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Abstract
We give a simple proof of the following statement: If one puts independent exponential mean
1 edge weights on the edges of a d-cube, then the expected weight of the lightest path from
(0, . . . , 0) to (1, . . . , 1) is O(1).
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1 Introduction

The d-cube Qd is the graph with vertex set V (Qd) = {0, 1}d and whose edge set E(Qd)
contains the edge uv if and only if the Hamming distance between u and v is exactly 1.
Assign an independent exponential(1) edge weight to each edge of Qd. These weights define
a lightest path metric between the vertices of Qd, where w(u, v) denotes the weight of the
lightest path from vertex u to vertex w. What is the expected weight E[w(0,1)] of the
lightest path from 0 = (0, . . . , 0) to 1 = (1, . . . , 1)?

In this note, we offer a simple proof that E[w(0,1)] ∈ O(1); although the number of
edges in any path from 0 to 1 is at least d, the expected weight of the lightest path does not
increase with d. This result is not new. Indeed, this type of question is central in the study
of first-passage percolation as introduced by Hammersley and Welsh in 1965 [6] and recently
surveyed by Auffinger et al [2].

The question we consider here was first asked by Aldous [1, Section G7] and first answered
by Fill and Pemantle [5] who showed that the weight of the lightest monotone path from 0
to 1 converges in probability to 1 as d→∞. The most recent result on this problem is due
to Martinsson [7], who shows that w(0,1) converges in probability to ln(1 +

√
2) ≈ 0.881

as d→∞. The difference between these two results is that Fill and Pemantle’s paths are
monotone—they have exactly d edges—while Martinsson’s paths may have more than d

edges.
The proof we present here is (arguably) simpler and more accessible to a computer science

audience than either of the proofs discussed above. On the other hand, our proof only gives
an O(1) upper bound (approximately 303.61) on the weight of the lightest path from 0 to 1
and doesn’t give any lower bound. It also does not guarantee a monotone path; it produces
paths using roughly 3d/2 edges.

One nice feature of this new proof is that it employs a natural greedy strategy that results
in an algorithm for finding an O(1) weight path that runs in O(d4) time. In distributed
computing terms, this algorithm is 3-local, it can be implemented by an agent that only has
information about edge weights in a neighbourhood of radius 3 about the current vertex.

2 Review of Probability Concepts

Recall that an exponential(λ) random variable X has a distribution defined by

Pr{X > x} = e−λx , x ≥ 0 ,

and has expected value

E[X] =
∫ ∞

0
Pr{X > x} dx =

∫ ∞
0

e−λx dx = 1/λ
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If X1, . . . , Xk are independent exponential(1) random variables, then their minimum is an
exponential(k) random variable.

Pr{min{X1, . . . Xk} > x} = Pr{X1 > x, X2 > x,. . . , and Xk > x} =
(
e−x

)k = e−kx .

At one point, we will make use of a simple Chernoff bound for binomial random variables. If
B is a binomial random variable with expected value E[B], then

Pr{B < E[B]/2} ≤ e−E[B]/8 . (1)

3 Some Intuition

Before continuing, we first describe a naïve greedy algorithm that does not quite work.
Suppose that, to route from 0 to 1 we employ the strategy of repeatedly taking the lightest
edge that takes us closer to 1. At the zeroth step, there are d edges to choose from, so the
lightest one will have a weight that is the minimum of d exponential(1) random variables, i.e.,
it is an exponential(d) random variable and its expected value is 1/d. At the first step, there
are d− 1 edges to choose from, so the expected weight of the edge we choose is 1/(d− 1). In
general, the expected weight of an edge we choose at the ith step is 1/(d − i). Thus, the
expected weight of the edges crossed by this greedy algorithm is

d−1∑
i=0

1/(d− i) =
d∑
i=1

1/i ≤ ln d+ 1 .

This is not quite the O(1) bound we are hoping for, but it is significantly better than the
obvious O(d) bound.

The problem with this greedy algorithm is that it works well for the first d/2 steps, but
the cost of each step increases as it gets closer to 1, eventually yielding the dth harmonic
number. Our solution to this problem is to employ a foxtrot in the second d/2 steps, in
which we repeatedly take a step away from 1 followed by two steps toward 1. In the ith
stage, this allows us to choose from among i(d− i)2 different paths of length three instead of
being restricted d− i paths of length 1. Next, we prove a lemma that allows us to analyze
these foxtrot steps.

4 Trees of Height 3

The following result, depicted in Figure 1, studies a first-passage percolation problem on a
tree of height three.

