, k}))
time, where m is the number of edges of P that intersect ∆j and k is the rank in this set of the edge that
intersects `. In this way, the overall running time of the construction algorithm is given by the recurrence

T (n) ≤ T (n− k) + T (k) + O(log(min{n− k, k}))

which resolves to O(n).

The expected running time of the query algorithm on T is follows immediately from the fact
that, for any node v at a distance of i from the root of T , Pr(v) ≤ Pr(∆(v)) ≤ 1/2i.

3.3 Optimality of the Triangle Tree

Next we will show that the performance bound given by Theorem 1 is optimal. More precisely, we show
that there is no linear decision tree whose expected search time (on distribution D) is asymptotically
better than that of the triangle tree. The key ingredient in our argument is the following lemma:

7

s

X1 X0 X

Figure 3: The point sets X1, X0 and X used in the proof of Lemma 1.

Lemma 1. Let V be a subset of the vertices of the triangle tree T such that no vertex in V is the descendent
of any other vertex in V . Let R =

⋃
v∈V Ξ(v). Then, for any linear decision tree T ′,

µD|R(T) ≥ 1
4

∑
v∈V

Pr(Ξ(v) | R) log(1/ Pr(Ξ(v) | R)) .

Proof. We define a new model of computation, show that a lower bound in this new model implies a
lower bound in the linear decision tree model and then prove the lower bound for the new model. Refer
to Figure 3. Let X1 = ∂P ∪

⋃
v∈V ∆(v), let X0 = X1 ∪ ∂X1 be the closure of X1, and let X = X0 \ {s}

for some vertex s of some triangle ∆(v) with v ∈ V and s ∈ ∂P .6 A chord of X is a closed line segment
with both endpoints on the boundary of X and whose interior is contained in X. Note that a chord may
have length zero. If c is a chord of X then X \ c has at most 3 connected components Xc

1 , Xc
2 , and Xc

3 .

A chord tree is a 4-ary decision tree that solves the problem of testing whether a point p ∈ X0

is contained in P . Each internal node v of a chord tree is labelled with a chord c(v) of X and the four
children of v correspond to the options, p ∈ X

c(v)
1 , p ∈ X

c(v)
2 , p ∈ X

c(v)
3 , and p ∈ c(v). Observe that,

because X is bounded by two convex chains, any line intersects X in at most 2 chords. This immediately
implies the following relationship between chord trees and linear decision trees.

Claim 1. Let T be any linear decision tree that solves the problem of testing if p ∈ P . Then there exists a
chord tree T ′ such that µD|R(T ′) ≤ 2µD|R(T).

Now we need only prove a lower bound on µD|R(T ′) for any chord tree T ′. For two nodes
u, v ∈ V , u 6= v, let p be a point in ∆(u) and let q be a point in ∆(v). We claim that the search path
for p in T ′ and the search path for q in T ′ must end at different leaves of T ′. Assume, for the sake of
contradiction, that this is not the case and that both search paths terminate at the leaf `. We will show
that in this case T ′ does not solve the problem of testing if any point p ∈ X is contained in P and thus
contradicts the assumption that T ′ is a chord tree. First observe that, because the search paths for p and
q both end at `, there exists a closed curve ρ in X with one endpoint at p and the other endpoint at q
and for which all points of ρ have a search path that ends at `. Indeed, the shortest path, in X, from p
to q has this property.

If either p or q is contained in P then we immediately obtain the desired contradiction since ρ

6The removal of s ensures that X is simply connected. That is, for any two points p, q ∈ X any path, in X, from p to q can be
continuously deformed into any other path, in X, from p to q while remaining in X throughout the deformation.

8

must contain one of the vertices r of (e.g.) ∆(u), a point that is not in P (recall that P does not contain
∂P). Otherwise, both p and q are not in P . Then the path ρ still contains one of the vertices r of ∆(u).
Furthermore, none of the vertices on the search path in T ′ for p is associated with a chord that contains
r (otherwise p and q would not have the same search path in T ′). Therefore, there is a disk D, centered
at r and having positive radius, for which the search path in T ′ for any point in D ∩X terminates at `.
Again, we obtain a contradiction since D ∩X contains points in the interior of P .

