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Abstract7

We present a simple proof of Chernoff’s bound inspired by coding theory. The proof is elementary8

and does not require any calculus.9
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1 Introduction14

Chernoff’s bound gives an estimate on the probability that a sum of independent Binomial15

random variables deviates from its expectation [10]. It has many variants and extensions that16

are known under various names such as Bernstein’s inequality or Hoeffding’s bound [3, 10].17

Chernoff’s bound is one of the most basic and versatile tools in the life of a theoretical18

computer scientist, with a seemingly endless amount of of applications. Almost every19

contemporary textbook on algorithms or complexity theory contains a statement and a proof20

of the bound [2,5,8, 11], and there are several texts that discuss its various applications in21

great detail (see, e.g., the textbooks by Alon and Spencer [1], Dubhashi and Panchonesi [7],22

Mitzenmacher and Upfal [13], Motwani and Raghavan [15], or the articles by Chung and23

Lu [4], Hagerup and Rüb [9], or McDiarmid [12]).24

We give a simple proof of Chernoff’s bound that is inspired by coding theory. The proof25

relies on a weighted version of Markov’s inequality and does not need any calculus. It is derived26

from ideas discussed with Luc Devroye and Gábor Lugosi at the Ninth Annual Probability,27

Combinatorics and Geometry Workshop, held April 4–11, 2014, at McGill University’s28

Bellairs Institute. A broader discussion of coding theoretic arguments in theoretical computer29

science can be found in the survey [14].30

2 The Chernoff Bound31

We begin with a statement of the basic Chernoff bound. For this, we need a notion from32

information theory [6]. Let p, q ∈ [0, 1]. The Kullback-Leibler divergence or relative entropy33

of the probability distributions (p, 1− p) and (q, 1− q) on two elements is defined as34

DKL(p‖q) := p ln p

q
+ (1− p) ln 1− p

1− q
.35
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23:2 A Simple Proof of Chernoff’s Bound

The Kullback-Leibler divergence measures the distance between the distributions (p, 1− p)36

and (q, 1− q): it represents the expected loss of efficiency if we encode a bit string where a37

0-bit has probability p and a 1-bit has probability 1− p with a code that is optimal for the38

case that a 0-bit has probability q and a 1-bit has probability 1− q. Now, the basic Chernoff39

bound is as follows:40

I Theorem 2.1. Let n ∈ N, p ∈ [0, 1], and let X1, . . . , Xn be n independent random variables41

with Xi ∈ {0, 1} and Pr[Xi = 1] = p, for i = 1, . . . n. Set X :=
∑n

i=1 Xi. Then, for any42

t ∈ [0, 1− p], we have43

Pr[X ≥ (p + t)n] ≤ e−DKL(p+t‖p)n.44

Many other, perhaps more familiar, bounds can be derived from Theorem 2.1; see the45

survey [16] for more details.46

3 The New Proof47

Let {0, 1}n be the set of all bit strings of length n, and let w : {0, 1}n → [0, 1] be a weight48

function. We call w valid if
∑

x∈{0,1}n w(x) ≤ 1. The following lemma, a weighted version of49

Markov’s inequality, says that for any probability distribution px on {0, 1}n, a valid weight50

function is unlikely to be substantially larger than px.51

I Lemma 3.1. Let D be a probability distribution on {0, 1}n that assigns to each x ∈ {0, 1}n
52

a probability px, and let w be a valid weight function. For any s ≥ 1, we have53

Pr
x∼D

[w(x) ≥ spx] ≤ 1/s.54

Proof. Let Zs = {x ∈ {0, 1}n | w(x) ≥ spx}. We have55

Pr
x∼D

[w(x) ≥ spx] =
∑

x∈Zs
px>0

px ≤
∑

x∈Zs
px>0

px
w(x)
spx

≤ (1/s)
∑

x∈Zs

w(x) ≤ 1/s,56

since w(x)/spx ≥ 1 for x ∈ Zs, px > 0, and since w is valid. J57

We now show that Lemma 3.1 implies Theorem 2.1. For this, we interpret the sequence58

X1, . . . , Xn as a bit string of length n. This induces a probability distribution D that assigns59

to each x ∈ {0, 1}n the probability px = pkx(1 − p)n−kx , where kx denotes the number of60

1-bits in x. We define a weight function w : {0, 1}n → [0, 1] by w(x) = (p+t)kx(1−p−t)n−kx ,61

for x ∈ {0, 1}n. Then w is valid, since w(x) is the probability that x is generated by setting62

each bit to 1 independently with probability p + t. For x ∈ {0, 1}n, we have63

w(x)
px

=
(

p + t

p

)kx
(

1− p− t

1− p

)n−kx

.64

Since ((p + t)/p)((1− p)/(1− p− t)) ≥ 1, it follows that w(x)/px is an increasing function of65

kx. Hence, if kx ≥ (p + t)n, we have66

w(x)
px
≥

[(
p + t

p

)p+t(1− p− t

1− p

)1−p−t
]n

= eDKL(p+t‖p)n.67

We now apply Lemma 3.1 to D and w to get68

Pr[X ≥ (p+ t)n] = Pr
x∼D

[k(x) ≥ (p+ t)n] ≤ Pr
x∼D

[
w(x) ≥ pxeDKL(p+t‖p)n

]
≤ e−DKL(p+t‖p)n,69

as claimed in Theorem 2.1.70
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