I Lemma 1. Let a, b, c ≥ 1 be integers and let T be a rooted tree of height three of whose
root has a children, each of which has b children, each of which has c children. Assign an
exponential(1) edge weight to each edge of T and let ρ(T ) denote the weight of the lightest
root-to-leaf path in T . Then

Pr{ρ(T ) > t} ≤ e−at/64 + e−bat
2/1024 + e−cbat

3/768 .

Our only use for Lemma 1 is to upper bound the expected value of ρ(T ). We do this now,
before proving Lemma 1.

I Corollary 2. Let a, b, c, T , and ρ(T ) be defined as in Lemma 1, with a ≥ b ≥ c ≥ 1. Then
E[ρ(T )] ≤ C/(abc)1/3, for C = 64 + 16

√
π + 16(1/12)2/3Γ(1/3).
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T ′
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Figure 1 (a) The tree T for a, b, c = 4, 3, 2. After removing edges of weight greater than t/3, we
study the component T ′ containing the root of T .

Proof. Recall that, for any non-negative random variable X, E[X] =
∫∞

0 Pr{X > x} dx.
Therefore,

E[ρ(T )] =
∫ ∞

0
Pr{ρ(T ) > t} dt

≤
∫ ∞

0

(
e−at/64 + e−bat

2/1024 + e−cbat
3/768

)
dt

= 64
a

+ 16
√
π√

ab
+ 16(1/12)2/3Γ(1/3)

3
√
abc

≤ 64 + 16
√
π + 16(1/12)2/3Γ(1/3)

3
√
abc

where the last inequality uses the assumption that a ≥ b ≥ c. J

Proof of Lemma 1. For large values of t, the proof is simple. In particular, if t ≥ 6 ln 3,
then we observe that T contains a edge-disjoint root-to-leaf paths. For one of these paths to
have weight greater than t, at least one of its three edges must have weight greater than t/3.
The probability that this occurs (for a single path) is at most 3e−t/3. Since the paths are
edge-disjoint, their weights are independent, so the probability that it occurs for all a paths
is therefore at most

(3e−t/3)a = (eln 3−t/3)a = (e(ln 3/t−1/3)t)a ≤ (e−t/6)a = e−at/6 ,

where the inequality uses the assumption that t ≥ 6 ln 3.
We now move on to the interesting case, where 0 ≤ t < 6 ln 3. Imagine removing every

edge of T having weight greater than t/3 to obtain a forest F and let T ′ be the tree in F
that contains the root of T . For each i ∈ {0, 1, . . . , 3}, let Ni denote the number of nodes of
T ′ having depth i. Observe that, if N3 ≥ 1, then there is a root-to-leaf path in T of weight
at most t. Therefore the rest of the proof is devoted to upper bounding Pr{N3 = 0}.

Observe that N1 is a binomial(a, 1− e−t/3) random variable. The probability 1− e−t/3

is a bit unwieldy so we observe that, in the range 0 ≤ t < 6 ln 3, 1− e−t/3 ≥ t/8. Therefore,
we can lower bound the expected value

E[N1] = a(1− e−t/3) ≥ at/8 .

Since N1 is binomial, by (1),

Pr{N1 < at/16} ≤ e−at/64 .
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Figure 2 The result of Lemma 1 holds in a slightly more general setting, in which some of the
leaves of T are identified.

Now, conditioned on N1, N2 is a binomial(bN1, 1− e−t/3) random variable and

E[N2 | N1 ≥ at/16] ≥ bat(1− e−t/3)/16 ≥ bat2/128 .

Again, (1) yields

Pr{N2 < bat2/256 | N1 ≥ at/16} ≤ e−bat
2/1024 .

Now, conditioned on N2, N3 is a binomial(cN2, 1− e−t/3) random variable but for this last
step we don’t need Chernoff’s help:

Pr{N3 = 0 | N2 ≥ bat2/256} ≤ (e−t/3)cbat
2/256 = e−cbat

3/768 .

Summarizing,

Pr{ρ(T ) > t} ≤ Pr{N3 = 0}
≤ Pr{N3 = 0 | N2 ≥ bat2/256}

+ Pr{N2 < bat2/256 | N1 ≥ at/16}
+ Pr{N1 < at/16}

≤ e−at/64 + e−bat
2/1024 + e−bat

3/768 . J

I Remark. We note that the result of Lemma 1 also holds in a slightly more general setting,
an example of which is illustrated in Figure 2. In particular, we can identify groups of
leaves of T arbitrarily to obtain a directed acyclic graph D in which the leaves of T become
sinks in D. The lemma then gives bounds on the probability that the weight of the lightest
root-to-sink path exceeds t.

5 The Proof

I Theorem 3. Let Qd be the d-cube equipped with independent exponential(1) edge weights.
Then the expected weight of the lightest path from 0 = (0, . . . , 0) to 1 = (1, . . . , 1) is O(1).