We have established that, for any two points p and q contained in different triangles ∆(u) and
∆(v) the search paths of p and q terminate at different leaves of T ′. This implies that, by labelling the
leaves of T ′ appropriately, we obtain a 4-ary classification tree that determines, for any p ∈

⋃
v∈V ∆(v)

the node v ∈ V such ∆(v) contains p. Therefore, by Theorem 9,

µD|R(T ′) ≥
∑
v∈V

Pr(Ξ(v) | R) log4(1/ Pr(Ξ(v) | R))

=
1
2

∑
v∈V

Pr(Ξ(v) | R) log(1/ Pr(Ξ(v) | R)) ,

and the lemma follows from Claim 1.

The remainder of our argument involves carefully piecing together subsets of the nodes in T and
applying Lemma 1 to these subsets. By doing this carefully, we will eventually obtain a lower bound that
matches the upper bound in Theorem 1. Let

H =
∑
v∈T

Pr(v) log(1/ Pr(v)) (3)

be the entropy of the distribution of search paths in the triangle tree T . Note that, ignoring the O(1)
term, the upper bound of Theorem 1 is within a constant factor of H. Thus, our goal is to show that no
linear decision tree has an expected search time in o(H).

We start our analysis by partitioning the internal nodes of T in groups G1, G2, . . . where

Gi = {v ∈ T : 1/2i ≤ Pr(v) < 1/2i−1} .

In what follows, we fix some constant 0 < α < 1 that will be specified later. Our first result shows that,
in our lower bound, we can discard a fairly large number of elements from each group without having
much effect on the overall entropy:

Lemma 2. For each i, let G′
i be obtained by deleting at most 2αi elements from Gi. Then

∞∑
i=1

∑
v∈G′

i

Pr(v) log(1/ Pr(v)) ≥ H −O(1) .

Proof.

H =
∑
v∈T

Pr(v) log(1/ Pr(v))

=
∞∑

i=1

∑
v∈G′

i

Pr(v) log(1/ Pr(v)) +
∞∑

i=1

∑
v∈Gi\G′

i

Pr(v) log(1/ Pr(v))

9

≤
∞∑

i=1

∑
v∈G′

i

Pr(v) log(1/ Pr(v)) +
∞∑

i=1

∑
v∈Gi\G′

i

(1/2i−1) log(2i)

≤
∞∑

i=1

∑
v∈G′

i

Pr(v) log(1/ Pr(v)) +
∞∑

i=1

∑
v∈Gi\G′

i

2i(1/2i)

≤
∞∑

i=1

∑
v∈G′

i

Pr(v) log(1/ Pr(v)) +
∞∑

i=1

2i(1/2i−αi)

=
∞∑

i=1

∑
v∈G′

i

Pr(v) log(1/ Pr(v)) + 2
∞∑

i=1

i/(21−α)i

=
∞∑

i=1

∑
v∈G′

i

Pr(v) log(1/ Pr(v)) + O(1) ,

since 21−α > 1.

In order to use Lemma 1 we must partition the vertices of T into subsets that are compatible
with the conditions of the lemma.

Lemma 3. Each group Gi can be partitioned into ti subgroups Gi,1, . . . , Gi,ti
such that

1. |Gi,ti | ≤ 2αi.

2. |Gi,j | ≥ 2αi/i, for all 1 ≤ j < ti, and

3. for every 1 ≤ j < ti and every u, v ∈ Gi,j node u is not an ancestor of node v in T .

Proof. Assume that |Gi| > 2αi, otherwise there is nothing to prove. Observe that all vertices in Gi appear
within the first i levels of T . Thus, any node in Gi has at most i− 1 ancestors in T .

We can obtain the first subgroup Gi,1 by first defining all nodes of Gi to be unmarked and
unselected. To obtain Gi,1 we repeatedly select any unselected and unmarked node v ∈ Gi that does not
have any descendants in Gi and mark the (at most i−1) ancestors of v in T . This process selects at least

|Gi|/i ≥ 2αi/i

elements to take part in Gi,1. We can then apply this process recursively on Gi \ Gi,1 to obtain the sets
Gi,2, . . . , Gi,ti−1. Once this is done, we place the at most 2αi remaining elements in group Gi,ti .

We now have all the tools we need to prove our lower bound.

Theorem 2. Let ε > 0 be an arbitrarily small constant. Any linear decision tree T ′ that solves the problem
of testing if any query point p ∈ R2 is contained in P has

µD(T ′) ≥
(

1
4
− ε

)
H −O(1) .