Proof. For each i ∈ {0, . . . , d}, let Li denote set of vertices of Qd whose distance from 0 is
exactly i, so that 0 ∈ L0 and 1 ∈ Ld. We use a greedy strategy to find a path from 0 to 1.
To get from a vertex u ∈ Li to some vertex in Li+1 the strategy does one of the following
two things:
1. If i < d/2, then the algorithm traverses the lightest edge joining u to some vertex in Li+1.

The weight of this edge is the minimum of d − i independent exponential(1) random
variables, so the expected weight of this edge is 1/(d− i) ≤ 2/d.
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Figure 3 A foxtrot step considers all paths uxyz with x ∈ Li−1, y ∈ Li \ {u} and z ∈ Li+1.

2. If i ≥ d/2, we consider the i(d− i)2 paths uxyz with x ∈ Li−1, y ∈ Li \{u}, and z ∈ Li+1
and traverse the lightest such path. See Figure 3. This set of paths has the structure of
the DAG described in the remark at the end of Section 4: The root has i outgoing edges
and the nodes at depth 1 and 2 each have d− i outgoing edges. Therefore, by Corollary 2,
the expected weight of the three edges traversed in this step is at most Ci−1/3(d− i)−2/3.

Therefore, the expected weight of the entire path found by this algorithm is at most

µ ≤
b(d−1)/2c∑

i=0
2/d+

d−1∑
i=dd/2e

Ci−1/3(d− i)−2/3

≤ 2 + C

 d−1∑
i=dd/2e

i−1/3(d− i)−2/3


≤ 2 + C(d/2)−1/3

 d−1∑
i=dd/2e

(d− i)−2/3


= 2 + C(d/2)−1/3

bd/2c∑
k=1

k−2/3


≤ 2 + C(d/2)−1/3

(
1 +

∫ d/2

1
x−2/3 dx

)
= 2 + C(d/2)−1/3

(
3(d/2)1/3 − 3

)
≤ 2 + 3C . J

6 Discussion

Our proof works for any edge weight distribution with a probability density function that is
strictly positive in some right neighbourhood of 0 and whose tail decays exponentially. These
properties ensure the minimum of k independent random samples from the distribution has
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expected value O(1/k). The second property also ensures that there is are constants T, c > 0
such that, for all t > T , Pr{X > t} ≤ e−ct. Besides the exponential(λ) distribution for
constant λ, another notable example is the uniform distribution over the interval [0, 1].

The weight of the path found in our proof is the sum of d random variables. The first
d/2 of these are independent exponential(1). The second d/2 can be split into two subsets
(the odd steps and the even steps) that are each independent. Using standard methods for
deriving concentration inqualities along with the fact that Lemma 1 gives an exponential tail
bound on ρ(T ), it is possible to show that, for any δ > 0, Pr{µ ≥ (1 + δ)(1 + 3C)} → 0 as
d→∞. Unfortunately, the rate of this convergence is not quite enough to prove that with
high probability there is a path of weight O(1) from 0 to every vertex of Qd. This latter fact
is something that Fill and Pemantle’s proof does manage to show [5].

A conjecture of Aldous [1, Conjecture G7.1] was the original motivation for the work of
Fill and Pemantle. In his discussion of this conjecture, Aldous describes the naïve greedy
algorithm from Section 3 and shows that it produces a path whose expected weight is the
dth harmonic number. In their review of previous work, Fill and Pemantle [5] point out that
similar results on percolation were proven for complete binary trees [8]. 24 years later, our
proof shows that the result for hypercubes is a consequence of the naïve greedy algorithm
and a result for trees of height three.

The proof of Fill and Pemantle [5] and an unpublished proof of Bollobás et al [3] both
work by a careful analysis of the d! monotone paths from 0 to 1, and the ways in which pairs
of these paths can overlap. Fill and Pemantle require this because they use (a variant of)
the second moment method, while Bollobás et al use a lemma due to Janson that also has
conditions on the interactions between pairs of objects. Our proof sidesteps all of this.

Martinsson’s proof [7] works by relating this problem to a so-called branching translation
process and then using a variety of advanced probabilistic tools to study this process. This
branching translation process was used by Fill and Pemantle’s original work to provide a
lower bound on w(0,1).

Finally, we point out that the first-passage percolation time in a graph G with i.i.d.
exponential edge weights is closely related to the the maximum number of edges, h(G, s),
in the lightest path from some vertex s any other vertex of G. Devroye et al [4] describe a
relationship between first-passage percolation time, the number of simple paths in G and
h(G, s) and use this to derive bounds on E[h(G, s)] that are tight for many classes of graphs.
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