10

Proof. Our proof is an application of the little-birdie principle. We work in a slightly stronger model of
computation in which we are given a triangle tree T = T (P,D) and the partitioning of the vertices of
T into the sets Gi,j described in Lemma 3. In this model, an algorithm consists of a whole collection of
linear decision trees Ti,j; one for each group Gi,j . Now, when the point p is selected according to D, a
little birdie tells the algorithm which group Gi,j contains the vertex v such that p ∈ Ξ(v). The algorithm
then uses the information provided by the little birdie to select the decision tree Ti,j and uses Ti,j to
determine if p ∈ P . The cost of this is the cost of searching in Ti,j . Thus, the expected cost of a search in
this model of computation is

µ =
∞∑

i=1

ti∑
j=1

Pr(Gi,j)µDi,j (Ti,j) ,

where Di,j denotes the probability distribution D conditioned on the search for p ending at a node in
Gi,j . Clearly this model of computation is at least as strong as the linear decision tree model since, in
this model, there is always the option of ignoring the birdie’s advice by creating a single linear decision
tree T ′ and setting Ti,j = T ′ for all i and j.

Now, applying Lemma 1 to each group Gi,j we obtain

µ =
∞∑

i=1

ti∑
j=1

Pr(Gi,j)µDi,j (Ti,j)

≥
∞∑

i=1

ti−1∑
j=1

Pr(Gi,j)µDi,j (Ti,j)

≥
∞∑

i=1

ti−1∑
j=1

Pr(Gi,j)×

1
4

∑
v∈Gi,j

Pr(v | Gi,j) log(1/ Pr(v | Gi,j))


=

1
4

∞∑
i=1

ti−1∑
j=1

Pr(Gi,j)×

 ∑
v∈Gi,j

Pr(v | Gi,j) log(1/ Pr(v | Gi,j))


=

1
4

∞∑
i=1

ti−1∑
j=1

∑
v∈Gi,j

Pr(v) log(Pr(Gi,j)/ Pr(v))

=
1
4

∞∑
i=1

ti−1∑
j=1

∑
v∈Gi,j

Pr(v)(log(1/ Pr(v)) + log(Pr(Gi,j))

≥ 1
4

∞∑
i=1

ti−1∑
j=1

∑
v∈Gi,j

Pr(v)(log(2i−1) + log(2αi/i2i)

=
1
4

∞∑
i=1

ti−1∑
j=1

∑
v∈Gi,j

Pr(v)(i− 1 + αi− i− log i)

=
1
4

∞∑
i=1

ti−1∑
j=1

∑
v∈Gi,j

Pr(v)(αi− 1− log i)

≥
(

1
4
− ε

)
H −O(1) ,

where the last inequality follows from Lemma 2 and by setting α = 1− δ for a sufficiently small constant
δ = δ(ε) > 0.

11

4 Convex Subdivisions

In this section we consider the problem of point location in convex subdivisions. Our data structure is
simple. For each internal face Fi of the convex subdivision we triangulate the interior of Fi using the
internal edges of the triangles of a triangle tree Ti = (Fi, D|Fi

) for the polygon Fi and the distribution
D|Fi

. For the outer face, we do the same but keep only the external edges of the triangles. Next, we
preprocess the resulting triangulation using Iacono’s distribution-sensitive point location data structure
for triangulations [10].

We have three lower bounds on the expected query time of any linear classification tree for point
location. The first lower bound follows from the fact that any classification tree with more than 1 class
must have at least one internal node:

B0 = Ω(1)

The second lower bound is the entropy bound:

B1 =
f∑

i=1

Pr(Fi) log(1/ Pr(Fi)) .

The third lower bound is a bit more subtle. It follows from the fact that, inside any classification tree
for point location is a decision tree for testing, for each 1 ≤ i ≤ f , if a query point p is contained in Fi.
From Theorem 2 we know that, for any decision tree T ′ that determines if a query point p is in Fi

µD|Fi
(T ′) ≥ Ω(1)×

∑
v∈Ti

Pr(v|Fi) log(1/ Pr(v|Fi)) .

Summing over all faces, we obtain the third lower bound:

B2 = Ω(1)×
f∑

i=1

∑
v∈Ti

Pr(Fi) Pr(v|Fi) log(1/ Pr(v|Fi)) .

Now, because we store all the triangles of each Ti in a point location structure that achieves the
entropy bound, the resulting structure has an expected query time of

µ = O(1) + O(1)×
f∑

i=1

∑
v∈Ti

Pr(v) log(1/ Pr(v))

= O(1) + O(1)×
f∑

i=1

Pr(Fi)×
∑
v∈Ti

Pr(v|Fi) log(1/ Pr(v))

= O(1) + O(1)×
f∑

i=1

Pr(Fi)×
∑
v∈Ti

Pr(v|Fi) log(Pr(Fi)/ Pr(Fi) Pr(v))

= O(1) + O(1)×

(
f∑

i=1

Pr(Fi) log(1/ Pr(Fi)) +
f∑

i=1

∑
v∈Ti

Pr(Fi) Pr(v|Fi) log(1/ Pr(v|Fi))

)
≤ O(1) + O(1)× (B1 + B2)
≤ O(1)×max{B1, B2, B3} .

This completes the proof of our main result:

12

tj

pj+1
pj`

tj

pj+1
pj`

Figure 4: The data structure can be realized using only lines through the vertices of P .

Theorem 3. Given a convex subdivision G with n vertices and a probability measure D over R2, a data
structure of size O(n) can be constructed in O(n) time that answers point location queries in G. The expected
query time of this data structure, for a point p drawn according to D is O(µD(T)), where T is any linear
classification tree that answers point location queries in G.

5 Discussion

We have presented a data structure for distribution-sensitive point location in convex subdivisions. Our
data structure achieves, up to constant factors, the best possible query time for any data structure in
the linear decision tree model of computation. All known data structures for point location in planar
subdivisions fit into the linear decision tree model.

Our data structure, as described in Section 3, uses comparisons between the query point p and
precomputed lines determined by points on the edges of P that are, in turn, determined by the distribu-
tion D. We note that we can obtain an equally efficient structure that only does comparisons involving
lines through two vertices of G. To achieve this, we simply modify the splitting process at the nodes of
the triangle tree so that, instead of placing a single point in the interior of an edge e of P (Figure 1), we
place one point on each of the endpoints of e (Figure 4). This modification has another nice property;
it can be implemented so that the only mechanism needed to access the probability measure D is a
primitive for computing the probability of a triangle. An interesting corollary of this result is that, given
a convex polygon P and a probability distribution over the interior of P , the above construction gives a
linear-time constant factor approximation for the minimum entropy triangulation of P .

In practice, performing computations with probability distributions is at best awkward. How-
ever, one potential real application of our data structures is when the distribution D is uniform over a set
of m points. Such distributions are easily obtained by sampling some (unknown) continuous distribu-
tion and are often a good enough approximation of the continuous distribution. In this case, it is fairly
straightforward to construct our point-location structure in O(n + m log(mn)) time.

When discussing distribution-sensitive point location, the exact definition of the problem and the
choice of computational model is important. For example, our definition of the problem requires that
our data structure outputs the correct answer for every input point in R2. This means that, for example,
we can obtain non-trivial lower bounds for testing if p ∈ P even in the case when Pr{p ∈ P} = 1. One

13

could imagine another definition of the problem in which the data structure is only required to answer
correctly for points that are in the support of D.

We have given upper and lower bounds on the expected complexity of testing if a point is in a
convex polygon and these bounds match to within a constant factor. If we wish to be more precise, the
expected number of linear inequalities tested by any linear decision tree is at least (1/4 − ε)H − o(H)
and our data structure tests 3H + o(H) linear inqequalities. (The constant 3 appears in the upper bound
because the expected depth of a search in the triangle tree is at most H and each node in the triangle tree
tests the query point against 3 lines.) If we allow O(n log∗ n) space, the upper bound can be reduced to
H +o(H) by storing the triangles of the triangle tree in the data structure of Arya et al [4]. Alternatively,
we can maintain the O(n) space requirement while decreasing the upper bound to (1 + ε)H + o(H) by
storing sufficiently large subtrees of the triangle tree in the point location data structure of Arya et al
[3, 4]. Even with this trick there still remains a factor of 4 + ε between the upper and lower bounds.

Open Problem 1. Close the gap between the lower bounds and upper bounds on the expected cost of testing
if a point is contained in a convex polygon.

We have studied point location in convex polygons and convex subdivisions. From here we
could try to extend our results to simple polygons and general planar subdivisions whose faces are
arbitrary simple polygons. Perhaps a more realistic next step is to study the related problem of vertical
ray shooting: Preprocess a set S of points and open line segments so that, for any query point p, we
can determine the first object in S intersected by an upward vertical ray originating at p. Vertical ray
shooting is often used interchangeably with planar point location but is a strictly harder problem since
it sometimes requires the data structure to distinguish between edges of the same face. At the heart of
the vertical ray shooting problem is the following decision problem:

Open Problem 2. Let P be a simple polygon whose boundary consists of one line segment and one x-
monotone chain joining the two endpoints of the line segment and let D be a probability measure over R2.
Preprocess P and D into a data structure that can test if a query point p is contained in P and whose
expected query time is optimal in the linear decision tree model of computation.

References

[1] U. Adamy and R. Seidel. On the exact worst case query complexity of planar point location. In
Proceedings of the Ninth Annual ACM-SIAM Symposium on Discrete Algorithms, pages 609–618,
1998.

[2] S. Arya, S. W. Cheng, D. M. Mount, and H. Ramesh. Efficient expected-case algorithms for planar
point location. In Proceedings of the seventh Scandinavian Workshop on Algorithm Theory, pages
353–366, 2000.

[3] S. Arya, T. Malamatos, and D. M. Mount. Nearly optimal expected-case planar point location.
In Proceedings of the 41st annual Symposium on Foundations of Computer Science, pages 208–218,
2000.

[4] S. Arya, T. Malamatos, and D. M. Mount. Entropy-preserving cuttings and space-efficient planar
point location. In Proceedings of the Twelfth Annual ACM-SIAM Symposium on Discrete Algorithms,
pages 256–261, 2001.

[5] S. Arya, T. Malamatos, and D. M. Mount. A simple entropy-based algorithm for planar point
location. In Proceedings of the Twelfth Annual ACM-SIAM Symposium on Discrete Algorithms, pages
262–268, 2001.

14

[6] W. A. Beyer and A. Zardecki. The early history of the ham sandwich theorem. American Mathe-
matical Monthly, 111(1):58–61, 2004.

[7] D. Dobkin and R. Lipton. Multidimensional searching problems. SIAM Journal on Computing,
5:181–186, 1976.

[8] H. Edelsbrunner, L. J. Guibas, and J. Stolfi. Optimal point location in a monotone subdivision.
SIAM Journal on Computing, 15(2):317–340, 1986.

[9] M. Goodrich, M. Orletsky, and K. Ramaiyer. Methods for achieving fast query times in point location
data structures. In Proceedings of the Eighth Annual ACM-SIAM Symposium on Discrete Algorithms,
pages 757–766, 1997.

[10] J. Iacono. Optimal planar point location. In Proceedings of the Twelfth Annual ACM-SIAM Symposium
on Discrete Algorithms, pages 240–241, 2001.

[11] J. Iacono. Expected asymptotically optimal planar point location. Computational Geometry Theory
and Applications, 29(1):19–22, 2004.

[12] D. Kirkpatrick. Optimal search in planar subdivisions. SIAM Journal on Computing, 12(1):28–35,
1983.

[13] D. E. Knuth. Two notes on notation. American Mathematical Monthly, 99(5), 1992.

[14] D. T. Lee and F. P. Preparata. Location of a point in a planar subdivision and its applications. SIAM
Journal on Computing, 6:594–606, 1977.

[15] K. Mehlhorn. Nearly optimal binary search trees. Acta Informatica, 5:287–295, 1975.

[16] K. Mulmuley. A fast planar partition algorithm. Journal of Symbolic Computation, 10:253–280,
1990.

[17] F. P. Preparata. A new approach to planar point location. SIAM Journal on Computing, 10:473–483,
1981.

[18] F. P. Preparata. Planar point location revisited: A guided tour of a decade of research. International
Journal of Foundations of Computer Science, 1(1):71–86, 1990.

[19] F. P. Preparata and M. I. Shamos. Computational Geometry: An Introduction. Springer-Verlag,
New-York, 1985.

[20] N. Sarnak and R. E. Tarjan. Planar point location using persistent search trees. Communications of
the ACM, 29(7):669–679, 1986.

[21] C. E. Shannon. A mathematical theory of communication. Bell Systems Technical Journal, pages
379–423 and 623–656, 1948.

15

